Posture Perfect
Total Page:16
File Type:pdf, Size:1020Kb
Posture Perfect J. Barr J. Carlos F. Lopera F. Petersen 4/27/2016 Contents 1 Executive Summary 1 2 Project Overview 3 2.1 Project Motivation . 3 2.1.1 Life Expectancy Due to Excessive Sitting . 4 2.1.2 Health Effects Caused by Excessive Sitting . 4 2.2 Objective and Goals . 6 2.3 Project Specifications and Requirements . 7 2.3.1 Hardware Requirements . 7 2.3.2 Software Requirements . 8 3 Research Related to Project Definition 11 3.1 Anatomy of Spine . 11 3.1.1 Proper Sitting Posture . 13 3.1.2 Benefits of Proper Sitting Posture . 14 3.1.3 Staying Active . 15 3.1.4 Realigning Your Back . 15 3.1.5 Weight Distribution . 16 3.2 Existing Solutions . 17 3.2.1 Lumo Lift . 18 3.2.2 Lumo Back . 19 3.2.3 Darma . 20 3.2.4 Zikto Arki . 21 3.3 Relevant Technologies . 23 3.3.1 Pressure Sensors . 23 3.3.2 Proximity Sensors . 25 3.3.3 Distance/Imaging Sensors . 27 3.3.4 Block Diagram . 30 3.3.5 Vibration Motors . 30 3.3.6 Microcontroller . 35 3.3.7 Electrography . 36 3.3.8 Wireless Communication and Wireless Networks . 37 3.3.9 Operating System Compatibility . 40 3.4 Component Specifications . 43 3.4.1 Communication Specifications . 43 i 3.5 Power Specifications . 46 3.5.1 Power Solution . 46 3.5.2 Rechargeable Battery Requirements . 46 3.5.3 Battery Types . 47 3.5.4 Charging System . 49 3.6 Application Specifications . 51 3.7 Platform Specifications . 52 3.7.1 Processing Results at Reasonable Speeds . 52 3.7.2 Accessibility of the data . 52 3.7.3 Create and Maintain Application . 53 4 STANDARDS AND CONSTRAINTS 54 4.1 Standards Relevant to Project . 54 4.2 Constraints Based on Requirements . 59 5 DESIGN PHASE 61 5.1 Hardware Design . 61 5.1.1 Measuring Weight Distribution . 61 5.1.2 Vibration Motors . 66 5.1.3 Sensing the User . 70 5.1.4 Determining Curvature of the Spine . 77 5.1.5 Microcontroller . 81 5.1.6 PCB Design . 86 5.1.7 Power Management . 86 5.2 Software Design . 87 5.2.1 Embedded . 87 5.2.2 Mobile App . 89 5.2.3 Cloud . 91 5.3 Aesthetic Design . 96 6 PROTOTYPE CONSTRUCTION AND CODING 98 6.1 Hardware . 98 6.2 Embedded Software . 99 6.2.1 Sensor Data . 99 6.2.2 Power Management . 100 6.3 Application Software . 100 6.3.1 Application Prototype . 100 6.3.2 Home Screen . 100 6.3.3 Recommended Exercise Prototype . 102 6.3.4 Results Prototype . 102 6.3.5 Setting Prototype . 102 ii 7 TESTING 106 7.1 Unit Testing . 110 7.2 Integration Testing . 110 7.3 Acceptance Testing . 113 8 ADMINISTRATIVE SOLUTION 114 8.1 Timeline and Milestones . 114 8.2 Budget . 115 8.3 Roles and Responsibilities . 115 9 Project Summary and Conclusion 118 10 APPENDICES i 10.1 Copyright Permissions . i 10.1.1 Permission from TI . i 10.1.2 Permission from Okamura . i 10.1.3 Permission from Precision Microdrives . i 10.1.4 Permission from Tekscan . i 10.1.5 Permission from Interlink Electronics . i 10.1.6 Permission from Parallax Inc. i 10.1.7 Permission from Cleveland Clinic . i 10.1.8 Permission from Atmel . i 10.2 Refrences . i iii List of Figures 3.1 Spine Orientations . 13 3.2 Different Sitting Postures (Courtesy of Okamura) . 14 3.3 Pressure Distribution for Poor Posture (Courtesy of Okamura) . 17 3.4 Pressure Distribution for Proper Posture (Courtesy of Okamura) . 18 3.5 Typical Response of Ultrasonic Sensor at Varying Degrees (Labeled for Noncommercial Reuse) . 30 3.6 The Design Setup of the Project . 31 3.7 The High Level Design of the Application . 32 3.8 Inside an Eccentric Rotating Mass (Courtesy of Precision Microdrives) 33 3.9 Inside a Linear Resonant Actuator (Courtesy of Precision Microdrives) 35 3.10 Inductive Power Transfer Principle (Labeled for non commercial reuse) 50 5.1 Hardware Block Diagram . 62 5.2 FSR Model 406 Mechanical Data (Courtesy of Interlink Electronics) 65 5.3 Voltage Divider for FSR 406 or 402 (Courtesy of Interlink Electronics) 66 5.4 Multi-Channel FSR-to-Digital Interface (Courtesy of Interlink Elec- tronics) . 67 5.5 Model: 910-101 Dimensional Specification (Courtesy of Precision Mi- crodrives) . 70 5.6 Brushless Vibration Motor Performance Characteristics (Courtesy of Precision Microdrives) . 71 5.7 Depiction of field of view concept (Labeled free to reuse for non com- mercial use) . 73 5.8 Function Block Diagram of the TMP007 (Courtesy of Texas Instruments) 75 5.9 TMP007 Package and 8-pin Top View (Courtesy of Texas Instruments) 76 5.10 Sensor Layout in Chair (Waiting for permission to reprint from Steelcase) 78 5.11 Ping))) Measuring Distance and Interfacing with Microcontroller (Reprinted with permission from Parallax) . 80 5.12 Schematic of Ping))) (Reprinted with permission from Parallax) . 81 5.13 Function Block Diagram of ATMEGA32U4 (permission pending) . 84 5.14 Pin Layout of ATMEGA32U4 (permission pending) . 85 5.15 Schematic of Microcontroller on PCB in Eagle . 86 5.16 Flow Control of The Microcontroller . 88 5.17 Home method logic . 92 5.18 Recommended exercises method logic . 93 5.19 Result method logic . 94 iv 5.20 Settings method logic . 95 5.21 Physical Layout of Chair (Waiting for permission to reprint from Steel- case) . 97 6.1 Home screen of app . 101 6.2 Recommend screen of app . 103 6.3 Past results screen of app . 104 6.4 Settings screen of app . 105 10.1 Requested Permission from TI . ii 10.2 The Response from TI . iii 10.3 The request sent to Okamaru . iii 10.4 Request Sent to Microdrives . iv 10.5 The Response from Microdrives . iv 10.6 Request sent to Tekscan . iv 10.7 The Response from Tekscan . v 10.8 The request sent to Interlink . v 10.9 The Response from Interlink . v 10.10The request sent to Parallax . vi 10.11The Response from Parallax . vii 10.12The request sent to Celveland Clinic . vii 10.13The request sent to Atmel . ..