Sulfoxide Reductase from Escherichia Coli Reveals a New GAF Domain Function

Total Page:16

File Type:pdf, Size:1020Kb

Sulfoxide Reductase from Escherichia Coli Reveals a New GAF Domain Function Free methionine-(R)-sulfoxide reductase from Escherichia coli reveals a new GAF domain function Zhidong Lin*, Lynnette C. Johnson*, Herbert Weissbach†‡, Nathan Brot§, Mark O. Lively*, and W. Todd Lowther* *Center for Structural Biology, Department of Biochemistry, Wake Forest University School of Medicine, Winston–Salem, NC 27157; †Center for Molecular Biology and Biotechnology, Florida Atlantic University, 777 Glades Road, Boca Raton, FL 33431; and §Hospital for Special Surgery, Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, NY 10021 Contributed by Herbert Weissbach, April 24, 2007 (sent for review March 7, 2007) The reduction of methionine sulfoxide (MetO) is mediated by recently revealed or proposed the existence of enzymes specific for methionine sulfoxide reductases (Msr). The MsrA and MsrB families free Met-(R)-O, free Met-(S)-O, peptide Met-(S)-O, and a mem- can reduce free MetO and MetO within a peptide or protein brane-associated protein(s), which is able to reduce all forms of context. This process is stereospecific with the S- and R-forms of MetO (7, 8, 10). The Msr with the highest specific activity in the E. MetO repaired by MsrA and MsrB, respectively. Cell extracts from coli MsrAϪBϪ soluble extract is the free Met-(R)-O reductase an MsrA؊B؊ knockout of Escherichia coli have several remaining (fRMsr). Nothing is currently known about the structure and Msr activities. This study has identified an enzyme specific for the catalytic mechanism of fRMsr. The specificity of the enzyme for free form of Met-(R)-O, fRMsr, through proteomic analysis. The free Met-(R)-O may have broad implications for resistance to recombinant enzyme exhibits the same substrate specificity and is oxidant stress. as active as MsrA family members. E. coli fRMsr is, however, 100- In this study, we have determined the identity of E. coli fRMsr to 1,000-fold more active than non-selenocysteine-containing through its purification from the MsrAϪBϪ strain and proteomic MsrB enzymes for free Met-(R)-O. The crystal structure of E. coli analysis. The recombinant enzyme has been expressed, purified, fRMsr was previously determined, but no known function was and characterized with regards to its substrate specificity, kinetic assigned. Thus, the function of this protein has now been deter- parameters, and ability to use the NADPH-thioredoxin (Trx) mined. The structural similarity of the E. coli and yeast proteins reductase (TrxR)-Trx reduction system. The fRMsr sequence is suggests that most fRMsrs use three cysteine residues for catalysis highly conserved across bacteria and yeast, but is not found in and the formation of a disulfide bond to enclose a small active site higher organisms, including humans. The fRMsr domain is part of cavity. This latter feature is most likely a key determinant of the large GAF domain family typified by cGMP-binding phos- substrate specificity. Moreover, E. coli fRMsr is the first GAF domain phodiesterases, Anabaena adenylyl cyclases, and the E. coli tran- family member to show enzymatic activity. Other GAF domain scription factor FhlA (11). These findings suggest that fRMsr proteins substitute the Cys residues and others to specifically bind represents a GAF domain with enzymatic activity, and that Met- cyclic nucleotides, chromophores, and many other ligands for (R)-O may function as a signaling molecule in response to oxidative signal potentiation. Therefore, Met-(R)-O may represent a signal- stress and nutrients. ing molecule in response to oxidative stress and nutrients via the TOR pathway in some organisms. Results Purification and Sequence Determination of E. coli fRMsr. Extracts of methionine oxidation ͉ methionine sulfoxide reductase the E. coli MsrAϪBϪ strain were used to identify the origins of the remaining Msr activity (7, 8). The extract was fractionated by eactive oxygen species cause cellular damage to lipids, DNA ammonium sulfate precipitation and a series of chromatographic Rand proteins. In proteins this damage includes the oxidation of columns. At each step of this process, the enzymatic activity for the methionine (Met) to methionine sulfoxide (MetO) (1). The addi- reduction of free MetO was measured by using the nitroprusside BIOCHEMISTRY tion of one oxygen atom to either lone pair of electrons of the sulfur assay. In this assay, Met reacts with the nitroprusside molecule, atom results in the formation of either the S-orR-form of MetO. leading to a change in absorbance at 540 nm (7, 8). Ammonium MetO has been implicated in a variety of disease states, and in some sulfate was found to inhibit the Msr activity, thus requiring dialysis instances the reduction or repair of this oxidation to Met restores of the samples before analysis. Only those fractions that exhibited the biological and enzymatic function of proteins (2). The reduction the highest specific activity were pooled at each step of the of MetO is mediated by several families of methionine sulfoxide purification. reductases (Msr). The structures and catalytic mechanisms of the The last stage of the fRMsr purification used a Resource Q MsrA and MsrB families have been extensively studied (3, 4). Key anion-exchange column. A comparison of the protein distribution features of both families are their strict substrate stereospecificity within the fractions by SDS/PAGE analysis with the Msr activity and ability to reduce both free MetO and MetO within a peptide profile revealed that only one group of protein bands showed or protein context. The MsrA and MsrB enzymes reduce Met-(S)-O correspondence. The putative fRMsr bands were excised and and Met-(R)-O, respectively. Moreover, these enzymes share a digested in-gel with trypsin. The resulting peptide fragments were reaction mechanism that involves the formation of a cysteine sulfenic acid intermediate (Cys-SOH) and the subsequent forma- tion and reduction of disulfide bonds which can differ depending on Author contributions: Z.L., H.W. and W.T.L. designed research; Z.L., L.C.J., H.W., and M.O.L. performed research; Z.L., H.W., N.B., and W.T.L. analyzed data; and Z.L. and W.T.L. wrote the number of Cys residues present. the paper. The Escherichia coli MsrB enzyme creates somewhat of a co- The authors declare no conflict of interest. nundrum. Crude extracts show little MsrB activity, and the recom- Abbreviations: fRMsr, free Met-(R)-O reductase; Met, methionine; MetO, methionine binant enzyme has significantly lower activity for free Met-(R)-O sulfoxide; MMTS, methyl methanethiosulfonate; Msr, methionine sulfoxide reductases; when compared with the MsrA enzymes (5). Thus, it is unclear how Trx, thioredoxin; TrxR, thioredoxin reductase. MsrB could enable an E. coli Met auxotroph to grow on Met-(R)-O ‡To whom correspondence should be addressed. E-mail: [email protected]. as a Met source (6). Additional Msr enzymes have been observed This article contains supporting information online at www.pnas.org/cgi/content/full/ Ϫ Ϫ which may explain these findings (6–9). Studies with the MsrA B 0703774104/DC1. strains of Escherichia coli and Saccharomyces cerevisiae have most © 2007 by The National Academy of Sciences of the USA www.pnas.org͞cgi͞doi͞10.1073͞pnas.0703774104 PNAS ͉ June 5, 2007 ͉ vol. 104 ͉ no. 23 ͉ 9597–9602 Downloaded by guest on September 27, 2021 blot analysis, using an anti-His tag antibody (Fig. 2B), confirmed that the 18-kDa fMsr does not contain the His-tag and begins with residue Met-19. The 24-kDa fMsr was found to contain the His-tag. Both species exhibited the same Msr activity with the nitroprusside assay and eluted at a higher molecular weight than expected on the gel filtration column. The 18-kDa species was analyzed by analytical ultracentrifugation at 0.3 mg mlϪ1 and found to have an apparent molecular weight of 36 kDa (data not shown). The addition of DTT Fig. 1. Sequence of E. coli fRMsr. Six tryptic fragments were identified by Ϫ Ϫ had no affect on the oligomeric state. At this time, it is not clear why mass spectrometry from E. coli fRMsr purified from MsrA B cells. The pep- tides are indicated in bold, underlined, and labeled 1–6. The identified the 18-kDa species was produced, although a weak ribosome sequence corresponds to the hypothetical E. coli protein NP࿝288269 and E. coli binding site sequence is present upstream of Met-19. Moreover, it yebR of unknown function. is not clear how the 18-kDa species was able to attach to the nickel NTA column, because it does not contain a His-tag. The 18-kDa fRMsr was used for the subsequent kinetic assays because of its high analyzed by reverse-phase HPLC coupled to the electrospray purity and abundance. interface of a Bruker (Newark, DE) Esquire HCT ion-trap mass spectrometer. The acquired peptide mass finger prints were queried Substrate Specificity and Kinetic Analysis of fRMsr. The reductase against a database of eubacteria proteins, using an in-house MAS- activity of E. coli MsrA and MsrB utilizes the reducing equivalents COT server. Six peptide matches with significant molecular weight from the Trx-TrxR-NADPH redox system (12, 13). MsrA and MsrB search scores were made to the hypothetical E. coli protein show stereospecificity toward their substrates and can reduce both NP࿝288269 (Fig. 1): (i) QPSDYIMNK (m/z, 548.3; charge, ϩ2); (ii) free MetO and peptide bound MetO, although the activity of MsrB TEFYADLNR (m/z, 564.2; charge, ϩ2); (iii) FTDEDEQGLR against free Met-(R)-O is much lower (3, 4, 14, 15). The reducing (m/z, 605.2; charge, ϩ 2); (iv) QLVAQLEK (m/z, 465.3; charge, system and substrate specificity of E. coli fRMsr were tested by ϩ2); (v) VLATTDYK (m/z, 456.2; charge, ϩ 2); (vi) FFASVAG measuring the reductase activity under a variety of assay conditions (m/z, 698.2; charge, ϩ1).
Recommended publications
  • The Role of Methionine Sulfoxide Reductases in Oxidative Stress Tolerance and Virulence of Staphylococcus Aureus and Other Bacteria
    antioxidants Review The Role of Methionine Sulfoxide Reductases in Oxidative Stress Tolerance and Virulence of Staphylococcus aureus and Other Bacteria Vineet K. Singh 1,* , Kuldeep Singh 2 and Kyle Baum 1 1 Department of Microbiology and Immunology, A.T. Still University of Health Sciences, Kirksville, MO 63501, USA; [email protected] 2 Mayo Clinic, Rochester, MN 53905, USA; [email protected] * Correspondence: [email protected]; Tel.: +1-660-626-2474; Fax: +1-660-626-2523 Received: 31 August 2018; Accepted: 26 September 2018; Published: 28 September 2018 Abstract: Methionine sulfoxide reductases (MSRA1 and MSRB) are proteins overproduced in Staphylococcus aureus during exposure with cell wall-active antibiotics. Later studies identified the presence of two additional MSRA proteins (MSRA2 and MSRA3) in S. aureus. These MSR proteins have been characterized in many other bacteria as well. This review provides the current knowledge about the conditions and regulatory network that mimic the expression of these MSR encoding genes and their role in defense from oxidative stress and virulence. Keywords: MSRA; MSRB; oxidative stress; virulence 1. Methionine Sulfoxide Reductases The presence of reactive oxygen species (ROS) is potentially damaging to all cellular macromolecules. Oxidizing agents, such as hydrogen peroxide (H2O2), superoxides, and hydroxyl radicals, oxidize the sulfur atom of methionine residues, resulting in methionine sulfoxide (MetO) that typically leads to loss of protein function [1,2]. In 1981, an enzyme capable of reducing protein-bound methionine sulfoxide was identified [3,4]. These oxidized MetO residues are reduced back to methionine by methionine sulfoxide reductase (MSR) enzymes that restore normal protein functions [5,6].
    [Show full text]
  • Distribution of Methionine Sulfoxide Reductases in Fungi and Conservation of the Free- 2 Methionine-R-Sulfoxide Reductase in Multicellular Eukaryotes
    bioRxiv preprint doi: https://doi.org/10.1101/2021.02.26.433065; this version posted February 27, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Distribution of methionine sulfoxide reductases in fungi and conservation of the free- 2 methionine-R-sulfoxide reductase in multicellular eukaryotes 3 4 Hayat Hage1, Marie-Noëlle Rosso1, Lionel Tarrago1,* 5 6 From: 1Biodiversité et Biotechnologie Fongiques, UMR1163, INRAE, Aix Marseille Université, 7 Marseille, France. 8 *Correspondence: Lionel Tarrago ([email protected]) 9 10 Running title: Methionine sulfoxide reductases in fungi 11 12 Keywords: fungi, genome, horizontal gene transfer, methionine sulfoxide, methionine sulfoxide 13 reductase, protein oxidation, thiol oxidoreductase. 14 15 Highlights: 16 • Free and protein-bound methionine can be oxidized into methionine sulfoxide (MetO). 17 • Methionine sulfoxide reductases (Msr) reduce MetO in most organisms. 18 • Sequence characterization and phylogenomics revealed strong conservation of Msr in fungi. 19 • fRMsr is widely conserved in unicellular and multicellular fungi. 20 • Some msr genes were acquired from bacteria via horizontal gene transfers. 21 1 bioRxiv preprint doi: https://doi.org/10.1101/2021.02.26.433065; this version posted February 27, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.
    [Show full text]
  • Chromosomal Localization of the Mammalian Peptide-Methionine Sulfoxide Reductase Gene and Its Differential Expression in Various Tissues JACKOB MOSKOVITZ*, NANCY A
    Proc. Natl. Acad. Sci. USA Vol. 93, pp. 3205-3208, April 1996 Biochemistry Chromosomal localization of the mammalian peptide-methionine sulfoxide reductase gene and its differential expression in various tissues JACKOB MOSKOVITZ*, NANCY A. JENKINSt, DEBRA J. GILBERTt, NEAL G. COPELANDt, FRANTISEK JURSKY*, HERBERT WEISSBACH*, AND NATHAN BROT* *Roche Institute of Molecular Biology, Roche Research Center, Nutley, NJ 07110-1199; and tAdvanced BioScience Laboratory-Basic Research Program, Frederick Cancer Research and Development Center, P.O. Box B, Frederick, MD 21702-1201 Contributed by Herbert Weissbach, December 26, 1996 ABSTRACT Peptide methionine sulfoxide reductase agarose gel electrophoresis, Southern blot transfer, and hy- (MsrA; EC 1.8.4.6) is a ubiquitous protein that can reduce bridization were performed as described (11). All blots were methionine sulfoxide residues in proteins as well as in a large prepared using Hybond-N+ nylon membrane (Amersham). number of methyl sulfoxide compounds. The expression of The probe, a 228-bp PCR-generated mouse cDNA fragment MsrA in various rat tissues was determined by using immu- (6), was labeled with [a-32P]dCTP by random priming (Strat- nocytochemical staining. Although the protein was found in agene), and the blots were washed at 65°C in a buffer con- all tissues examined, it was specifically localized to renal taining 0.8x SSCP and 0.1% SDS (lx SSCP = 120 mM medulla and retinal pigmented epithelial cells, and it was NaCl/15 mM sodium citrate/20 mM sodium phosphate, pH prominent in neurons and throughout the nervous system. In 6.8). A 5.8-kb fragment was detected in Sph I-digested addition, blood and alveolar macrophages showed high ex- C57BL/6J (B) genomic DNA and an 8.2-kb fragment, in Sph pression of the enzyme.
    [Show full text]
  • Methionine Sulfoxide Reduction in Mammals: Characterization of Methionine-R-Sulfoxide Reductases
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Vadim Gladyshev Publications Biochemistry, Department of February 2004 Methionine Sulfoxide Reduction in Mammals: Characterization of Methionine-R-Sulfoxide Reductases Hwa-Young Kim University of Nebraska-Lincoln Vadim Gladyshev University of Nebraska-Lincoln, [email protected] Follow this and additional works at: https://digitalcommons.unl.edu/biochemgladyshev Part of the Biochemistry, Biophysics, and Structural Biology Commons Kim, Hwa-Young and Gladyshev, Vadim, "Methionine Sulfoxide Reduction in Mammals: Characterization of Methionine-R-Sulfoxide Reductases" (2004). Vadim Gladyshev Publications. 7. https://digitalcommons.unl.edu/biochemgladyshev/7 This Article is brought to you for free and open access by the Biochemistry, Department of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Vadim Gladyshev Publications by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Molecular Biology of the Cell Vol. 15, 1055–1064, March 2004 Methionine Sulfoxide Reduction in Mammals: Characterization of Methionine-R-Sulfoxide Reductases Hwa-Young Kim and Vadim N. Gladyshev* Department of Biochemistry, University of Nebraska, Lincoln, Nebraska 68588 Submitted August 28, 2003; Revised November 14, 2003; Accepted November 29, 2003 Monitoring Editor: Guido Guidotti Methionine residues in proteins are susceptible to oxidation by reactive oxygen species, but can be repaired via reduction of the resulting methionine sulfoxides by methionine-S-sulfoxide reductase (MsrA) and methionine-R-sulfoxide reduc- tase (MsrB). However, the identity of all methionine sulfoxide reductases involved, their cellular locations and relative contributions to the overall pathway are poorly understood. Here, we describe a methionine-R-sulfoxide reduction system in mammals, in which two MsrB homologues were previously described.
    [Show full text]
  • Mitoxplorer, a Visual Data Mining Platform To
    mitoXplorer, a visual data mining platform to systematically analyze and visualize mitochondrial expression dynamics and mutations Annie Yim, Prasanna Koti, Adrien Bonnard, Fabio Marchiano, Milena Dürrbaum, Cecilia Garcia-Perez, José Villaveces, Salma Gamal, Giovanni Cardone, Fabiana Perocchi, et al. To cite this version: Annie Yim, Prasanna Koti, Adrien Bonnard, Fabio Marchiano, Milena Dürrbaum, et al.. mitoXplorer, a visual data mining platform to systematically analyze and visualize mitochondrial expression dy- namics and mutations. Nucleic Acids Research, Oxford University Press, 2020, 10.1093/nar/gkz1128. hal-02394433 HAL Id: hal-02394433 https://hal-amu.archives-ouvertes.fr/hal-02394433 Submitted on 4 Dec 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution| 4.0 International License Nucleic Acids Research, 2019 1 doi: 10.1093/nar/gkz1128 Downloaded from https://academic.oup.com/nar/advance-article-abstract/doi/10.1093/nar/gkz1128/5651332 by Bibliothèque de l'université la Méditerranée user on 04 December 2019 mitoXplorer, a visual data mining platform to systematically analyze and visualize mitochondrial expression dynamics and mutations Annie Yim1,†, Prasanna Koti1,†, Adrien Bonnard2, Fabio Marchiano3, Milena Durrbaum¨ 1, Cecilia Garcia-Perez4, Jose Villaveces1, Salma Gamal1, Giovanni Cardone1, Fabiana Perocchi4, Zuzana Storchova1,5 and Bianca H.
    [Show full text]
  • MSRA Recombinant Protein Description Product Info
    ABGENEX Pvt. Ltd., E-5, Infocity, KIIT Post Office, Tel : +91-674-2720712, +91-9437550560 Email : [email protected] Bhubaneswar, Odisha - 751024, INDIA 32-2566: MSRA Recombinant Protein Alternative Name Mitochondrial peptide methionine sulfoxide reductase,Peptide-methionine (S)-S-oxide reductase,Peptide : Met(O) reductase,Protein-methionine-S-oxide reductase,PMSR,MSRA. Description Source : Escherichia Coli. MSRA Human Recombinant produced in E.coli is a single, non-glycosylated polypeptide chain containing 237 amino acids (24-235) and having a molecular mass of 26.2kDa.The MSRA is fused to a 24 amino acid His-Tag at N-terminus and purified by proprietary chromatographic techniques. Methionine sulfoxide reductase A (MSRA) is a member of the MsrA Met sulfoxide reductase family. The MSRA enzyme has a vital function as a repair enzyme for proteins which have been inactivated by oxidation. MSRA catalyzes the reversible oxidation-reduction of methionine sulfoxide in proteins to methionine. The three substrates of the MSRA enzyme are peptide-L-methionine, thioredoxin disulfide, and H2O, while its 2 products are peptide-L-methionine (R)-S-oxide and thioredoxin. The MSRA protein is ubiquitous and extremely conserved. Human and animal studies have shown the ultimate levels of expression in kidney and nervous tissue. Product Info Amount : 20 µg Purification : Greater than 90.0% as determined by SDS-PAGE. MSRA protein solution (0.5mg/ml) is supplied in 20mM Tris-HCl buffer, pH8.0, 10% glycerol, 1mM Content : DTT and 50mM NaCl. Store at 4°C if entire vial will be used within 2-4 weeks. Store, frozen at -20°C for longer periods of Storage condition : time.
    [Show full text]
  • Astragaloside IV Rescues MPP+‑Induced Mitochondrial Dysfunction Through Upregulation of Methionine Sulfoxide Reductase A
    2650 EXPERIMENTAL AND THERAPEUTIC MEDICINE 14: 2650-2656, 2017 Astragaloside IV rescues MPP+‑induced mitochondrial dysfunction through upregulation of methionine sulfoxide reductase A YUE LIU, LI CHONG, XIAOQING LI, PENG TANG, PENG LIU, CHEN HOU, XIN ZHANG and RUI LI Department of Neurology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi 710068, P.R. China Received July 15, 2016; Accepted April 28, 2017 DOI: 10.3892/etm.2017.4834 - Abstract. Methionine sulfoxide reductase (Msr) repairs ·O2 is produced by complex I and complex III of the electron oxidatively damaged proteins through acting as an antioxidant. transport chain (ETC) and released into the mitochondrial Oxidative stress has been postulated to cause the mitochon- matrix (9). The mitochondrial dysfunction caused by oxidative drial dysfunction that is associated with aging and certain stress and can result in cell loss leading to neurodegenerative diseases, including Parkinson's disease (PD). The present diseases and ischemic brain injury (10). Thus, pro-oxidant study investigated the protective effects of astragaloside IV antioxidant generation needs to be highly regulated (11). (AS-IV) on 1-methyl-4-phenylpyridinium (MPP+)-induced Methionine sulfoxide reductase (Msr) A and B, which reduce mitochondrial dysfunction through MsrA in PC12 cells. This free and protein-based methionine sulfoxides to methionine, revealed that oxidative stress reduced the expression of MsrA are encoded by a single MsrA and three MsrB genes, respec- following MPP+ treatment. AS-IV was demonstrated to protect tively, in the mammalian genome (7,12). Mammalian MsrA PC12 cells from MPP+-induced oxidative damage through is expressed in the mitochondria, cytosol and nucleus (13,14).
    [Show full text]
  • Multivariate Analysis Reveals Genetic Associations of the Resting Default Mode Network in Psychotic Bipolar Disorder and Schizophrenia
    Multivariate analysis reveals genetic associations of the resting default mode network in psychotic bipolar disorder and schizophrenia Shashwath A. Medaa,1, Gualberto Ruañob,c, Andreas Windemuthb, Kasey O’Neila, Clifton Berwisea, Sabra M. Dunna, Leah E. Boccaccioa, Balaji Narayanana, Mohan Kocherlab, Emma Sprootena, Matcheri S. Keshavand, Carol A. Tammingae, John A. Sweeneye, Brett A. Clementzf, Vince D. Calhoung,h,i, and Godfrey D. Pearlsona,h,j aOlin Neuropsychiatry Research Center, Institute of Living at Hartford Hospital, Hartford, CT 06102; bGenomas Inc., Hartford, CT 06102; cGenetics Research Center, Hartford Hospital, Hartford, CT 06102; dDepartment of Psychiatry, Beth Israel Deaconess Hospital, Harvard Medical School, Boston, MA 02215; eDepartment of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX 75390; fDepartment of Psychology, University of Georgia, Athens, GA 30602; gThe Mind Research Network, Albuquerque, NM 87106; Departments of hPsychiatry and jNeurobiology, Yale University, New Haven, CT 06520; and iDepartment of Electrical and Computer Engineering, The University of New Mexico, Albuquerque, NM 87106 Edited by Robert Desimone, Massachusetts Institute of Technology, Cambridge, MA, and approved April 4, 2014 (received for review July 15, 2013) The brain’s default mode network (DMN) is highly heritable and is Although risk for psychotic illnesses is driven in small part by compromised in a variety of psychiatric disorders. However, ge- highly penetrant, often private mutations such as copy number netic control over the DMN in schizophrenia (SZ) and psychotic variants, substantial risk also is likely conferred by multiple genes bipolar disorder (PBP) is largely unknown. Study subjects (n = of small effect sizes interacting together (7). According to the 1,305) underwent a resting-state functional MRI scan and were “common disease common variant” (CDCV) model, one would analyzed by a two-stage approach.
    [Show full text]
  • Selenoprotein R Is a Zinc-Containing Stereo-Specific Methionine Sulfoxide Reductase
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Biochemistry -- Faculty Publications Biochemistry, Department of 2002 Selenoprotein R is a zinc-containing stereo-specific methionine sulfoxide reductase Gregory V. Kryukov University of Nebraska at Lincoln R. Abhilash Kumar University of Nebraska at Lincoln Ahmet Koc University of Nebraska - Lincoln Zhaohul Sun University of Nebraska - Lincoln Vadim N. Gladyshev University of Nebraska-Lincoln, [email protected] Follow this and additional works at: https://digitalcommons.unl.edu/biochemfacpub Part of the Biochemistry, Biophysics, and Structural Biology Commons Kryukov, Gregory V.; Kumar, R. Abhilash; Koc, Ahmet; Sun, Zhaohul; and Gladyshev, Vadim N., "Selenoprotein R is a zinc-containing stereo-specific methionine sulfoxide reductase" (2002). Biochemistry -- Faculty Publications. 62. https://digitalcommons.unl.edu/biochemfacpub/62 This Article is brought to you for free and open access by the Biochemistry, Department of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Biochemistry -- Faculty Publications by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Selenoprotein R is a zinc-containing stereo-specific methionine sulfoxide reductase Gregory V. Kryukov*, R. Abhilash Kumar*, Ahmet Koc, Zhaohui Sun, and Vadim N. Gladyshev† Department of Biochemistry, University of Nebraska, Lincoln, NE 68588-0664 Edited by Vincent Massey, University of Michigan Medial School, Ann Arbor, MI, and approved January 22, 2002 (received for review November 9, 2001) Selenoprotein R (SelR) is a mammalian selenocysteine-containing most of the cellular methionine sulfoxide reductase activity, the role protein with no known function. Here we report that cysteine of this protein as the sole peptide methionine sulfoxide reductant homologs of SelR are present in all organisms except certain parasites contrasts with experimental data.
    [Show full text]
  • Methionine Sulfoxide Reductase a Mediates Dietary Restriction
    Aging of S al c n i r e Minnerly et al., Aging Sci 2013, 1:3 n u c o e J Journal of Aging Science DOI: 10.4172/2329-8847.1000110 ISSN: 2329-8847 Research Article Open Access Methionine Sulfoxide Reductase A Mediates Dietary Restriction-Induced Lifespan Extension in Caenorhabditis elegans Justin Minnerly1#, Jiuli Zhang1#, Rebeca Aldunate2, Herbert Weissbach1 and Kailiang Jia1* 1Department of Biological Sciences and Center for Molecular Biology and Biotechnology, Florida Atlantic University, Jupiter, Florida, USA 2Escuela de Biotecnología, Universidad Santo Tomás, Santiago, Chile #These two authors contributed equally to this work. Abstract Background: Methionine sulfoxide reductase A (MsrA) is a well-studied antioxidant enzyme that has been found to be important for protecting cells against oxidative damage and regulating lifespan in several species. However, the role of MsrA in dietary restriction has not been examined. The authors evaluated the function of MsrA in dietary restriction-induced lifespan extension in Caenorhabditis elegans. Methods: C. elegans loss-of-function msra mutant animals and wild type control animals were subjected to two widely used dietary restriction treatments, solid dietary restriction (sDR) and dietary restriction by liquid bacteria (BDR). The survival of the animals was evaluated and the data was statistically analyzed. Results: The loss-of-function mutation of msra significantly suppressed the lifespan extension conferred by solid dietary restriction. By contrast, msra was dispensable for lifespan extension resulting from dietary restriction by diluted bacteria in liquid. Conclusion: msra-1 is a major factor in the sDR-induced lifespan extension. This result, coupled with the previous finding that MsrA mediates the effect of insulin-like signaling on lifespan extension, indicates an essential role of MsrA in the aging process in C.
    [Show full text]
  • Transmitted Duplication of 8P23.1–8P23.2 Associated with Speech Delay, Autism and Learning Difficulties
    European Journal of Human Genetics (2009) 17, 37–43 & 2009 Macmillan Publishers Limited All rights reserved 1018-4813/09 $32.00 www.nature.com/ejhg ARTICLE Transmitted duplication of 8p23.1–8p23.2 associated with speech delay, autism and learning difficulties Mary Glancy*,1, Angela Barnicoat2, Rajan Vijeratnam3, Sharon de Souza4, Joanne Gilmore1, Shuwen Huang5, Viv K Maloney5, N Simon Thomas6, David J Bunyan5, Ann Jackson1 and John CK Barber5,6,7 1NE London Regional Cytogenetics Laboratory, Great Ormond Street Hospital NHS Trust, London, UK; 2NE Thames Regional Clinical Genetics Service, Institute of Child Health, London, UK; 3Cedar House, St Michael’s Centre for Primary Care, Middlesex, UK; 4Paediatric Department, Chase Farm Hospital, Enfield, Middlesex, UK; 5National Genetics Reference Laboratory (Wessex), Salisbury NHS Foundation Trust, Salisbury, Wiltshire, UK; 6Wessex Regional Genetics Laboratory, Salisbury NHS Foundation Trust, Salisbury, Wiltshire, UK; 7Human Genetics Division, Southampton University School of Medicine, Southampton General Hospital, Southampton, UK Duplications of distal 8p with and without significant clinical phenotypes have been reported and are often associated with an unusual degree of structural complexity. Here, we present a duplication of 8p23.1– 8p23.2 ascertained in a child with speech delay and a diagnosis of ICD-10 autism. The same duplication was found in his mother who had epilepsy and learning problems. A combination of cytogenetic, FISH, microsatellite, MLPA and oaCGH analysis was used to show that the duplication extended over a minimum of 6.8 Mb between 3 539 893 and 10 323 426 bp. This interval contains 32 novel and 41 known genes, of which only microcephalin (MCPH1) is a plausible candidate gene for autism at present.
    [Show full text]
  • Sputum Proteomics and Airway Cell Transcripts of Current and Ex-Smokers with Severe Asthma in U-BIOPRED
    Sputum proteomics and airway cell transcripts of current and ex-smokers with severe asthma in U-BIOPRED: an exploratory analysis Kentaro Takahashi 1,2, Stelios Pavlidis3, Francois Ng Kee Kwong 1, Uruj Hoda 1, Christos Rossios1, Kai Sun3, Matthew Loza4, Fred Baribaud4, Pascal Chanez5, Steve J Fowler6, Ildiko Horvath7, Paolo Montuschi8, Florian Singer9, Jacek Musial10, Barbro Dahlen11, Sven-Eric Dahlen11, N. Krug12, Thomas Sandstrom13, Dominic E. Shaw14, Rene Lutter 15, Per Bakke16, Louise J. Fleming1, Peter H. Howarth17, Massimo Caruso18, Ana R Sousa19, Julie Corfield20, Charles Auffray21, Bertrand De Meulder21, Diane Lefaudeux21, Ratko Djukanovic17, Peter J Sterk16, Yike Guo3, Ian M. Adcock1,3, Kian Fan Chung1,3 on behalf of the U-BIOPRED study group# 1National Heart & Lung Institute, Imperial College London, & Biomedical Research Unit, Biomedical Research Unit, Royal Brompton & Harefield NHS Trust, London, United Kingdom; 2Research Centre for Allergy and Clinical Immunology, Asahi General Hospital, Japan; 3Department of Computing & Data Science Institute, Imperial College London, United Kingdom; 4Janssen Research and Development, High Wycombe, Buckinghamshire, United Kingdom; 5 Assistance Publique des Hôpitaux de Marseille - Clinique des bronches, allergies et sommeil, Aix Marseille Université, Marseille, France 6 Centre for Respiratory Medicine and Allergy, Institute of Inflammation and Repair, University of Manchester and University Hospital of South Manchester, Manchester Academic Health Sciences Centre, Manchester, United Kingdom
    [Show full text]