Volcanic-Ash-Derived Forest Soils of the Inland Northwest: Properties and Implications for Management and Restoration

Total Page:16

File Type:pdf, Size:1020Kb

Volcanic-Ash-Derived Forest Soils of the Inland Northwest: Properties and Implications for Management and Restoration Volcanic-Ash-Derived Forest United States Department Soils of the Inland Northwest: of Agriculture Properties and Implications for Forest Service Rocky Mountain Management and Restoration Research Station Proceedings RMRS-P-44 9-10 November 2005 March 2007 Coeur d’Alene, ID Page-Dumroese, Deborah; Miller, Richard; Mital, Jim; McDaniel, Paul; Miller, Dan, tech. eds. 2007. Volcanic-Ash-Derived Forest Soils of the Inland Northwest: Properties and Implications for Management and Restoration. 9-10 November 2005; Coeur d’Alene, ID. Proceedings RMRS-P-44; Fort Collins, CO: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station. 220 p. Abstract ________________________________________ Volcanic ash from the eruption of Mt. Mazama ~7,700 years ago has a strong influ- ence on many forested landscapes of the Pacific Northwest and Intermountain regions of the USA and Canada. Because of the unique biological, physical and chemical properties of the ash, it is closely tied to plant communities and forest productivity, and should therefore be considered as a resource to protect when harvesting, burning, or site preparation activities occur on it. How did this symposium get started? There has been a steady stream of questions, problems, and research on volcanic ash-cap soils for many decades. This symposium was designed to assemble experts to discuss our state-of-knowledge about volcanic ash-cap soil management and restoration. About 200 scientists and natural resource managers participated in this conference, which was held at the Coeur d’Alene Resort, Coeur d’Alene, ID in November 2005. The Technical Committee __________________________ Deborah S. Page-Dumroese is a Research Soil Scientist and Project Leader, Rocky Mountain Research Station. Debbie’s research has focused on long-term soil productivity after management activities, including belowground chemical, physical, and biological properties. Richard E. Miller is a retired Research Soil Scientist from the Pacific Northwest Research Station. Dick is still actively involved in soil research and is currently working to address issues of soil quality and monitoring. Jim Mital is the Forest Ecologist, Soil Scientist, and Weed Coordinator on the Clearwater National Forest. Jim has worked to help design “soil friendly” management options for resource managers. Paul McDaniel is Professor of Soil Science in the College of Agricultural and Life Sci- ences at the University of Idaho. Paul’s research activities have included elucidating the unique chemical and physical properties of ash-cap soils. Dan Miller is Silviculture Manager for Potlatch Forest Holdings, Inc., Lewiston, ID. Dan has been instrumental in working with logging contractors to reduce soil impacts during harvesting. You may order additional copies of this publication by sending your mailing information in label form through one of the following media. Please specify the publication title and number. Publishing Services Telephone (970) 498-1392 FAX (970) 498-1122 E-mail [email protected] Web site http://www.fs.fed.us/rm Mailing Address Publications Distribution Rocky Mountain Research Station 240 West Prospect Road Fort Collins, CO 80526 Contents _____________________________________________________ Page Properties, Characteristics, and Distribution of Ash-cap Soils .............................................. 1 Volcanic Ash-cap Forest Soils of the Inland Northwest Properties and Implications for Management and Restoration ............................................................................... 3 Steven B. Daley-Laursen Ecological and Topographic Features of Volcanic Ash-Influenced Forest Soils ............................. 7 Mark Kimsey, Brian Gardner, and Alan Busacca Field Identification of Andic Soil Properties for Soils of North-central Idaho ................................ 23 Brian Gardner Physical and Chemical Characteristics of Ash-influenced Soils of Inland Northwest Forests ...... 31 P. A. McDaniel and M. A. Wilson Assessing Quality in Volcanic Ash Soils ....................................................................................... 47 Terry L. Craigg and Steven W. Howes Past Activities and Their Consequences on Ash-cap Soils .................................................. 67 Effects of Machine Traffic on the Physical Properties of Ash-Cap Soils ....................................... 69 Leonard R. Johnson, Debbie Page-Dumroese, and Han-Sup Han Runoff and Erosion Effects after Prescribed Fire and Wildfire on Volcanic Ash-Cap Soils .......... 83 P. R. Robichaud, F. B. Pierson, and R. E. Brown Management Alternatives for Ash-cap Soils ........................................................................... 95 Volcanic Ash Soils: Sustainable Soil Management Practices, With Examples of Harvest Effects and Root Disease Trends .................................................................................... 97 Mike Curran, Pat Green, and Doug Maynard Restoring and Enhancing Productivity of Degraded Tephra-Derived Soils ................................ 121 Chuck Bulmer, Jim Archuleta, and Mike Curran Ash Cap Influences on Site Productivity and Fertilizer Response in Forests of the Inland Northwest......................................................................................................................... 137 Mariann T. Garrison-Johnston, Peter G. Mika, Dan L. Miller, Phil Cannon, and Leonard R. Johnson Economics of Soil Disturbance ................................................................................................... 165 Han-Sup Han Special Topic—Grand Fir Mosaic ........................................................................................... 173 The Grand Fir Mosaic Ecosystem—History and Management Impacts ..................................... 175 D. E. Ferguson, J. L. Johnson-Maynard, and P. A. McDaniel Chemical Changes Induced by pH Manipulations of Volcanic Ash-Influenced Soils .................. 185 Deborah Page-Dumroese, Dennis Ferguson, Paul McDaniel, and Jodi Johnson-Maynard Summaries of Poster Papers .................................................................................................. 203 WEPP FuME Analysis for a North Idaho Site ............................................................................. 205 William Elliot, Ina Sue Miller, and David Hall Erosion Risks in Selected Watersheds for the 2005 School Fire Located Near Pomeroy, Washington on Predominately Ash-Cap Soils .............................................................211 William Elliot, Ina Sue Miller, and Brandon Glaza Conference Wrap-up .................................................................................................................. 215 Richard E. Miller Properties, Characteristics, and Distribution of Ash-cap Soils Past Activities and Their Consequences on Ash-cap Soils Management Alternatives for Ash-cap Soils Special Topic— Grand Fir Mosaic Summaries of Poster Papers Properties, Characteristics, and Distribution of Ash-cap Soils Volcanic Ash-cap Forest Soils of the Inland Northwest Properties and Implications for Management and Restoration Steven B. Daley-Laursen In: Page-Dumroese, Deborah; Miller, Richard; Mital, Jim; McDaniel, Paul; Miller, Dan, tech. eds. 2007. Volcanic-Ash-Derived Forest Soils of the Inland Northwest: Properties and Implications for Management and Restoration. 9-10 November 2005; Coeur d’Alene, ID. Proceedings RMRS-P-44; Fort Collins, CO: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station. Steven B. Daley-Laursen, Dean and Professor, College of Natural Resources, University of Idaho. Good Morning and Welcome. My task today is to set the stage for a productive conference by providing an historical context, an overview of the subject matter to be covered, and a challenge for next steps by interested scientists and practitioners. An Historical Perspective Volcanoes have been part of the Earth’s history ever since it has had a solid surface. And, volca- noes have been a part of human culture for thousands of years. In some ways, our reactions to the magnitude of a volcanic explosion haven’t evolved as much as one might think. Ranging from ancient cultures who believed that victims should be sacrificed in response to volcanic eruption, to Harry Truman who stubbornly sacrificed himself during the most recent eruption in the continental United States, volcanoes have impacted our lives in many ways and will continue to do so in the future. But disaster sometimes brings fortune. Here on the West Coast where some volcanoes erupt vio- lently every 20-30 years or so, we live in one of the grandest ash-cap locations in the world. Soils throughout the Inland Northwest region of the United States extending from the Cascade Mountains of Oregon and Washington to Northern Idaho and Western Montana have been influenced and overlain by tephra from cataclysmic eruptions of Mount Mazama. About 6,850 years ago Mount Mazama, a strato-volcano, collapsed to produce Crater Lake, one of the world’s best known calderas. The caldera is about 6 miles (10 km) wide. The catastrophic pyro- clastic eruption released about 12 cubic miles (50 cubic km) of magma to the surface. It was one of the largest eruptions in the last 10,000 years. The Mazama eruption was followed by the May 18, 1980 eruption of Mount St. Helens in west- central Washington. This eruption spread less than 1/100th of the Mazama ash volume over areas of eastern Washington and Northern Idaho. The St. Helens ash plume carried by the jet
Recommended publications
  • High Desert Oasis Delivers on Its Relaxation Promise | Lifestyles | Eugene, Oregon
    8/3/2016 High desert oasis delivers on its relaxation promise | Lifestyles | Eugene, Oregon AUGUST 1, 2016 SUBSCRIBER SERVICES The Register-Guard LIFE LIFESTYLES NORTHWEST TRAVEL High desert oasis delivers on its relaxation promise Black Butte Ranch goes low­key as other resorts go big 1/4 – A family of four rides bicycles past Phalarope Lake at Black Butte Ranch. There are more than 18 miles of paved trails at the Central Oregon resort. (Submitted photo) BY JOHN GOTTBERG ANDERSON For The Register‐Guard JULY 31, 2016 http://registerguard.com/rg/life/lifestyles/34615355­74/high­desert­oasis­delivers­on­its­relaxation­promise.html.csp# 1/7 8/3/2016 High desert oasis delivers on its relaxation promise | Lifestyles | Eugene, Oregon LACK BUTTE RANCH — Miles of gentle foot and bicycle trails wind around Phalarope Lake and follow a linked series of B ponds to the source waters of Indian Ford Creek. They skirt a white‐barked aspen grove and cross marshy Big Meadow, sharing the grasses with horses and livestock, on a nature trail with viewing areas for dozens of colorful species of birds. This is summer at the 1,830‐acre Black Butte Ranch. The nearest Central Oregon resort to the Willamette Valley, just 100 miles east of Eugene via Santiam Pass, the 45‐year‐old destination property delivers on a promise of relaxation. Families may enjoy summer visits when swimming pools are open and other activities, including golf, tennis and horseback riding, are going full bore, but Black Butte Ranch, known as BBR, thrives on serenity. Other resorts are all about hustle and bustle, but Black Butte even banishes overhead street lights, enhancing a “night sky” program that makes the heavens come alive.
    [Show full text]
  • Washington Division of Geology and Earth Resources Open File Report 74-1
    TEPHRA OF SALMON SPRINGS AGE FROM THE SOUTHEASTERN OLYMPIC PENINSULA, WASHINGTON by R. U. BIRDSEYE and R. J. CARSON North Carolina State University WASHINGTON DIVISION OF GEOLOGY AND EARTH RESOURCES OPEN FILE REPORT 74-1 1974 This report has not been edited or reviewed for conformity with Division of Geology and Earth Resources standards and nomenclature Revised October, 1989 CONTENTS Page Abstract •.•................••......••........•.......•............• 1 Introduction ....................................................... 1 Acknowledgments •••••••••••••••••••••••••••••••••••••••••••••••••••• 1 Pleistocene climate, glaciation, and volcanism ••••••••••••••••••••• 2 The ashes: Their thickness, distribution, and stratigraphic position •••••••••••••••••••••••••••••••••••••••••• 7 Color and texture of the ash ••••••••••••••••••••••••••••••••••••••• 14 Deposition of the ash •••••••••••••••••••••••••••••••••••••••••••••• 14 Atmospheric conditions during deposition of the ash •••••••••••••••• 20 Usefulness of volcanic ash in stratigraphic determination •••••••••• 21 Canel us ion ....•••.•..••••.••..••......•.••••••.••••....•••••...••.. 21 References cited ••••••••••••••••••••••••••••••••••••••••••••••••••• 23 ILLUSTRATIONS Figure 1 - Maximum extent of the Cordilleran ice sheet •••••••••••• 3 Figure 2 - Summary of late Pleistocene events in western Washington ••••••••••••••••••••••••••••••••••••• 4 Figure 3 - Location map showing inferred extent of minimum areas of fallout of volcanic ash from eruptions of Mount Mazama and Glacier Peak •••••••••••••••••••••••
    [Show full text]
  • Impact of Trace Metal Concentrations on Coccolithophore Growth and Morphology: Laboratory Simulations of Cretaceous Stress
    Biogeosciences Discuss., doi:10.5194/bg-2017-138, 2017 Manuscript under review for journal Biogeosciences Discussion started: 21 April 2017 c Author(s) 2017. CC-BY 3.0 License. Impact of trace metal concentrations on coccolithophore growth and morphology: laboratory simulations of Cretaceous stress. Giulia Faucher1, Linn Hoffmann2, Lennart T. Bach3, Cinzia Bottini1, Elisabetta Erba1, Ulf Riebesell3 1 Earth Sciences Department “Ardito Desio”, Università degli Studi di Milano, Milan, Italy 5 2 Department of Botany, University of Otago, Dunedin, New Zealand 3 Biological Oceanography, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany Correspondence to: Giulia Faucher ([email protected]) 10 Abstract. The Cretaceous ocean witnessed intervals of profound perturbations such as volcanic input of large amounts of CO2, anoxia, eutrophication, and introduction of biologically relevant metals. Some of these extreme events were characterized by size reduction and/or morphological changes of a few calcareous nannofossil species. The correspondence between intervals of high trace metal concentrations and coccolith dwarfism suggests a negative effect of these elements on nannoplankton biocalcification process in past oceans. In order to verify this hypothesis, we explored the potential effect of a 15 mixture of trace metals on growth and morphology of four living coccolithophore species, namely Emiliania huxleyi, Gephyrocapsa oceanica, Pleurochrysis carterae and Coccolithus pelagicus. These taxa are phylogenetically linked to the Mesozoic species showing dwarfism under excess metal concentrations. The trace metals tested were chosen to simulate the environmental stress identified in the geological record and upon known trace metal interaction with living coccolithophores algae. 20 Our laboratory experiments demonstrated that elevated trace metal concentrations not only affect coccolithophore algae production but, similarly to the fossil record, coccolith size and/or weight.
    [Show full text]
  • Respiratory Health Effects of Volcanic Ash with Special Reference To
    The Clinical Respiratory Journal REVIEW ARTICLE Respiratory health effects of volcanic ash with special reference to Iceland. A reviewcrj_231 2..9 Gunnar Gudmundsson1,2 1 Landspitali University Hospital, Reykjavik, Iceland 2 Faculty of Medicine, University of Iceland, Reykjavik, Iceland Abstract Key words Background and Aims: Volcano eruptions occur around the world and can have an health – respiratory – review – volcanic ash – impact on health in many ways both locally and on a global scale as a result of volcanic gases airborne dispersion of gases and ash or as impact on climate. In this review, a recent Correspondence volcanic eruption in Eyjafjallajökull in Iceland is described and its effects on avia- Gunnar Gudmundsson, MD, PhD, Department tion around the globe and on respiratory health in those exposed to the volcanic of Respiratory Medicine, Allergy and Sleep, ash in Iceland. Also, the effects of a large volcano eruption in Iceland in 1789 are Landspitali-University Hospital, E-7 Fossvogur, described that also had effect on a global scale by causing air pollution. IS-108 Methods and Results: The available studies reviewed here suggest that the acute Reykjavik, Iceland. and chronic health effects of volcanic ash depend on particle size (how much Tel: +354-5436876 Fax: +354-5436568 respirable), mineralogical composition (crystalline silica content) and the physico- email: [email protected] chemical properties of the surfaces of ash particles. These can vary between volca- noes and even between eruptions, making comparison difficult. Acute respiratory Received: 05 October 2010 symptoms suggesting asthma and bronchitis have been well described. Exacerba- Revision requested: 17 October 2010 tions of pre-existing lung and heart disease are common after inhalation of volcanic Accepted: 20 October 2010 ash.
    [Show full text]
  • Volcanic Vistas Discover National Forests in Central Oregon Summer 2009 Celebrating the Re-Opening of Lava Lands Visitor Center Inside
    Volcanic Vistas Discover National Forests in Central Oregon Summer 2009 Celebrating the re-opening of Lava Lands Visitor Center Inside.... Be Safe! 2 LAWRENCE A. CHITWOOD Go To Special Places 3 EXHIBIT HALL Lava Lands Visitor Center 4-5 DEDICATED MAY 30, 2009 Experience Today 6 For a Better Tomorrow 7 The Exhibit Hall at Lava Lands Visitor Center is dedicated in memory of Explore Newberry Volcano 8-9 Larry Chitwood with deep gratitude for his significant contributions enlightening many students of the landscape now and in the future. Forest Restoration 10 Discover the Natural World 11-13 Lawrence A. Chitwood Discovery in the Kids Corner 14 (August 4, 1942 - January 4, 2008) Take the Road Less Traveled 15 Larry was a geologist for the Deschutes National Forest from 1972 until his Get High on Nature 16 retirement in June 2007. Larry was deeply involved in the creation of Newberry National Volcanic Monument and with the exhibits dedicated in 2009 at Lava Lands What's Your Interest? Visitor Center. He was well known throughout the The Deschutes and Ochoco National Forests are a recre- geologic and scientific communities for his enthusiastic support for those wishing ation haven. There are 2.5 million acres of forest including to learn more about Central Oregon. seven wilderness areas comprising 200,000 acres, six rivers, Larry was a gifted storyteller and an ever- 157 lakes and reservoirs, approximately 1,600 miles of trails, flowing source of knowledge. Lava Lands Visitor Center and the unique landscape of Newberry National Volcanic Monument. Explore snow- capped mountains or splash through whitewater rapids; there is something for everyone.
    [Show full text]
  • Geology of the Northern Part of the Southeast Three Sisters
    AN ABSTRACT OF THE THESIS OF Karl C. Wozniak for the degree of Master of Science the Department cf Geology presented on February 8, 1982 Title: Geology of the Northern Part of the Southeast Three Sisters Quadrangle, Oregon Redacted for Privacy Abstract approved: E. M. Taylorc--_, The northern part of the Southeast Three Sisters quadrangle strad- dles the crest of the central High Cascades of Oregon. The area is covered by Pleistocene and Holocene volcanic and volcaniclastic rocks that were extruded from a number of composite cones, shield volcanoes, and cinder cones. The principal eruptive centers include Sphinx Butte, The Wife, The Husband, and South Sister volcanoes. Sphinx Butte, The Wife, and The Husband are typical High Cascade shield and composite vol- canoes whose compositions are limited to basalt and basaltic andesite. South Sister is a complex composite volcano composed of a diverse assem- blage of rocks. In contrast with earlier studies, the present investi- gation finds that South Sister is not a simple accumulation of andesite and dacite lavas; nor does the eruptive sequence display obvious evolu- tionary trends or late stage divergence to basalt and rhyolite. Rather, the field relations indicate that magmas of diverse composition have been extruded from South Sister vents throughout the lifespan of this volcano. The compositional variation at South Sister is. atypical of the Oregon High Cascade platform. This variation, however, represents part of a continued pattern of late Pliocene and Pleistocene magmatic diver- sity in a local region that includes Middle Sister, South Sister, and Broken Top volcanoes. Regional and local geologic constraints combined with chemical and petrographic criteria indicate that a local subcrustal process probably produced the magmas extruded fromSouth Sister, whereas a regional subcrustal process probably producedthe magmas extruded from Sphinx Butte, The Wife, and The Husband.
    [Show full text]
  • And Post-Laramide Geology of the South-Central
    Syn- and post-Laramide geology of the south-central Gravelly Range, southwestern Montana by Ernest Jan Luikart A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Earth Sciences Montana State University © Copyright by Ernest Jan Luikart (1997) Abstract: The geologic history of post-Laramide basin evolution in the foreland of southwestern Montana has been a matter of controversy. A complex assemblage of Upper Cretaceous to Tertiary sedimentary and volcanic rocks which record some of that history are exposed on and near the crest of the Gravelly Range. Past interpretations of their relations and tectonic implications conflict. The present investigation of a portion of the southern Gravelly Range crest helps to resolve the physical stratigraphy and ages of the post-Laramide deposits and suggests the following sequence of events: (1) syn- and post-Laramide erosional beveling of the Madison-Gravelly arch; (2) Late Cretaceous deposition of quartzite gravel from a thrust belt source, locally containing Archean metamorphic clasts from a foreland source; (3) conformable transition to deposition of limestone conglomerate derived from the Blacktail-Snowcrest arch, with interbedded siltstone, sandstone and lacustrine limestone, deposited prior to the end of Laramide deformation; (4) final movement of Laramide faults; (5) erosion represented by a 28-38 my-long unconformity; (6) deposition of tuffaceous mudstones beginning in the Duchesnean (40-37 Ma) and proceeding into the Whitneyan (32-29 Ma) interrupted by erosion at about 32 Ma; (7) eruption of basalt flows from local vents between 33 and 30 Ma; (8) minor erosion followed by early Miocene (23 Ma) eruption of an isolated mafic volcanic center; (9) emplacement of Huckleberry Ridge Tuff at 2.1 Ma after erosion or nondeposition of Miocene strata; (10) significant uplift of the range in Quaternary time; (11) Pleistocene deposition of glacial moraines in the deeper valleys, and ongoing mass-movement and colluvial processes.
    [Show full text]
  • Wyoming's Bentonite and Trona Resources
    Wyoming’s Bentonite and Trona Resources By Chamois Andersen, Wyoming State Geological Survey (Fall 2014) Many of the Earth’s minerals are used for industrial purposes, but consumers may not realize they also benefit from these minerals in a number of their everyday products. Bentonite and trona are two such resources, with Wyoming being home to some of the largest deposits in the world and leading the nation in their production. Bentonite is an important mineral to the energy industry because of its use in drilling mud for oil and natural gas wells. Consumers use bentonite when they buy kitty litter and cosmetics. Many industrial minerals have unique characteristics that make them particularly useful. Bentonite, for example, can swell up to 16 times its original size and hold up to 10 times its weight in water. Known as the “clay of 1,000 uses,” the mineral is also used in pharmaceuticals and as a bonding agent in molds for castings in iron and steel foundries, among many other uses. Wyoming has 70 percent of the known bentonite deposits in the world. In 2013, the state mined more than 4 million tons of bentonite. While much of this resource is used in cat litter, recent increases in overall mining and production of bentonite in the state can be directly linked to oil and gas drilling. The same is true for trona. It has a wide variety of manufacturing uses as well as consumer uses. Trona is mined to make soda ash, which is used to make flat glass for the automotive and construction industries.
    [Show full text]
  • A Tale of Three Sisters: Reconstructing the Holocene Glacial History and Paleoclimate Record at Three Sisters Volcanoes, Oregon, United States
    Portland State University PDXScholar Dissertations and Theses Dissertations and Theses 2005 A Tale of Three Sisters: Reconstructing the Holocene glacial history and paleoclimate record at Three Sisters Volcanoes, Oregon, United States Shaun Andrew Marcott Portland State University Follow this and additional works at: https://pdxscholar.library.pdx.edu/open_access_etds Part of the Geology Commons, and the Glaciology Commons Let us know how access to this document benefits ou.y Recommended Citation Marcott, Shaun Andrew, "A Tale of Three Sisters: Reconstructing the Holocene glacial history and paleoclimate record at Three Sisters Volcanoes, Oregon, United States" (2005). Dissertations and Theses. Paper 3386. https://doi.org/10.15760/etd.5275 This Thesis is brought to you for free and open access. It has been accepted for inclusion in Dissertations and Theses by an authorized administrator of PDXScholar. Please contact us if we can make this document more accessible: [email protected]. THESIS APPROVAL The abstract and thesis of Shaun Andrew Marcott for the Master of Science in Geology were presented August II, 2005, and accepted by the thesis committee and the department. COMMITTEE APPROVALS: (Z}) Representative of the Office of Graduate Studies DEPARTMENT APPROVAL: MIchael L. Cummings, Chair Department of Geology ( ABSTRACT An abstract of the thesis of Shaun Andrew Marcott for the Master of Science in Geology presented August II, 2005. Title: A Tale of Three Sisters: Reconstructing the Holocene glacial history and paleoclimate record at Three Sisters Volcanoes, Oregon, United States. At least four glacial stands occurred since 6.5 ka B.P. based on moraines located on the eastern flanks of the Three Sisters Volcanoes and the northern flanks of Broken Top Mountain in the Central Oregon Cascades.
    [Show full text]
  • 2021.06.11 BBR Resort Map Ktk.Indd
    Fire Dept.non–emergency: 541-693-6911 | 911 | 541-693-6911 Dept.non–emergency: Fire . 13511 Hawks Beard, near Bishop’s Cap Cap Bishop’s near Beard, Hawks 13511 ROCK CLIMBING helicopters transport from the Sports Field. Field. Sports the from transport helicopters EXPLORE THE make up the Ranch. Ranch. the up make First Ascent Climbing o¡ers specialized climbing and has a fully-equipped fi rst aid room. Medical Medical room. aid rst fi fully-equipped a has and ums and various cabin clusters. About 1,200 homesites homesites 1,200 About clusters. cabin various and ums ADVENTURES services at Smith Rock State Park for all abilities. The BBR Fire Dept. is sta¡ ed with paramedics 24/7 24/7 paramedics with ed sta¡ is Dept. Fire BBR The Meadow (south). There also are three sets of condomini- of sets three are also There (south). Meadow BBR recommends helmets for all riders. all for helmets recommends BBR 1-866-climb11 | GoClimbing.com Home, South Meadow and Rock Ridge (center), and Glaze Glaze and (center), Ridge Rock and Meadow South Home, FIRST AID AID FIRST BACKYARD WITH OUTFITTERS when operating a bicycle, Razor, or inline skates. skates. inline or Razor, bicycle, a operating when into sections: Golf Home (NW), East Meadow (NE), Spring Spring (NE), Meadow East (NW), Home Golf sections: into BLACK BUTTE LOOKOUT • Anyone under 16 needs to wear a HELMET HELMET a wear to needs 16 under Anyone • for such a large residential resort. The Ranch is divided divided is Ranch The resort. residential large a such for FLY FISHING Police non–emergency: 541-693-6911 | 911 | 541-693-6911 non–emergency: Police Ranch Homeowners’ Association, a unique arrangement arrangement unique a Association, Homeowners’ Ranch Hike BBR’s namesake in this 3.6 mile, 1,556 foot climb.
    [Show full text]
  • Nitrogen Leaching Losses on a Volcanic Ash Soil As Affected by the Source of Fertiliser
    R.C.Suelo Nutr. Veg. 6 (2) 2006 (54-63) J.Soil Sc. Plant. Nutr.6 (2) 2006 (54-63) 54 NITROGEN LEACHING LOSSES ON A VOLCANIC ASH SOIL AS AFFECTED BY THE SOURCE OF FERTILISER Marta Alfaro V.1; Francisco Salazar S.1; Denisse Endress B.2; Juan C. Dumont L.1; Aldo Valdebenito B.1 1 Instituto de Investigaciones Agropecuarias, INIA, Remehue P.O. Box 24-O Osorno Chile. Corresponding author. Phone: +56 64 233515. Fax: +56 64 237746. Correo electrónico: [email protected]. 2 Universidad de Los Lagos. Postgraduates School. P.O. Box 933 Osorno, Chile. Pérdidas de nitrógeno por lixiviación por efecto de la fuente del fertilizante en un suelo derivado de cenizas volcánicas Keywords: fish sludge, dairy slurry, inorganic fertilizer, water quality ABSTRACT An intact lysimeters study was carried out to measure the potential nitrogen (N) losses on an andisoil of Southern Chile with different fertilisers. The treatments tested were: fish slurry (FS), dairy slurry (DS), potassium nitrate (IF) and a control treatment (C), with no N addition. An equivalent amount of 150 kg of total N ha-1 was applied to each lysimeter and then the equivalent to 1260 mm of rainfall was irrigated over a 90 days period. Leachate samples were analysed for nitrate, nitrite, ammonia and organic N (No). Total N losses were calculated as the product between drainage and the respective N concentration in the leachates. Lowest N losses were obtained in the control and FS treatments (66 kg N ha-1) and the greatest amount was obtained in the IF treatment (261 kg N ha-1).
    [Show full text]
  • Volcanic Hazards at Mount Shasta, California
    U.S. Geological Survey / Department of the Interior Volcanic Hazards at Mount Shasta, California Volcanic Hazards at Mount Shasta, California by Dwight R. Crandell and Donald R. Nichols Cover: Aerial view eastward toward Mount Shasta and the community of Weed, California, located on deposits of pyroclastic flows formed about 9,500 years ago. The eruptions of Mount St. Helens, Washington, in 1980 served as a reminder that long-dormant volcanoes can come to life again. Those eruptions, and their effects on people and property, also showed the value of having information about volcanic hazards well in advance of possible volcanic activity. This pam­ phlet about Mount Shasta provides such information for the public, even though the next eruption may still be far in the future. Locating areas of possible hazard and evaluating them is one of the roles of the U.S. Geological Survey (USGS). If scientists recognize signs of an impending eruption, responsi­ ble public officials will be notified and they may advise you' of the need to evacuate certain areas or to take other actions to protect yourself. Your cooperation will help reduce the danger to yourself and others. This pamphlet concerning volcanic hazards at Mount Shasta was prepared by the USGS with the cooperation of the Division of Mines and Geology and the Office of Emergency Services of the State of California. An eruption of Mount Shasta could endanger your life and the lives of your family and friends. To help you understand and plan for such a danger, this pamphlet describes the kinds of volcanic activity that have occurred in the past, shows areas that could be affected in the future, and suggests ways of reducing the risk to life or health if the volcano does erupt.
    [Show full text]