(Suidae, Artiodactyla) from the Upper Miocene of Hayranlı-Haliminhanı, Turkey
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Bioinformaticist's Toolbox in The
THE BIOINFORMATICIST’S TOOLBOX IN THE POST-GENOMIC AGE: APPLICATIONS AND DEVELOPMENTS By DAVID R. SCHREIBER A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY UNIVERSITY OF FLORIDA 2007 1 Copyright 2007 By David R. Schreiber 2 ACKNOWLEDGMENTS Tremendous thanks go to James Deyrup—for the opportunity, the faith, understanding, generosity, goodwill, humanity and love. Thanks also go to Steve Benner—for the freedom, the enthusiasm, the privilege, and for an absurd portion of patience. And thanks go to my family— for being there, wherever “there” chose to be. 3 TABLE OF CONTENTS page ACKNOWLEDGMENTS ...............................................................................................................3 LIST OF TABLES...........................................................................................................................6 LIST OF FIGURES .........................................................................................................................7 LIST OF ABBREVIATIONS..........................................................................................................8 ABSTRACT...................................................................................................................................10 EXOBIOLOGY AND POST-GENOMIC SCIENCE ...................................................................12 Introduction.............................................................................................................................12 -
NM IF C3 4 16 Fossil Imprint
FOSSIL IMPRINT • vol. 72 • 2016 • no. 3-4 • pp. 183–201 (formerly ACTA MUSEI NATIONALIS PRAGAE, Series B – Historia Naturalis) HIPPOPOTAMODON ERYMANTHIUS (SUIDAE, MAMMALIA) FROM MAHMUTGAZI, DENIZLI-ÇAL BASIN, TURKEY MARTIN PICKFORD Sorbonne Universités – CR2P, MNHN, CNRS, UPMC – Paris VI, 8, rue Buffon, 75005, Paris, France; e-mail: [email protected]. Pickford, M. (2016): Hippopotamodon erymanthius (Suidae, Mammalia) from Mahmutgazi, Denizli-Çal Basin, Turkey. – Fossil Imprint, 72(3-4): 183–201, Praha. ISSN 2533-4050 (print), ISSN 2533-4069 (on-line). Abstract: The Staatliches Museum für Naturkunde in Karlsruhe houses an interesting collection of Turolian mammals from Mahmutgazi, Turkey, among which is a comprehensive sample of the large suid, Hippopotamodon erymanthius. The fossils plot out within the range of metric variation of H. erymanthius from Pikermi and Samos, Greece, but lie at the lower end of the range. Like the suids from these sites, the Mahmutgazi specimens lack the first premolar. Overall, the Mahmutgazi sample is metrically and morphologically close to the material from Akkaşdağı, Turkey. The upper and lower third molars and fourth premolars are, on average, smaller than those of Hippopotamodon major from Luberon, France (MN 13). Two undescribed fossils of H. ery- manthius from Pikermi are housed at the SMNK, and are included in this paper in order to fill out the data base for the species at this locality. The chronological position, palaeoecology and sexual dimorphism of the Mahmutgazi suids are discussed. Key words: Suidae, Late Miocene, Turkey, Hippopotamodon, biochronology, palaeoecology, sexual dimorphism Received: October 10, 2016 | Accepted: November 28, 2016 | Issued: December 30, 2016 Introduction (2010) mentions suids at the site, and correlated it to MN 11–12 (Early to Middle Turolian). -
Chapter 1 - Introduction
EURASIAN MIDDLE AND LATE MIOCENE HOMINOID PALEOBIOGEOGRAPHY AND THE GEOGRAPHIC ORIGINS OF THE HOMININAE by Mariam C. Nargolwalla A thesis submitted in conformity with the requirements for the degree of Doctor of Philosophy Graduate Department of Anthropology University of Toronto © Copyright by M. Nargolwalla (2009) Eurasian Middle and Late Miocene Hominoid Paleobiogeography and the Geographic Origins of the Homininae Mariam C. Nargolwalla Doctor of Philosophy Department of Anthropology University of Toronto 2009 Abstract The origin and diversification of great apes and humans is among the most researched and debated series of events in the evolutionary history of the Primates. A fundamental part of understanding these events involves reconstructing paleoenvironmental and paleogeographic patterns in the Eurasian Miocene; a time period and geographic expanse rich in evidence of lineage origins and dispersals of numerous mammalian lineages, including apes. Traditionally, the geographic origin of the African ape and human lineage is considered to have occurred in Africa, however, an alternative hypothesis favouring a Eurasian origin has been proposed. This hypothesis suggests that that after an initial dispersal from Africa to Eurasia at ~17Ma and subsequent radiation from Spain to China, fossil apes disperse back to Africa at least once and found the African ape and human lineage in the late Miocene. The purpose of this study is to test the Eurasian origin hypothesis through the analysis of spatial and temporal patterns of distribution, in situ evolution, interprovincial and intercontinental dispersals of Eurasian terrestrial mammals in response to environmental factors. Using the NOW and Paleobiology databases, together with data collected through survey and excavation of middle and late Miocene vertebrate localities in Hungary and Romania, taphonomic bias and sampling completeness of Eurasian faunas are assessed. -
Origin and Beyond
EVOLUTION ORIGIN ANDBEYOND Gould, who alerted him to the fact the Galapagos finches ORIGIN AND BEYOND were distinct but closely related species. Darwin investigated ALFRED RUSSEL WALLACE (1823–1913) the breeding and artificial selection of domesticated animals, and learned about species, time, and the fossil record from despite the inspiration and wealth of data he had gathered during his years aboard the Alfred Russel Wallace was a school teacher and naturalist who gave up teaching the anatomist Richard Owen, who had worked on many of to earn his living as a professional collector of exotic plants and animals from beagle, darwin took many years to formulate his theory and ready it for publication – Darwin’s vertebrate specimens and, in 1842, had “invented” the tropics. He collected extensively in South America, and from 1854 in the so long, in fact, that he was almost beaten to publication. nevertheless, when it dinosaurs as a separate category of reptiles. islands of the Malay archipelago. From these experiences, Wallace realized By 1842, Darwin’s evolutionary ideas were sufficiently emerged, darwin’s work had a profound effect. that species exist in variant advanced for him to produce a 35-page sketch and, by forms and that changes in 1844, a 250-page synthesis, a copy of which he sent in 1847 the environment could lead During a long life, Charles After his five-year round the world voyage, Darwin arrived Darwin saw himself largely as a geologist, and published to the botanist, Joseph Dalton Hooker. This trusted friend to the loss of any ill-adapted Darwin wrote numerous back at the family home in Shrewsbury on 5 October 1836. -
New Hominoid Mandible from the Early Late Miocene Irrawaddy Formation in Tebingan Area, Central Myanmar Masanaru Takai1*, Khin Nyo2, Reiko T
Anthropological Science Advance Publication New hominoid mandible from the early Late Miocene Irrawaddy Formation in Tebingan area, central Myanmar Masanaru Takai1*, Khin Nyo2, Reiko T. Kono3, Thaung Htike4, Nao Kusuhashi5, Zin Maung Maung Thein6 1Primate Research Institute, Kyoto University, 41 Kanrin, Inuyama, Aichi 484-8506, Japan 2Zaykabar Museum, No. 1, Mingaradon Garden City, Highway No. 3, Mingaradon Township, Yangon, Myanmar 3Keio University, 4-1-1 Hiyoshi, Kouhoku-Ku, Yokohama, Kanagawa 223-8521, Japan 4University of Yangon, Hlaing Campus, Block (12), Hlaing Township, Yangon, Myanmar 5Ehime University, 2-5 Bunkyo-cho, Matsuyama, Ehime 790-8577, Japan 6University of Mandalay, Mandalay, Myanmar Received 14 August 2020; accepted 13 December 2020 Abstract A new medium-sized hominoid mandibular fossil was discovered at an early Late Miocene site, Tebingan area, south of Magway city, central Myanmar. The specimen is a left adult mandibular corpus preserving strongly worn M2 and M3, fragmentary roots of P4 and M1, alveoli of canine and P3, and the lower half of the mandibular symphysis. In Southeast Asia, two Late Miocene medium-sized hominoids have been discovered so far: Lufengpithecus from the Yunnan Province, southern China, and Khoratpithecus from northern Thailand and central Myanmar. In particular, the mandibular specimen of Khoratpithecus was discovered from the neighboring village of Tebingan. However, the new mandible shows apparent differences from both genera in the shape of the outline of the mandibular symphyseal section. The new Tebingan mandible has a well-developed superior transverse torus, a deep intertoral sulcus (= genioglossal fossa), and a thin, shelf-like inferior transverse torus. In contrast, Lufengpithecus and Khoratpithecus each have very shallow intertoral sulcus and a thick, rounded inferior transverse torus. -
The Eternal Problem of Homology and Convergence
HYPOTHESES OF HIPPOPOTAMID ORIGINS 31 THE MYTH OF THE HIPPO-LIKE ANTHRACOTHERE: THE ETERNAL PROBLEM OF HOMOLOGY AND CONVERGENCE Martin PICKFORD Collège de France, and Département Histoire de la Terre, UMR 5143 du CNRS, Case postale 38, 57 rue Cuvier, 75005, Paris. e-mail: [email protected] Pickford, M. 2008. The myth of the hippo-like anthracothere: The eternal problem of homology and convergence. [El mito de la similitud entre antracoterios e hipopótamos: el eterno problema entre homología y convergencia.] Revista Española de Paleontología, 23 (1), 31-90. ISSN 0213-6937. ABSTRACT The notion that anthracotheres had hippo-like body proportions, locomotion and lifestyles has been in the lit- erature for so long, and has been repeated so many times, that it has taken on the aura of unquestionable truth. However, right from the beginning of studies into hippo-anthracothere relationships over a century and a half ago, observations were made that revealed the existence of fundamental differences in dental, cranial and post- cranial anatomy in the two groups. From 1836 to 1991 two skeletal characters (a descending plate at the angle of the mandible, and raised orbits) have overshadowed all others in suggesting close relationships between hippos and a single anthracothere genus (Merycopotamus) later to be joined by a second genus, Libycosaurus, in 1991 for the descending angle, and 2003 for the raised orbits (Lihoreau, 2003; Pickford, 1991). Close examination of these structures reveals that they are not homologous in the two groups, yet they have played an inordinately stubborn role in interpretations of the relationships between them, featuring in papers as recently as 2005. -
Fallen in a Dead Ear: Intralabyrinthine Preservation of Stapes in Fossil Artiodactyls Maeva Orliac, Guillaume Billet
Fallen in a dead ear: intralabyrinthine preservation of stapes in fossil artiodactyls Maeva Orliac, Guillaume Billet To cite this version: Maeva Orliac, Guillaume Billet. Fallen in a dead ear: intralabyrinthine preservation of stapes in fossil artiodactyls. Palaeovertebrata, 2016, 40 (1), 10.18563/pv.40.1.e3. hal-01897786 HAL Id: hal-01897786 https://hal.archives-ouvertes.fr/hal-01897786 Submitted on 17 Oct 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/297725060 Fallen in a dead ear: intralabyrinthine preservation of stapes in fossil artiodactyls Article · March 2016 DOI: 10.18563/pv.40.1.e3 CITATIONS READS 2 254 2 authors: Maeva Orliac Guillaume Billet Université de Montpellier Muséum National d'Histoire Naturelle 76 PUBLICATIONS 745 CITATIONS 103 PUBLICATIONS 862 CITATIONS SEE PROFILE SEE PROFILE Some of the authors of this publication are also working on these related projects: The ear region of Artiodactyla View project Origin, evolution, and dynamics of Amazonian-Andean ecosystems View project All content following this page was uploaded by Maeva Orliac on 14 March 2016. -
Geodiversitas 2020 42 8
geodiversitas 2020 42 8 né – Car ig ni e vo P r e e s n a o f h t p h é e t S C l e a n i r o o z o m i e c – M DIRECTEUR DE LA PUBLICATION : Bruno David, Président du Muséum national d’Histoire naturelle RÉDACTEUR EN CHEF / EDITOR-IN-CHIEF : Didier Merle ASSISTANTS DE RÉDACTION / ASSISTANT EDITORS : Emmanuel Côtez ([email protected]) MISE EN PAGE / PAGE LAYOUT : Emmanuel Côtez COMITÉ SCIENTIFIQUE / SCIENTIFIC BOARD : Christine Argot (Muséum national d’Histoire naturelle, Paris) Beatrix Azanza (Museo Nacional de Ciencias Naturales, Madrid) Raymond L. Bernor (Howard University, Washington DC) Alain Blieck (chercheur CNRS retraité, Haubourdin) Henning Blom (Uppsala University) Jean Broutin (Sorbonne Université, Paris) Gaël Clément (Muséum national d’Histoire naturelle, Paris) Ted Daeschler (Academy of Natural Sciences, Philadelphie) Bruno David (Muséum national d’Histoire naturelle, Paris) Gregory D. Edgecombe (The Natural History Museum, Londres) Ursula Göhlich (Natural History Museum Vienna) Jin Meng (American Museum of Natural History, New York) Brigitte Meyer-Berthaud (CIRAD, Montpellier) Zhu Min (Chinese Academy of Sciences, Pékin) Isabelle Rouget (Muséum national d’Histoire naturelle, Paris) Sevket Sen (Muséum national d’Histoire naturelle, Paris) Stanislav Štamberg (Museum of Eastern Bohemia, Hradec Králové) Paul Taylor (The Natural History Museum, Londres) COUVERTURE / COVER : Made from the Figures of the article. Geodiversitas est indexé dans / Geodiversitas is indexed in: – Science Citation Index Expanded (SciSearch®) – ISI Alerting -
A New Species of Chleuastochoerus (Artiodactyla: Suidae) from the Linxia Basin, Gansu Province, China
Zootaxa 3872 (5): 401–439 ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Article ZOOTAXA Copyright © 2014 Magnolia Press ISSN 1175-5334 (online edition) http://dx.doi.org/10.11646/zootaxa.3872.5.1 http://zoobank.org/urn:lsid:zoobank.org:pub:5DBE5727-CD34-4599-810B-C08DB71C8C7B A new species of Chleuastochoerus (Artiodactyla: Suidae) from the Linxia Basin, Gansu Province, China SUKUAN HOU1, 2, 3 & TAO DENG1 1Key Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of Sciences, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences Beijing 100044, China 2State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sci- ences Nanjing 210008, China 3Corresponding author. E-mail: [email protected] Abstract The Linxia Basin, Gansu Province, China, is known for its abundant and well-preserved fossils. Here a new species, Chleuastochoerus linxiaensis sp. nov., is described based on specimens collected from the upper Miocene deposits of the Linxia Basin, distinguishable from C. stehlini by the relatively long facial region, more anteromedial-posterolaterally compressed upper canine and more complicated cheek teeth. A cladistics analysis placed Chleuastochoerus in the sub- family Hyotheriinae, being one of the basal taxa of this subfamily. Chleuastochoerus linxiaensis and C. stehlini are con- sidered to have diverged before MN 10. C. tuvensis from Russia represents a separate lineage of Chleuastochoerus, which may have a closer relationship to C. stehlini but bears more progressive P4/p4 and M3. Key words: Linxia Basin, upper Miocene Liushu Formation, Hyotheriinae, Chleuastochoerus, phylogeny Introduction Chleuastochoerus Pearson 1928 is a small late Miocene-early Pliocene fossil pig (Suidae). -
Miocene Vertebrate Faunas from Przeworno (Lower Silesia) and Their Geologi.Cal Setting
acta geologica polonica Vol. 21. No. 3 Warszawa 1971 Miocene vertebrate faunas from Przeworno (Lower Silesia) and their geologi.cal setting .ABSI1RACT: The prelimina.ry results of gealogical and paleontological studies on newly fQlU!I1Jd vertebmte flaUlIlas at tP.t-zewomo .(Lower Sil€S'ia, Soouthwestern Poliand) are presented. The' older assembJage (IPrzeworno I) occurtS in -clay infilling of hordzontal karst passage. This assemblage corresponds ,to swampy rain f,orest faunas and itS similar in age to fauna of La Romieu (Upper Burdigalhin). The younger assemblage, found in vertical fis'sure filled up from surface, is represented by fauna of woods of the pal"ik" type, pointing to sawanna-like Iclunoarte, and co:rrespondiing to young&' Vindobondan faunas in age. l;r;n the paleontologkal par,t the six genera of mammals', including one new speeietS ,of rhinoceros - Aceratherium s~lesiacum sp. n. S\lllmski, are described. M,oreover, a fra,gment of the cave, with s-Hiceous flowstones, is descrllbed. The old marble quarry at Przeworno is situated on the foreland of the Sudety Mts, 50 km south from Wroclaw (Figs 1 and 2); its location is defined by the coordinates 17°10'40'" of eastern longitude and 50°41'41" of northern latitude. In the course of geologiCal investigations, the second co-author. noted the occurrence of fossil karst (Oberc 1966), and later on, in 1969, the occurrence of bone remnants in clay infillhig of karst passage from the 'bottom of the quarry ,(locality Przeworno 1). At the same time, the first co-author recorded the remnants of the cave with siliceous flowstones. -
(Mammalia, Artiodactyla) from the Late Miocene of Akkas¸Dag˘I, Turkey
Suidae (Mammalia, Artiodactyla) from the late Miocene of Akkas ¸ dag ˘ ı, Turkey Liping LIU Institute of Vertebrate Paleontology and Paleoanthropology, P.O. Box 643, Beijing, 100044 (China) [email protected] Dimitris S. KOSTOPOULOS Department of Geology, Laboratory of Paleontology, University of Thessaloniki, Thessaloniki, GR-54124 (Greece) [email protected] Mikael FORTELIUS Department of Geology, University of Helsinki, P.O. Box 64, Helsinki, FIN-00014 (Finland) [email protected] Liu L., Kostopoulos D. S. & Fortelius M. 2005. — Suidae (Mammalia, Artiodactyla) from the late Miocene of Akkas ¸ dag ˘ ı, Turkey, in Sen S. (ed.), Geology, mammals and environments at Akkas ¸ dag ˘ ı, late Miocene of Central Anatolia. Geodiversitas 27 (4) : 715-733. ABSTRACT The suid remains from Akkas¸ dag˘ ı, late Miocene of Central Anatolia (Turkey), represent the widespread, long-ranging, and polymorphic species Microstonyx major (Gervais, 1848). The rich material represents at least 10 individuals, KEY WORDS two of which are juveniles, and comprises both postcranial and craniodental Mammalia, material, including one nearly complete skull. The Akkas¸ dag˘ ı population is Suidae, Microstonyx, characterised by medium size, strong elongation of the skull, and moderate Miocene, reduction of premolar size. These characteristics are shared with other popu- Akkas¸ dag˘ ı, lations of late middle Turolian age (MN 12). The elongation of the skull Central Anatolia, Turkey, appears elsewhere to be associated with the arid end of the species’ ecological palaeoecology. range. RÉSUMÉ Suidae (Mammalia, Artiodactyla) du Miocène supérieur d’Akka¸s dag˘ ı, Turquie. Le matériel de suidés du Miocène supérieur d’Akkas¸ dag˘ ı (Anatolie Centrale, Turquie) est attribué à l’espèce polymorphe Microstonyx major (Gervais, 1848), d’une extension géographique très vaste. -
Faunal and Environmental Change in the Late Miocene Siwaliks of Northern Pakistan
Copyright ( 2002, The Paleontological Society Faunal and environmental change in the late Miocene Siwaliks of northern Pakistan John C. Barry, MicheÁle E. Morgan, Lawrence J. Flynn, David Pilbeam, Anna K. Behrensmeyer, S. Mahmood Raza, Imran A. Khan, Catherine Badgley, Jason Hicks, and Jay Kelley Abstract.ÐThe Siwalik formations of northern Pakistan consist of deposits of ancient rivers that existed throughout the early Miocene through the late Pliocene. The formations are highly fossil- iferous with a diverse array of terrestrial and freshwater vertebrates, which in combination with exceptional lateral exposure and good chronostratigraphic control allows a more detailed and tem- porally resolved study of the sediments and faunas than is typical in terrestrial deposits. Conse- quently the Siwaliks provide an opportunity to document temporal differences in species richness, turnover, and ecological structure in a terrestrial setting, and to investigate how such differences are related to changes in the ¯uvial system, vegetation, and climate. Here we focus on the interval between 10.7 and 5.7 Ma, a time of signi®cant local tectonic and global climatic change. It is also the interval with the best temporal calibration of Siwalik faunas and most comprehensive data on species occurrences. A methodological focus of this paper is on controlling sampling biases that confound biological and ecological signals. Such biases include uneven sampling through time, differential preservation of larger animals and more durable skeletal elements, errors in age-dating imposed by uncertainties in correlation and paleomagnetic timescale calibrations, and uneven tax- onomic treatment across groups. We attempt to control for them primarily by using a relative-abun- dance model to estimate limits for the ®rst and last appearances from the occurrence data.