Plant Proteins: Assessing Their Nutritional Quality and Effects on Health and Physical Function
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Protein What It Is Protein Is Found in Foods from Both Plants and Animals
Protein What It Is Protein is found in foods from both plants and animals. Protein is made up of hundreds or thousands of smaller units, called amino acids, which are linked to one another in long chains. The sequence of amino acids determines each protein’s unique structure and its specific function. There are 20 different amino acids that that can be combined to make every type of protein in the body. These amino acids fall into two categories: • Essential amino acids are required for normal body functioning, but they cannot be made by the body and must be obtained from food. Of the 20 amino acids, 9 are considered essential. • Nonessential amino acids can be made by the body from essential amino acids consumed in food or in the normal breakdown of body proteins. Of the 20 amino acids, 11 are considered nonessential. Where It Is Found Protein is found in a variety of foods, including: • Beans and peas • Dairy products (such as milk, cheese, and yogurt) • Eggs • Meats and poultry • Nuts and seeds • Seafood (fish and shellfish) • Soy products • Whole grains and vegetables (these generally provide less protein than is found in other sources) What It Does • Protein provides calories, or “energy” for the body. Each gram of protein provides 4 calories. • Protein is a component of every cell in the human body and is necessary for proper growth and development, especially during childhood, adolescence, and pregnancy. • Protein helps your body build and repair cells and body tissue. • Protein is a major part of your skin, hair, nails, muscle, bone, and internal organs. -
Insects for Human Consumption
Chapter 18 Insects for Human Consumption Marianne Shockley1 and Aaron T. Dossey2 1Department of Entomology, University of Georgia, Athens, GA, USA, 2All Things Bugs, Gainesville, FL, USA 18.1. INTRODUCTION The utilization of insects as a sustainable and secure source of animal-based food for the human diet has continued to increase in popularity in recent years (Ash et al., 2010; Crabbe, 2012; Dossey, 2013; Dzamba, 2010; FAO, 2008; Gahukar, 2011; Katayama et al., 2008; Nonaka, 2009; Premalatha et al., 2011; Ramos- Elorduy, 2009; Smith, 2012; Srivastava et al., 2009; van Huis, 2013; van Huis et al., 2013; Vantomme et al., 2012; Vogel, 2010; Yen, 2009a, b). Throughout the world, a large portion of the human population consumes insects as a regular part of their diet (Fig. 18.1). Thousands of edible species have been identified (Bukkens, 1997; Bukkens and Paoletti, 2005; DeFoliart, 1999; Ramos-Elorduy, 2009). However, in regions of the world where Western cultures dominate, such as North America and Europe, and in developing countries heavily influenced by Western culture, mass media have negatively influenced the public’s percep- tion of insects by creating or reinforcing fears and phobias (Kellert, 1993; Looy and Wood, 2006). Nonetheless, the potentially substantial benefits of farming and utilizing insects as a primary dietary component, particularly to supplement or replace foods and food ingredients made from vertebrate livestock, are gain- ing increased attention even in Europe and the United States. Thus, we present this chapter to -
Evaluation of Nutrient and Anti-Nutrient Contents of Parkia Biglobosa (L.) Flower
Available online at http://www.ajol.info/index.php/njbas/index Nigerian Journal of Basic and Applied Science (2011), 19(1):76- 80 ISSN 0794-5698 Evaluation of Nutrient and Anti-nutrient Contents of Parkia biglobosa (L.) Flower 1L.G. Hassan, 1B. U. Bagudo, 2A.A. Aliero, 1K.J. Umar, *3L. Abubakar and 1N.A. Sani 1Department of Pure and Applied Chemistry, Usmanu Danfodiyo University, Sokoto 2Department of Biological Sciences, Usmanu Danfodiyo University, Sokoto 3Department of Chemistry, Shehu Shagari College of Education, Sokoto [*Corresponding Author: E-mail: [email protected]; Mobile: +234(0)8064992936] ABSTRACT: Nutritional and antinutritional contents of Parkia biglobosa flower were analysed using standard analytical methods. On dry weight basis, the flower had the following proximate compositions; ash (6.50 ± 1.00%), crude lipid (4.66 ± 0.29%), crude protein (6.77 ± 0.15%), available carbohydrate (78.9 ± 1.18%) and crude fibre (3.17 ± 0.29%). The calorific value was 384.7 kcal/100g. Mineral analysis indicates that the flower contain some essential minerals such as K, Na, Ca, Mg, and Zn, but was low in Cu, Mn, and Fe. The flower has low concentration of anti-nutritive factors: phytate (1.41±0.24mg %); oxalate (0.03±0.01mg %); hydrocyanic acid (0.17±0.01mg %) and nitrate (1.32±0.10mg %). The values are below the reference toxic standard levels. Therefore, P. biglobosa flower could supplement the microelements requirement, energy and to some extent protein. Key words: Wild plants, Parkia biglobosa, flowers, nutrients, antinutrients. INTRODUCTION distinctively large bright red globe capitulum that Continuous search for new sources of food compose of up to 2500 individual flowers nutrients especially from plants becomes arranged around a spherical bud. -
Nutrients' and Antinutrients' Seed Content in Common Bean
Article Nutrients’ and Antinutrients’ Seed Content in Common Bean (Phaseolus vulgaris L.) Lines Carrying Mutations Affecting Seed Composition Gianluca Giuberti 1, Aldo Tava 2, Giuseppe Mennella 3, Luciano Pecetti 2, Francesco Masoero 4, Francesca Sparvoli 5, Antonio Lo Fiego 6 and Bruno Campion 7,* 1 Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84– 29122 Piacenza, Italy; [email protected] 2 Council for Agricultural Research and Economics (CREA)–Research Centre for Animal Production and Aquaculture (CREA-ZA), Viale Piacenza 29–26900 Lodi, Italy; [email protected] (A.T.); [email protected] (L.P.) 3 Council for Agricultural Research and Economics (CREA)–Research Centre for Vegetable and Ornamental Crops (CREA-OF), Via Cavalleggeri 25–84098 Pontecagnano-Faiano (Salerno), Italy; [email protected] 4 Department of Animal Science, Food and Nutrition, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84–29122 Piacenza, Italy; [email protected] 5 Institute of Agricultural Biology and Biotechnology, National Research Council, CNR, Via Bassini 15–20133 Milano, Italy; [email protected] 6 Arcoiris Srl-Organic and Biodynamic seeds, Via Labriola 18/A-D–41123 Modena, Italy; [email protected] 7 Council for Agricultural Research and Economics (CREA)–Research Centre for Genomics & Bioinformatics (CREA-GB), Via Paullese 28–26836 Montanaso Lombardo (Lodi), Italy * Correspondence: [email protected] or [email protected]; Tel.: +39-0371-68171/656 Received: 24 April 2019; Accepted: 11 June 2019; Published: 16 June 2019 Abstract: Lectins, phytic acid and condensed tannins exert major antinutritional effects in common bean when grains are consumed as a staple food. -
Clean Lean Protein Technical Bulletin
SEPT 2015 CLEAN LEAN PROTEIN TECHNICAL BULLETIN ULTRA-HIGH BIOLOGICAL VALUE GOLDEN PEA PROTEIN, ALKALINE, NO ADDED MALTODEXTRIN, LACTOSE, POLYOLS OR FODMAPS All 9 essential amino acids. High glutamine. Very low carbs and low fat. No fillers, no artificial additives, preservatives, sweeteners, flavours or colours DISCLAIMER For educational and informational use by practitioners and businesses only The information in this Technical Bulletin is intended exclusively for business- to-business use, and not for the end consumer. The Technical Bulletin has been compiled independently by ANH Consultancy Ltd (The Atrium, Curtis Road, Dorking, Surrey RH4 1XA, UK) to provide education and information specifically for qualified healthcare practitioners, retailers and sport and fitness professionals with interests in the NuZest product range or ingredients contained within it. Accordingly, NuZest can accept no responsibility for the quality or accuracy of the material contained herein. The information and any implied health claims made are not necessarily authorised by national or EU authorities for communication to the end consumer. GLUTEN FREE • DAIRY FREE • LECTIN FREE • SOY FREE • GMO FREE T 1300 575 121 W nuzest.com.au E [email protected] facebook.com/nuzest.aus NUZEST CLEAN LEAN PROTEIN CONTENTS 1 INTRODUCTION & PRODUCT JUSTIFICATION 2 PEA PROTEIN ISOLATE 3 NUTRITIONAL PROFILE 4 MANAGING THE BODY’S AMINO ACID POOL 6 SUPPORTING ATHLETES & ACTIVE LIFESTYLES 8 WHAT’S IN CLEAN LEAN PROTEIN? 10 CLEAN LEAN PROTEIN 11 REFERENCES 12 T 1300 575 121 W nuzest.com.au E [email protected] facebook.com/nuzest.aus INTRODUCTION & PRODUCT JUSTIFICATION 2 NUZEST’S CLEAN LEAN PROTEIN (CLP) IS A UNIQUE, VEGETARIAN AND VEGAN, PROTEIN CHARACTERISED BY ITS TASTE (4 NATURAL FLAVOURS AND AN UNFLAVOURED), LACK OF FILLERS OR FOOD ADDITIVES, AND VERY HIGH DIGESTIBILITY. -
Essential Amino Acids and the Plant-Foods
Essential Amino Acids and the Plant-Based Foods That Contain Them Animal-based foods (meats, eggs, dairy) contain all 8 essential amino acids so they are not listed here. Fruits do have essential amino acids; however they are very low in milligrams. Most of the vegetables, grains and nuts listed have amino acids ranging from 100 to over 2000 milligrams (based on a 200 calorie serving) Also the foods listed may be more beneficial in particular forms, such as the seed instead of the plant, raw instead of cooked. And finally, if a food is listed in all amino acid categories, you may want to check nutritional values to ensure that you are getting the appropriate amounts. See the article on “Eat your protein! Stay healthy!” at http://ahicatlanta.com/articles/eat-protein-to-stay-healthy.html. A good website to check values is Self Nutrition Data at http://nutritiondata.self.com Essential Amino Acid High-Content Plant-Based Foods Isoleucine: seaweed, watercress, pumpkin leaves, swiss chard, Chinese cabbage, horseradish tree (the leafy tips), spinach, kidney beans, alfalfa seeds, sunflower seeds, sesame seeds, soy, baking yeast, soy, wheat, almonds, rice, bananas, apricots, peaches, avocados, persimmons, apricots, dates, kiwi, apples, oranges, cranberries, blueberries, plantains Leucine: seaweed, pumpkin leaves, watercress, horseradish tree (the leafy tips), alfalfa seeds, turnip greens, kidney beans, sesame seed, sunflower seeds, soy, peanuts, rice, bananas, apricots, peaches, guavas, avocados, figs, persimmons, raisins, pears, dates, apples, -
Impact of Steam Treatment on Protein Quality Indicators of Full Fat Soybeans from Different Origins
Impact of steam treatment on protein quality indicators of full fat soybeans from different origins Pieter Bos 20-10-2019 1 Wageningen University ASG - Animal Nutrition Group Impact of steam treatment on protein quality indicators of full fat soybeans from different origins Author : Bos, P. Registration nr. : 940221104030 Code : ANU-80436 Supervisor(s) : A.F.B. van der Poel, G. Bosch Wageningen, Oktober 2018 2 Copyright Niets uit dit verslag mag worden verveelvoudigd en/of openbaar gemaakt door middel van druk, fotokopie, microfilm of welke andere wijze ook, zonder voorafgaande schriftelijke toestemming van de hoogleraar van de leerstoelgroep Diervoeding van Wageningen Universiteit. No part of this publication may be reproduced or published in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without prior written permission of the head of the Animal Nutrition Group of Wageningen University, The Netherlands. 3 Summary The production of soybeans in the EU-28 in 2016 was 2.4 million tons, which is only 0.7% of the global production. From a social perspective, there is a stimulus in the Netherlands to a protein transition in which regional proteins are used for livestock farming. Heat-treated full-fat soybeans (FFSB) can be an important protein source. Due to the gap in knowledge about European soybeans, more research can provide clarity about protein quality of European FFSB. In this study, raw GMO- free, unprocessed soybeans from European zone (France, FFSBFR; Netherlands, FFSBNL ) and common used beans (Ukraine, FFSBUKR; Brazil, FFSBBR) were steam-toasted for 9 different time- temperature combinations, and analysed on different in-vitro protein quality indicators: Trypsin inhibitor activity (TIA), total and reactive lysine (rLys, tLys), crude protein (CP), pH-stat digestibility at 10 minutes (DH10) and 120 minutes (DH120), and protein dispersibility index (PDI). -
Beans + Rice = a Complete Protein for Global Nutrition
HEALTHY FOR LIFE® EDUCATIONAL EXPERIENCES GIHC1 GLOBALLY INSPIRED HOME COOKING Beans + Rice = A Complete OBJECTIVES: Describe the nutritional Protein for Global Nutrition benefits of eating beans and rice (both together Time: 75 Minutes (1 recipe prepared); 95 Minutes (2 recipes prepared) and separately). Identify different types of beans Learn why pairing these two simple ingredients creates a complete and different types of rice. protein and why beans-and-rice dishes have become culinary staples List two healthy cooking tips across the globe. Learn how various countries make this combination for beans and/or rice. their own with unique preparations. Describe cooking traditions for beans and rice in other countries. SETUP ACTIVITY (20-40 Minutes) • Review the resource list and print it out. • The class will divide into two groups. Each will Purchase all necessary supplies after reviewing prepare the same or a different beans-and- the HFL Cost Calculator. rice recipe. • Set up demo station with the necessary activity resources. RECAP (10 Minutes) • Provide computer, internet access, and • Pass out handout(s) and invite participants projector, if available. to taste the healthy dish or dishes. Ask each participant to share one learning from INTRO (10 Minutes) the lesson. • Welcome participants and introduce yourself. GOAL SETTING/CLOSING (15 Minutes) • Take care of any housekeeping items (closest bathroom, water fountain, etc.). • Engage in a goal setting activity from the bank of options provided in the Welcome Toolkit. • Give a brief description of the educational Pass out the Setting SMART Goals handout experience. to participants. • Engage in an icebreaker to gauge topic • Thank participants and encourage them to knowledge from the bank of options provided join the next activity. -
Introduction to Proteins and Amino Acids Introduction
Introduction to Proteins and Amino Acids Introduction • Twenty percent of the human body is made up of proteins. Proteins are the large, complex molecules that are critical for normal functioning of cells. • They are essential for the structure, function, and regulation of the body’s tissues and organs. • Proteins are made up of smaller units called amino acids, which are building blocks of proteins. They are attached to one another by peptide bonds forming a long chain of proteins. Amino acid structure and its classification • An amino acid contains both a carboxylic group and an amino group. Amino acids that have an amino group bonded directly to the alpha-carbon are referred to as alpha amino acids. • Every alpha amino acid has a carbon atom, called an alpha carbon, Cα ; bonded to a carboxylic acid, –COOH group; an amino, –NH2 group; a hydrogen atom; and an R group that is unique for every amino acid. Classification of amino acids • There are 20 amino acids. Based on the nature of their ‘R’ group, they are classified based on their polarity as: Classification based on essentiality: Essential amino acids are the amino acids which you need through your diet because your body cannot make them. Whereas non essential amino acids are the amino acids which are not an essential part of your diet because they can be synthesized by your body. Essential Non essential Histidine Alanine Isoleucine Arginine Leucine Aspargine Methionine Aspartate Phenyl alanine Cystine Threonine Glutamic acid Tryptophan Glycine Valine Ornithine Proline Serine Tyrosine Peptide bonds • Amino acids are linked together by ‘amide groups’ called peptide bonds. -
Nutritional Value of Soybean Meal Produced from High Protein, Low Oligosaccharide, Or Conventional Varieties of Soybeans And
Animal Feed Science and Technology 188 (2014) 64–73 Contents lists available at ScienceDirect Animal Feed Science and Technology journal homepage: www.elsevier.com/locate/anifeedsci Nutritional value of soybean meal produced from high protein, low oligosaccharide, or conventional varieties of soybeans and fed to weanling pigs ∗ K.M. Baker, Y. Liu, H.H. Stein Department of Animal Sciences, University of Illinois, Urbana, USA a r a t i c l e i n f o b s t r a c t Article history: Three experiments were conducted to evaluate the nutritional value of high protein soybean Received 19 August 2013 meal (SBM-HP), low oligosaccharide soybean meal (SBM-LO), and conventional soybean Received in revised form 22 October 2013 meal (SBM-CV) fed to weanling pigs. The three soybean meals (SBM) contained 549, 536 Accepted 25 October 2013 and 475 g/kg crude protein, respectively. In Exp. 1, the coefficient of ileal standardized digestibility (CISD) of amino acids (AA) in the 3 ingredients was measured using eight bar- rows (initial body weight: 14.3 ± 1.23 kg) that were equipped with a T-cannula in the distal Keywords: ileum and allotted to a replicated 4×4 Latin square design with four periods (seven days Amino acids Energy per period) and four diets per square. Three diets contained SBM-HP, SBM-LO, or SBM-CV High protein as the sole source of AA. The fourth diet was a N-free diet that was used to determine basal Low oligosaccharide ileal endogenous losses of AA. Results indicated that the CISD for all AA was not different Soybean meal among the three varieties of SBM. -
Breeding for Quality Protein Maize (QPM) Varieties: a Review
agronomy Review Breeding for Quality Protein Maize (QPM) Varieties: A Review Liliane N. Tandzi 1,2,*, Charles S. Mutengwa 1, Eddy L. M. Ngonkeu 2,3, Noé Woïn 2 and Vernon Gracen 4 1 Department of Agronomy, Faculty of Science and Agriculture, University of Fort Hare, P. Bag X1314, Alice 5700, South Africa; [email protected] 2 Institute of Agricultural Research for Development (IRAD), P.O. Box 2123, Messa, Yaounde, Cameroon; [email protected] (E.L.M.N.); [email protected] (N.W.) 3 Department of Plant Biology and Physiology, Faculty of Science, University of Yaounde I, Yaounde, Cameroon 4 West Africa Centre for Crop Improvement (WACCI), College of Basic and Applied Sciences, University of Ghana, Legon PMB LG 30, Accra 999064, Ghana; [email protected] * Correspondence: [email protected] or [email protected]; Tel.: +27-063-459-4323 Received: 28 August 2017; Accepted: 19 October 2017; Published: 28 November 2017 Abstract: The nutritional evaluation of quality protein maize (QPM) in feeding trials has proved its nutritional superiority over non-QPM varieties for human and livestock consumption. The present paper reviews some of the most recent achievements in development of QPM varieties using both conventional and molecular breeding under stressed and non-stressed environments. It is evident that numerous QPM varieties have been developed and released around the world over the past few decades. While the review points out some gaps in information or research efforts, challenges associated with adoption QPM varieties are highlighted and suggestions to overcome them are presented. The adoption of released varieties and challenges facing QPM production at the farmer level are also mentioned. -
Antinutrient Profile of Three Mushroom Varieties Consumed in Amaifeke, Orlu, Imo State
Food Science and Quality Management www.iiste.org ISSN 2224-6088 (Paper) ISSN 2225-0557 (Online) Vol.32, 2014 Antinutrient Profile of Three Mushroom Varieties Consumed in Amaifeke, Orlu, Imo State OLY-ALAWUBA, N. OBIAKOR - OKEKE, P. N. Department of Nutrition and Dietetics, Faculty of Health Science Imo State University, Owerri, Imo State, Nigeria Email: [email protected] ; [email protected] Abstract Background: The importance of eliminating or minimizing antinutrients from foods human consume cannot be overemphasized. This study evaluated the antinutrient profile of three varieties of mushroom consumed in Amaifeke, Orlu, Imo State were determined. The mushroom species include white button mushroom ( Agaricus bisporus ), oyster mushroom ( Pleurotus ostreatus ), Crimini mushroom ( Agaricus bisporus ). Methods: The mushroom varieties were harvested and dried, after which, they were taken to the laboratory for chemical analysis. Standard assay methods were used to analyze for antinutrient composition. Result: Six anti-nutrients: hydrogen cyanide, saponin, phytate, oxalate, trypsin inhibitor and haemogglutinin were analysed and their values ranged from 0.198 – 0.236mg/g, 0.6656 – 1.001mg/g, 0.7794 -1.558mg/100g, 0.236 – 0.510%, 1.857 – 3.476TIµ/mg, 1.350 – 2.899Hµ/mg respectively. Conclusion: Based on the result of the study, it is important that these mushrooms be properly processed so that the nutrients in them will not be rendered inaccessible by the body due to the presence of these antinutrients. Keywords: Antinutrient, Mushroom, Consumed, Amaifeke Introduction Antinutrients are natural or synthetic compounds that interfere with the absorption of nutrients (1). Plant foods may contain significant amounts of toxic or antinutritional substances, legumes are particularly rich source of natural toxicants including protease inhibitors, amylase inhibitors, metal chelates, flatus factors, hemagglutinins, saponins, cyanogens, lathyrogens, tannins, allergens, acetylenic furan and isoflavonoidphytoalexins (2).