Fast and Easy Solutions for Cutting Standby Losses

Total Page:16

File Type:pdf, Size:1020Kb

Fast and Easy Solutions for Cutting Standby Losses Fast and easy solutions for cutting standby losses Åke Blomsterberg WSP Environmental, Sweden [email protected] Diana Avasoo WSP Environmental, Sweden [email protected] Keywords Introduction electricity, electrical and electronic equipment, standby losses, An important part of the energy use in the building sector is standby stoppers, standby power related to residential and offi ce buildings in Europe. Th e poten- tial for energy savings and improvements in indoor climate is oft en high. Many modern buildings, especially offi ce buildings, Abstract may have a lower energy use for heating, but they have, on the A recent European study estimated that the current electricity other hand, oft en a higher use of electricity than older build- consumption due to standby and off -mode losses in the Europe- ings, which is due to a higher energy use for ventilation, cool- an Community is 47 TWh and that the energy saving potential ing, lighting, household, consumer and offi ce equipment. Th e from cutting these losses in offi ces and households is 35 TWh use of electricity has also increased in older buildings, mainly or 75% (in 2020) and 14 million tonnes of CO saved. 2 due to the increased amount and use of electrical and electronic However, the estimated standby savings are based on ex- equipment. Th e total energy use of a typical offi ce building can pected reductions in standby losses of future electrical and be 220 kWh/m2year (example from Sweden). Half of the total electronic household and offi ce equipment. Th e consequences energy use is electricity i.e. 108 kWh/m2year for lighting, serv- of waiting for all appliances to be replaced by new ones are a ers, PCs, other offi ce equipment, cooling, fans, pumps, elevators lot of wasted energy and unnecessary CO emissions. Th ere 2 etc. 57 kWh/m2year is work related, of which 23 kWh/m2year is will be a gradual improvement starting in 2010 thanks to the lighting and 34 kWh/m2year is offi ce equipment. European ecodesign requirements on new products for standby Th e energy use in Swedish offi ces is based on a study in losses below one watt, which will limit the losses. Standby and 123 offi ce buildings of diff erent age (Th e Swedish energy agen- off -mode power consumption will still for some years be an cy, 2007). Th ere is of course quite a variation in use of electricity increasing fraction of the total energy use. Th ere are two rea- from offi ce to offi ce. Th e average use of electricity for PCs is sons, the increased use of electrical and electronic equipment 15.4 kWh/m2year. Th ese variations are caused by diff erences in households and in places of work, and at the same time the in number of units per m2, performance of the units, the use of standby power consumption in most electrical and electronic the units etc. Th e use of the units is infl uenced by behavioural devices is today still above one watt. Th e standby losses must aspects, which are defi ned on three diff erent levels: be reduced or even eliminated now. Quick and inexpensive measures are then awareness campaigns and implementation • Offi ce worker e.g. PCs, task and general lighting, battery of standby stoppers. chargers. • Department e.g. printers, copy machines. • Company e.g. general lighting, servers. ECEEE 2009 SUMMER STUDY • ACT! INNOVATE! DELIVER! REDUCING ENERGY DEMAND SUSTAINABLY 1513 Table 1. Maximum power levels for standby of electrical and electronic household and offi ce equipment in the EU according to the ecodesign directive. Year of implementation 2010 2013 Off mode and Standby – reactivation 1 W 0,5 W function Standby – information or status display 2 W 1 W Many studies point out the substantial electricity savings po- up by the International Energy Agency in their “1-watt Plan” tential for lighting and offi ce equipment. Th ese savings are very of April 2007. Th ese eff orts have contributed to the fact that important for the overall aim of reducing the carbon dioxide e.g. PCs with lower standby losses are available. However, elec- emissions. tricity use in standby mode appears to have increased over the Especially regarding offi ce equipment, there is a substantial past few years (Nipkow 2007), therefore fast and easy measures energy savings potential both during offi ce hours with better are needed now. equipment and during non-offi ce hours by lowering the stand- A preparatory study carried out for the Commission of the by losses (Jagemar 2004, Persson 2005). In three Swedish offi ce European Communities estimated that 3.7 billion installed buildings the usage of electricity for offi ce equipment varied products had standby/off mode in 2005, leading to electricity between 0.5 W/m2 during night and 3 W/m2 during day for consumption in standby/off mode of 47 TWh in the 25 mem- one of the offi ce buildings and between 4 W/m2 and 8 W/m2 for ber countries of the EU corresponding to 19 Mt of CO2 emis- the two other offi ce buildings. In the fi rst offi ce the offi ce equip- sions (EC press release 2008a, EC regulation 2008a). Assuming ment was shut off during night. Th e use of electricity for servers typical product lifetimes and usage times, the installed equip- and their cooling is oft en high 24 hours a day (Jensen 2003). ment featuring standby mode and off mode will increase to ap- Th e use of electricity for operating PCs varies. Useful in- prox. 4.6 billion products in 2020. Th e electricity consumption formation can be found from the EnergyStar rating system. A in standby/off mode is expected to stand at around 49 TWh typical stationary PC might use 100 W in operation, while the per year in 2020 (an amount comparable to the total electricity screen uses 30 W. A laptop uses of course much less e.g. 25 W consumption of Greece or Portugal). (Persson 2005). Th e electricity saving potential is estimated to 35 TWh According to the ‘Energy effi cient behaviour in offi ce build- by 2020 and this scenario is based on maximum power levels ings’ (EBOB) project (EBOB 2005) commonly the following is for new equipment (see table 1). In December 2009 the Di- valid for the use of computers in offi ce buildings: rective 2005/32/EC was implemented with regard to ecode- sign requirements for standby and off mode electricity power • Many computers are oft en unnecessarily left running all the consumption of electrical and electronic household and offi ce time. equipment (see table 1) (EC regulation 2008b), • Energy saving features on computers are rarely used to their Th e above study has not taken into account the energy sav- full potential. ing potential with lowered cooling demand. It is possible that the cooling demand in many working spaces can be lowered Th e main barriers for reducing the use of electricity for offi ce if the leaking energy from electrical and electronic equipment equipment are: is reduced. • Th e lack of fi nancial incentive, as oft en the use of electricity A list of products covered by the power limits is presented in is included in the rent, while the tenants pay for the offi ce the regulations (EC regulation 2008a). Th e list covers many of equipment. If the tenants pay the use of electricity for offi ce the existing items. However new items are likely to appear on equipment, then typically the landlord pays for the invest- the market. Very little is known about future product develop- ment cost for the installed lighting. ment and it cannot be imagined today what other new electric- ity consuming devices will become popular. Who knew about • Th e lack of knowledge among tenants and property manag- Ipods ten years ago? As an example, many of the offi ce desks ers regarding the use of electricity for offi ce equipment. sold in Sweden are manoeuvred by an electric motor so you • Th e lack of knowledge of offi ce worker infl uence on the use can raise them and stand while working or lower them at your of electricity for offi ce equipment. convenience. Th ese desks are always in standby mode. Another increasingly sold item is the tilt-bed also with an electric motor • Th e lack of energy effi cient servers and energy effi cient op- in standby mode. eration of the servers. Th is paper presents some recent studies on standby losses Most offi ce equipment consumes some electric power when it and existing and new technologies that can easily and quickly is switched off (off -mode i.e. not providing any function, only be adopted by households, offi ces and in all spaces with electri- providing an indication of off -mode) or is not performing its cal and electronic equipment. primary purpose (standby i.e. reactivation function and infor- mation or status display). Th erefore a global eff ort to reduce leaking electricity was initiated in 1998 (Meier 1999). Th e tar- get was standby losses of less than 1 W. Th is initiative was taken 1514 ECEEE 2009 SUMMER STUDY • ACT! INNOVATE! DELIVER! REDUCING ENERGY DEMAND SUSTAINABLY Table 2. Standby statistics Switzerland (Nipkow 2007). Equipment Power use, switched off, W Standby, W PC 2.5 30 Screen 2 4 Fax 4 Printer, basic 2.5 5 Small copy machine 2.5 5 Medium copy machine 2.5 80 Scanner 2.5 Beamer, portable 0 Combined copy machine and printer, small 2.5 Combined copy machine and printer, medium 5 50 Charger 1 TV 4 Set top boxes, simple 10 Video/DVD recorder 5 Hifi equipment 8 Radio or MP3 alarm 3 Coffee machine 2.5 30 Micro wave oven 2.5 Dishwasher 2 Washing machine 2.5 Clothes dryer/tumbler 2 Recent studies on standby losses • How does the electrical and electronic equipment look in Several recent studies on standby losses have been carried out.
Recommended publications
  • The Impact of Energy Efficiency Standards on Standby Power in Consumer Electronics Design
    THE IMPACT OF ENERGY EFFICIENCY STANDARDS ON STANDBY POWER IN CONSUMER ELECTRONICS DESIGN A Lattice Semiconductor White Paper May 2010 Lattice Semiconductor 5555 Northeast Moore Ct. Hillsboro, Oregon 97124 USA Telephone: (503) 268-8000 www.latticesemi.com 1 The Impact of Energy Efficiency Standards on Standby Power in Consumer Electronics Design A Lattice Semiconductor White Paper Regulatory Measures to Reduce Standby Power Squeezing every last microwatt from a system is a common objective for engineers who are designing battery operated equipment. And as more strict government regulations regarding power consumption appear, even traditional home and office appliances like LCD TVs, set top boxes (STBs) and multi- function printers (MFPs) are being scrutinized for ways to save power. To help ensure products are in compliance with the latest EnergyStar and European Commission Code of Conduct regulations, designers are seeking innovative ways to provide low-power modes of operation in a variety of product lines. This white paper examines design methods and practical advice for saving power using programmable logic devices (PLDs). The 1-Watt Plan is an energy saving proposal by the International Energy Agency (www.iea.org ) to reduce standby power use in all appliances to just one watt. Standby power, also called vampire or phantom power, refers to the electricity consumed by many appliances when they are switched off or in standby mode. The typical power loss per appliance is low (from 1 to 25 W), but when multiplied by the billions of appliances in residential and commercial use, standby losses represent a significant fraction of total world electricity use.
    [Show full text]
  • GMX Standby Power Supply
    GMX Standby Power Supply Technical Manual GMX-915 Models Effective: May, 2007 Alpha Technologies ® PowerAlpha Technologies GMX Standby Power Supply 017-932-B0-002, Rev B Effective Date: May, 2007 Copyright© 2007 Alpha Technologies, Inc. member of The GroupTM NOTE: Photographs contained in this manual are for illustrative purposes only. These photographs may not match your installation. NOTE: Operator is cautioned to review the drawings and illustrations contained in this manual before proceeding. If there are questions regarding the safe operation of this powering system, please contact Alpha Technologies or your nearest Alpha representative. NOTE: Alpha shall not be held liable for any damage or injury involving its enclosures, power supplies, generators, batteries, or other hardware if used or operated in any manner or subject to any condition not consistent with its intended purpose, or is installed or operated in an unapproved manner, or improperly maintained. Notice of FCC Compliance Per FCC 47 CFR 15.21: Changes or modifications not expressly approved by the party responsible for compliance could void the user’s authority to operate the equipment. Per FCC 47 CFR 15.105: This equipment has been tested and found to comply with the limits for a Class A digital device, pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a commercial environment. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the instruction manual, may cause harmful interference to radio communications. Operation of this equipment in a residential area is likely to cause harmful interference in which case the user will be required to correct the interference at their own expense.
    [Show full text]
  • Standby Power ––
    Standby Power –– PRIMER Primer Table of Contents What is Standby Power? ...............................................3 Making Measurements to IEC62301 Ed.2:2011 and EN50564:2011 .........................................................8 Why is Standby Power Important? ..............................3 Requirements of IEC62301 Ed.2 .......................................8 How to Measure Standby Power .................................4 Supply Voltage (IEC62310 Ed.2 Section 4.3) ...............8 Requirements for a Measurement .....................................4 Measurement Uncertainty (IEC62310 Ed.2 Section 4.4) .......................................8 Standby Measurement Challenges ..............................4 Watts Measurement Procedure Measuring Low Power and Current .............................4 (IEC62301 Ed.2 Section 5.3) .......................................9 High Crest Factor Waveforms ......................................4 Test Report Low Power Factor .......................................................5 (IEC62301 Ed.2 Section 6) ..........................................9 Burst Mode Operation .................................................5 General Power Analyzer Requirements Making Connections .........................................................6 (IEC62301 Ed.2 Section B.2) .......................................9 Making a Basic Measurement ...........................................6 Making a Compliant Standby Power Measurement .........10 Example with a Tektronix PA1000 ...............................6 Equipment
    [Show full text]
  • Low-Cost Flyback Solutions for 10-Mw Standby Power
    Texas Instruments Incorporated Power Management Low-cost flyback solutions for 10-mW standby power By Adnaan Lokhandwala Product Manager For low-power AC/DC conversion, flyback topology remains converter is being heavily scrutinized to minimize the the preferred choice due to its simplicity and low cost. overall power drain when it seems the converter is doing Using a small number of external components, this topology nothing. For example, a flyback power supply used in an can provide one or more outputs for a very wide input- AC wall charger may have a mass-production specification voltage range. It is used in isolated and non-isolated forms of less than 30 mW. If the actual supply consumes only to cover a broad range of applications, such as battery 10 mW of standby power, the 20-mW difference can allow a chargers in smartphones and tablets; auxiliary power higher margin for leaky circuit components such as input supplies in TVs, desktop computers, and home appliances; filters, capacitors, and bias components, reducing overall AC adapters for portable computing, set-top boxes, and solution cost. Similarly, a flyback converter with low networking; and many more. Figure 1 shows the typical standby-power consumption can allow more system func- power levels in some of these applications. The wide- tions to be active in standby mode while keeping the end spread applicability and use of the flyback topology in equipment’s total power consumption to a minimum. high-volume consumer markets (estimated 2012 world- wide shipments for the markets shown in Figure 1 alone The push towards green power exceeded a few billion units) make it a perfect candidate There is an array of initiatives and directives in the power for optimizing every possible performance specification, industry addressing efficiency and standby power that such as cost, efficiency, and standby power.
    [Show full text]
  • Energy Efficiency Regulations
    Energy Efficiency Regulations Bulletin on Developing an EnerGuide Label for Televisions March 22th, 2010 Purpose of this Document The purpose of this document is to provide background information on the proposed Amendment to the Energy Efficiency Regulations (the Regulations) regarding the labelling of televisions (TVs). This will allow stakeholders to submit comments prior to pre-publication in the Canada Gazette, Part I sometime in 2011. This bulletin attempts to put the proposed Amendment in plain language. Depending on comments received, follow-up bulletins may be issued. Natural Resources Canada (NRCan) is particularly looking for feedback on the content of the proposed EnerGuide label, including the introduction of annual energy costs, in addition to the traditional annual energy consumption and the proposed scales of screen size to be compared on the label. Natural Resources Canada’s Office of Energy Efficiency (OEE) is proposing to amend the Regulations to add a labelling requirement for TV’s. The Regulations apply to products imported or shipped inter-provincially for sale or lease in Canada. Dealers of energy using products that are imported or shipped inter-provincially for sale or lease in Canada would be required to comply with a labelling requirement and other regulatory requirements. Background The Energy Efficiency Regulations, which came into effect in February 1995, are administered by NRCan and reference energy performance test procedures that must be used to test the products to ensure that they comply with the requirements of the Regulations. In Canada, electricity costs of operating TVs account for a rising portion of household electricity consumption. The number of hours a television is watched, and the size and number of televisions per household have been steadily increasing over the last decade.
    [Show full text]
  • REQUIREMENTS UNDER DECREE 430 UJD for UNIT OUTLET and STANBY POWER SUPPLY Vančo, K
    11th International Conference May 15-17, 2012 Tatranské Matliare ENERGY – ECOLOGY – ECONOMY 2012 High Tatras, Slovak Republic REQUIREMENTS UNDER DECREE 430 UJD FOR UNIT OUTLET AND STANBY POWER SUPPLY Vančo, K. [email protected] Abstract At present, the nuclear power plants are only sufficient resources, which can cover a huge demand for electricity. Concentration so huge power in one place require adequate security from the perspective lead power outlet and standby power supply of reactor unit. Keywords Power outlet, standby power supply, reactor unit, UJD 1 INTRODUCTION The reactor is protected from faults with passive protection to ensure safety in the immediate shutdown of the reactor and the reactor power control for cooling down of the reactor. Active Protection is provided by electric equipment that is necessary to provide with sufficient power resources, with the possibility of operational use and reliable power supply. Equally important is the grid node, to which the outlet of power plant is led. The requiring reliable power supply N-2 is demand for this node. A node in the network is configured so that the performance of the Unit outlet was secured even in case of two lines disconnections which were connected at a node with other outlet power lines. This node must also meet the stability of the network in order in case of fault conditions did not disconnect Power plant from the network by frequency or voltage drop. 2 SECURE UJD Decree 430/2011 Coll on project specific requirements in section J. The electrical power supply required for unit outlet the network in order the house load power supply to secure as follows: (1) The project must be available for systems important to nuclear safety following sources: a) working supply from the main power generator, b) two different network sources from a different high voltage switchgears, c) emergency power source located in the autonomous territory of the nuclear facility.
    [Show full text]
  • Standby-Power-Measurements.Pdf
    Standby Power Primer Primer Table of Contents What is Standby Power? ................................................3 Making Measurements to IEC62301 Ed.2:2011 and EN50564:2011 .................................................................8 Why is Standby Power Important? ................................3 Requirements of IEC62301 Ed.2 .......................................8 How to Measure Standby Power ...................................4 Supply Voltage (IEC62310 Ed.2 Section 4.3) ...............8 Requirements for a Measurement .....................................4 Measurement Uncertainty (IEC62310 Ed.2 Section 4.4) .......................................8 Standby Measurement Challenges ..............................4 Watts Measurement Procedure Measuring Low Power and Current .............................4 (IEC62301 Ed.2 Section 5.3) .......................................9 High Crest Factor Waveforms ......................................4 Test Report Low Power Factor ......................................................5 (IEC62301 Ed.2 Section 6) ..........................................9 Burst Mode Operation .................................................5 General Power Analyzer Requirements Making Connections .........................................................6 (IEC62301 Ed.2 Section B.2) .......................................9 Making a Basic Measurement ...........................................6 Making a Compliant Standby Power Measurement .........10 Example with a Tektronix PA1000 or PA4000 ..............6 Equipment
    [Show full text]
  • Reducing Standby Power Consumption
    Energy Saving for All www.energysaving.gov.hk Reducing Standby Power Consumption What is standby power? Standby power is the electricity consumed by an appliance when it is not performing its primary functions, but plugged into a power source and ready to be used. For example: a television continues to draw a little power to maintain the control function after the user switches it off with the remote control device. Standby power is expressed in watts (W). How much energy is consumed in standby mode? Why is it so important? The electricity consumption of different electric appliances in standby mode varies. Assuming that the standby electricity consumption for an appliance is 1 Watt and a family normally has about 10 to 20 electrical appliances* in standby mode, switching off all such standby appliances may reduce household electricity consumption by up to 3%. * The appliances include broadband modem; Wi-Fi router; cordless telephone; computer; computer monitor; printer; charger for mobile phone, tablet, notebook and backup battery pack; television; video player; digital video recorder; video game console; radio; electric fan; electric toothbrush and electric shaver. How to identify products with standby power consumption • With remote control. For example, TVs, VCRs, electric fans, and audio equipment. • With continuous digital display. For example, washing machines, microwave ovens, VCRs and audio equipment. • With external power supply such as transformer. For example, mobile phone chargers, laptops. • With rechargeable battery and charging device. For example, cordless telephones, battery charger. These products continue to use standby power even after the battery is fully charged. How Standby Power Creeps Away • Appliance with Remote Control Circuit or Continuous Digital Display Even the main load circuit of the appliance is switched off via the remote control device or internal control, standby power is still required to maintain the function of the secondary load, such as remote control circuit or continuous digital display circuit.
    [Show full text]
  • AN11012 Using the TEA1703 to Reduce Standby Power Rev
    AN11012 Using the TEA1703 to reduce standby power Rev. 1 — 30 March 2011 Application note Document information Info Content Keywords SMPS, TEA1703, TEA1738, TEA1753, standby power Abstract TEA1703 is a low power standby controller IC intended for use in SMPS applications that require an extremely low no-load standby power. The TEA1703 includes detection circuitry for output voltage, output power and also switching detection circuitry. The TEA1703 integrates a switched mode optocoupler driver which makes it possible to drive an optocoupler with a high peak current, while keeping the required power low. (NXP Semiconductors patent) NXP Semiconductors AN11012 Using the TEA1703 to reduce standby power Revision history Rev Date Description v.1 20110330 first issue Contact information For more information, please visit: http://www.nxp.com For sales office addresses, please send an email to: [email protected] AN11012 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2011. All rights reserved. Application note Rev. 1 — 30 March 2011 2 of 36 NXP Semiconductors AN11012 Using the TEA1703 to reduce standby power 1. Introduction The number of electronic products used today in private homes and offices is constantly increasing. Most products, such as: audio equipment, TVs, digital cable receivers, DVD/Blu ray recorders, computers, printers, etc. consume a considerable amounts of electrical power while on standby (when they are not in use but are still connected to the mains supply). This not only is a waste of energy and money but also has a large impact on the environment. Today, many products required to run in Standby mode have to comply with requirements on energy consumption like the Energy Star 2.0 APS requirements.
    [Show full text]
  • Canadian Standby Power Study of Consumer Electronics and Appliances
    Canadian Standby Power Study of Consumer Electronics and Appliances Gary Hamer, British Columbia Hydro & Power Authority Katherine Delves and Isabelle Saint-Laurent, Natural Resources Canada Nathalie Péloquin, Environment Canada Michael Vladimer and Michael Scholand, Navigant Consulting, Inc. ABSTRACT Standby power is defined as electricity consumed by appliances while switched off or not performing their primary function(s). While the amount of power is typically small (0.5 to 10 watts), the number of devices is large making standby power a significant issue for national agencies and electric utilities. Industry experts estimate that in OECD countries, 4% to 10% of residential electricity consumption can be attributed to standby power. To develop programmatic approaches to address standby power in Canada, NRCan and BC Hydro measured standby power consumption in a broad spectrum of consumer electronics and appliances. New off-the-shelf consumer electronics, appliances and office equipment were measured in five Canadian retail stores – from major merchandise retailers to specialized high- end equipment stores. Over 850 products were tested in 2007, making this the largest retail- market study of standby power in North America. Test results show that there can be wide variations in standby power consumption for certain products and data shows that savings of approximately 75% exist for some products by adopting existing commercially-available technologies. This paper discusses the average and range of standby power use of products in four product categories – major appliances (white goods), minor home appliances, home entertainment products and office equipment. Those results are combined with market data to conservatively estimate standby power consumption in a typical household and for all of Canada.
    [Show full text]
  • Domestic Appliances End-Use Efficiencies: the Case of Eleven Suburbs in Greater Johannesburg
    Energy and Sustainability II 437 Domestic appliances end-use efficiencies: the case of eleven suburbs in greater Johannesburg M. V. Shuma-Iwisi & G. J. Gibbon School of Electrical & Information Engineering, University of Witwatersrand, South Africa Abstract Results from an appliance survey indicate appliance saturation and penetration levels suggesting a sizeable domestic appliance load. The largest contribution to the domestic load is mainly from universal appliances. Measurement results of appliance power consumption reveal a wide range of consumption levels in appliances with the same functionality. This was observed in all operational modes indicating lower end-use efficiency in most appliances. Appliances that meet the 1 watt standby minimum power consumption are an exception. Domestic demand tariff is an option to cover the cost to the supplier and to reduce significant demand due to apparent power components. The impact of energy inefficient appliances to the consumer and the utility companies is unknown, indicating a need for consumer education and consumer awareness programs. Keywords: end-use efficiency, appliance saturation levels, appliance penetration levels, universal appliances, power consumption levels, efficiency standards, consumer awareness. 1 Introduction Energy efficiency is one effective way of increasing energy security by reduction of overall demand for energy consumption. Energy efficiency can be implemented both at the supply and in the end-uses. Supply side efficiencies govern efficiencies in extraction, conversion, transportation and distribution of energy [1]. Efficiencies in end-uses are primarily to do with efficient utilisation WIT Transactions on Ecology and the Environment, Vol 121, © 2009 WIT Press www.witpress.com, ISSN 1743-3541 (on-line) doi:10.2495/ESU090401 438 Energy and Sustainability II of energy which is geared towards the reduction of total energy consumption.
    [Show full text]
  • Standby Power: When “Off” Means On
    Standby power When “off” means on YOU JUST TURNED OFF YOUR ENTERTAINMENT SYSTEM. OR DID YOU? Most household electrical devices draw power 24 hours a day, 7 days a week. Even when turned “off,” these appliances and home electronics continue to use electricity, referred to as standby power, to operate features such as clocks, timers, touch pads and displays or to receive signals from networks or remote controls. Battery chargers (used by products such as cordless phones, handheld devices and tablets) and external power supplies (used by products such as laptops) also draw power when they are plugged in – even when the device they power is fully charged or disconnected. Many electronics and network-connected products, such as television (TV) set-top boxes and smart appliances, are always awake, waiting to receive or send information. In fact, the only way to guarantee that an electronic device is not drawing power is to unplug it from the outlet or plug it into a power bar that can be turned off. SO WHAT’S THE PROBLEM? Although the standby power consumption of some devices can be as little as 0.5 watts (W), others use more than 30 W of electricity. These amounts can add up. A home that has TV service to multiple rooms may have two set-top boxes that remain at close to full power in “off” or standby mode to receive information from the service provider. External power supplies may draw 7 W, modems about 6 W, and devices such as shavers, toothbrushes and battery chargers a watt or two, 24 hours a day, 7 days a week.
    [Show full text]