Oliceridine Briefing Document: October 11, 2018 FDA Advisory Committee Meeting

Total Page:16

File Type:pdf, Size:1020Kb

Oliceridine Briefing Document: October 11, 2018 FDA Advisory Committee Meeting Oliceridine Briefing Document: October 11, 2018 FDA Advisory Committee Meeting FDA ADVISORY COMMITTEE BRIEFING DOCUMENT Oliceridine MEETING OF THE ANESTHETIC AND ANALGESIC DRUG PRODUCTS ADVISORY COMMITTEE MEETING DATE: October 11, 2018 Page 1 of 123 Oliceridine Briefing Document: October 11, 2018 FDA Advisory Committee Meeting Table of Contents 1 Executive Summary ..................................................................................................12 Introduction .................................................................................................................12 Current Pain Management Paradigm ..........................................................................13 Goals of Development Program .................................................................................15 Dosing and Administration .........................................................................................15 Efficacy .......................................................................................................................15 Opioid-Related Adverse Events .................................................................................20 1.6.1 Respiratory Effects ..............................................................................................20 1.6.2 Nausea and Vomiting ..........................................................................................25 Other Safety Findings .................................................................................................27 Conclusions.................................................................................................................28 2 Product Description and Development Program ...................................................30 G Protein-Coupled Receptors .....................................................................................30 Product Characteristics and Mechanism of Action ....................................................32 Proposed Indication and Dosing .................................................................................33 2.3.1 Dosing Paradigms Evaluated During Development ............................................33 2.3.2 Proposed Dosing ..................................................................................................34 Regulatory Milestones ................................................................................................34 Clinical Development Program ..................................................................................35 Treatment Exposures ..................................................................................................37 3 Nonclinical Pharmacology .......................................................................................38 Nonclinical Pharmacology ..........................................................................................38 3.1.1 G Protein-Biased Signaling with Oliceridine ......................................................38 3.1.2 Analgesic Efficacy and Gastrointestinal and Respiratory Effects in Nonclinical Studies ..............................................................................................39 3.1.3 Oliceridine Binding and Reversibility with Naloxone ........................................40 3.1.4 Metabolism and Excretion ...................................................................................40 3.1.5 Oliceridine Metabolites .......................................................................................41 Nonclinical Toxicology ..............................................................................................41 4 Clinical Pharmacology .............................................................................................43 Relevant Background and CYP2D6 Pharmacogenomics ...........................................43 Oliceridine Pharmacokinetics .....................................................................................44 Page 2 of 123 Oliceridine Briefing Document: October 11, 2018 FDA Advisory Committee Meeting 4.2.1 Population Pharmacokinetics/Pharmacodynamics ..............................................45 4.2.2 Drug Interactions .................................................................................................46 4.2.3 Hepatic Impairment .............................................................................................47 4.2.4 Renal Impairment ................................................................................................48 4.2.5 Comparison to Other IV Opioids ........................................................................48 4.2.6 Conclusions .........................................................................................................49 5 Human Pharmacodynamics .....................................................................................50 Pharmacologic Proof-of-Concept Study .....................................................................50 Human Abuse Liability ...............................................................................................51 6 Phase 2 Studies ..........................................................................................................53 Study 2001: Phase 2a, Fixed-Dose Bunionectomy Study ..........................................53 6.1.1 Study Design .......................................................................................................53 6.1.2 Results .................................................................................................................54 Study 2002: Phase 2b, PRN-Dosing Abdominoplasty Study .....................................55 6.2.1 Design ..................................................................................................................55 6.2.2 Efficacy Results ...................................................................................................56 6.2.3 Safety Results ......................................................................................................56 6.2.4 Conclusions from Phase 2 Studies ......................................................................58 7 Phase 3 Studies ..........................................................................................................59 APOLLO 1 and APOLLO 2 Study Designs ...............................................................59 7.1.1 PRN Dosing Regimens ........................................................................................60 7.1.2 Enrollment Criteria ..............................................................................................61 7.1.3 Clinical Endpoints ...............................................................................................61 7.1.4 Patient Disposition ...............................................................................................64 7.1.5 Demographics and Baseline Characteristics .......................................................65 APOLLO 1 and APOLLO 2 Efficacy Results ............................................................66 7.2.1 Exposure to Active Study Medication .................................................................66 7.2.2 Primary Endpoint Results: Responder Analysis Versus Placebo ........................67 7.2.3 Key Secondary Endpoint Results ........................................................................69 7.2.4 Use of Rescue Pain Medication ...........................................................................69 7.2.5 Efficacy in Subgroups .........................................................................................70 7.2.6 Efficacy Conclusions ...........................................................................................70 APOLLO 1 and APOLLO 2 Safety Results ...............................................................71 7.3.1 Overview of Adverse Events (AEs) ....................................................................71 7.3.2 Common Adverse Events ....................................................................................72 Page 3 of 123 Oliceridine Briefing Document: October 11, 2018 FDA Advisory Committee Meeting 7.3.3 Adverse Events Leading to Early Discontinuation of Study Medication ............73 7.3.4 Serious Adverse Events .......................................................................................73 7.3.5 Respiratory Safety ...............................................................................................74 7.3.6 Postoperative Nausea and Vomiting ...................................................................76 Phase 3 Open-label Safety Study (ATHENA) ............................................................79 7.4.1 Study Design .......................................................................................................79 7.4.2 Patient Disposition ...............................................................................................79 7.4.3 Patient Characteristics and Exposure to Study Medication .................................79 7.4.4 ATHENA Safety Results .....................................................................................82 7.4.5 ATHENA Conclusions ........................................................................................83 Safety Topics of Special Interest ................................................................................84 7.5.1 Hepatic Safety .....................................................................................................84 7.5.2
Recommended publications
  • Ong Edmund W 201703 Phd.Pdf (5.844Mb)
    INVESTIGATING THE EFFECTS OF PROLONGED MU OPIOID RECEPTOR ACTIVATION UPON OPIOID RECEPTOR HETEROMERIZATION by Edmund Wing Ong A thesis submitted to the Graduate Program in Pharmacology & Toxicology in the Department of Biomedical and Molecular Sciences In conformity with the requirements for the degree of Doctor of Philosophy Queen’s University Kingston, Ontario, Canada March, 2017 Copyright © Edmund Wing Ong, 2017 Abstract Opioid receptors are the sites of action for morphine and most other clinically-used opioid drugs. Abundant evidence now demonstrates that different opioid receptor types can physically associate to form heteromers. Owing to their constituent monomers’ involvement in analgesia, mu/delta opioid receptor (M/DOR) heteromers have been a particular focus of attention. Understandings of the physiological relevance of M/DOR formation remain limited in large part due to the reliance of existing M/DOR findings upon contrived heterologous systems. This thesis investigated the physiological relevance of M/DOR generation following prolonged MOR activation. To address M/DOR in endogenous tissues, suitable model systems and experimental tools were established. This included a viable dorsal root ganglion (DRG) neuron primary culture model, antisera specifically directed against M/DOR, a quantitative immunofluorescence colocalizational analysis method, and a floxed-Stop, FLAG-tagged DOR conditional knock-in mouse model. The development and implementation of such techniques make it possible to conduct experiments addressing the nature of M/DOR heteromers in systems with compelling physiological relevance. Seeking to both reinforce and extend existing findings from heterologous systems, it was first necessary to demonstrate the existence of M/DOR heteromers. Using antibodies directed against M/DOR itself as well as constituent monomers, M/DOR heteromers were identified in endogenous tissues and demonstrated to increase in abundance following prolonged mu opioid receptor (MOR) activation by morphine.
    [Show full text]
  • Biased Versus Partial Agonism in the Search for Safer Opioid Analgesics
    molecules Review Biased versus Partial Agonism in the Search for Safer Opioid Analgesics Joaquim Azevedo Neto 1 , Anna Costanzini 2 , Roberto De Giorgio 2 , David G. Lambert 3 , Chiara Ruzza 1,4,* and Girolamo Calò 1 1 Department of Biomedical and Specialty Surgical Sciences, Section of Pharmacology, University of Ferrara, 44121 Ferrara, Italy; [email protected] (J.A.N.); [email protected] (G.C.) 2 Department of Morphology, Surgery, Experimental Medicine, University of Ferrara, 44121 Ferrara, Italy; [email protected] (A.C.); [email protected] (R.D.G.) 3 Department of Cardiovascular Sciences, Anesthesia, Critical Care and Pain Management, University of Leicester, Leicester LE1 7RH, UK; [email protected] 4 Technopole of Ferrara, LTTA Laboratory for Advanced Therapies, 44122 Ferrara, Italy * Correspondence: [email protected] Academic Editor: Helmut Schmidhammer Received: 23 July 2020; Accepted: 23 August 2020; Published: 25 August 2020 Abstract: Opioids such as morphine—acting at the mu opioid receptor—are the mainstay for treatment of moderate to severe pain and have good efficacy in these indications. However, these drugs produce a plethora of unwanted adverse effects including respiratory depression, constipation, immune suppression and with prolonged treatment, tolerance, dependence and abuse liability. Studies in β-arrestin 2 gene knockout (βarr2( / )) animals indicate that morphine analgesia is potentiated − − while side effects are reduced, suggesting that drugs biased away from arrestin may manifest with a reduced-side-effect profile. However, there is controversy in this area with improvement of morphine-induced constipation and reduced respiratory effects in βarr2( / ) mice. Moreover, − − studies performed with mice genetically engineered with G-protein-biased mu receptors suggested increased sensitivity of these animals to both analgesic actions and side effects of opioid drugs.
    [Show full text]
  • Summary Analgesics Dec2019
    Status as of December 31, 2019 UPDATE STATUS: N = New, A = Advanced, C = Changed, S = Same (No Change), D = Discontinued Update Emerging treatments for acute and chronic pain Development Status, Route, Contact information Status Agent Description / Mechanism of Opioid Function / Target Indication / Other Comments Sponsor / Originator Status Route URL Action (Y/No) 2019 UPDATES / CONTINUING PRODUCTS FROM 2018 Small molecule, inhibition of 1% diacerein TWi Biotechnology / caspase-1, block activation of 1 (AC-203 / caspase-1 inhibitor Inherited Epidermolysis Bullosa Castle Creek Phase 2 No Topical www.twibiotech.com NLRP3 inflamasomes; reduced CCP-020) Pharmaceuticals IL-1beta and IL-18 Small molecule; topical NSAID Frontier 2 AB001 NSAID formulation (nondisclosed active Chronic low back pain Phase 2 No Topical www.frontierbiotech.com/en/products/1.html Biotechnologies ingredient) Small molecule; oral uricosuric / anti-inflammatory agent + febuxostat (xanthine oxidase Gout in patients taking urate- Uricosuric + 3 AC-201 CR inhibitor); inhibition of NLRP3 lowering therapy; Gout; TWi Biotechnology Phase 2 No Oral www.twibiotech.com/rAndD_11 xanthine oxidase inflammasome assembly, reduced Epidermolysis Bullosa Simplex (EBS) production of caspase-1 and cytokine IL-1Beta www.arraybiopharma.com/our-science/our-pipeline AK-1830 Small molecule; tropomyosin Array BioPharma / 4 TrkA Pain, inflammation Phase 1 No Oral www.asahi- A (ARRY-954) receptor kinase A (TrkA) inhibitor Asahi Kasei Pharma kasei.co.jp/asahi/en/news/2016/e160401_2.html www.neurosmedical.com/clinical-research;
    [Show full text]
  • Function-Related Dynamics in Multi-Spanning Helical Membrane Proteins Revealed by Solution NMR
    membranes Review Function-Related Dynamics in Multi-Spanning Helical Membrane Proteins Revealed by Solution NMR Koh Takeuchi 1,* , Yutaka Kofuku 2, Shunsuke Imai 3, Takumi Ueda 2, Yuji Tokunaga 1, Yuki Toyama 2 , Yutaro Shiraishi 3 and Ichio Shimada 2,3,* 1 Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology, Aomi, Koto, Tokyo 135-0064, Japan; [email protected] 2 Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Bunkyo, Tokyo 113-0033, Japan; [email protected] (Y.K.); [email protected] (T.U.); [email protected] (Y.T.) 3 Center for Biosystems Dynamics Research, RIKEN, Suehiro, Tsurumi, Yokohama 230-0045, Japan; [email protected] (S.I.); [email protected] (Y.S.) * Correspondence: [email protected] (K.T.); [email protected] (I.S.) Abstract: A primary biological function of multi-spanning membrane proteins is to transfer informa- tion and/or materials through a membrane by changing their conformations. Therefore, particular dynamics of the membrane proteins are tightly associated with their function. The semi-atomic resolution dynamics information revealed by NMR is able to discriminate function-related dynamics from random fluctuations. This review will discuss several studies in which quantitative dynamics information by solution NMR has contributed to revealing the structural basis of the function of multi-spanning membrane proteins, such as ion channels, GPCRs, and transporters. Citation: Takeuchi, K.; Kofuku, Y.; Keywords: membrane protein; NMR; ion channel; GPCR; transporter; dynamics Imai, S.; Ueda, T.; Tokunaga, Y.; Toyama, Y.; Shiraishi, Y.; Shimada, I.
    [Show full text]
  • Gs- Versus Golf-Dependent Functional Selectivity Mediated by the Dopamine D1 Receptor
    ARTICLE DOI: 10.1038/s41467-017-02606-w OPEN Gs- versus Golf-dependent functional selectivity mediated by the dopamine D1 receptor Hideaki Yano1, Ning-Sheng Cai1, Min Xu1, Ravi Kumar Verma1, William Rea1, Alexander F. Hoffman1, Lei Shi1, Jonathan A. Javitch2,3, Antonello Bonci1 & Sergi Ferré1 The two highly homologous subtypes of stimulatory G proteins Gαs (Gs) and Gαolf (Golf) display contrasting expression patterns in the brain. Golf is predominant in the striatum, while 1234567890():,; Gs is predominant in the cortex. Yet, little is known about their functional distinctions. The dopamine D1 receptor (D1R) couples to Gs/olf and is highly expressed in cortical and striatal areas, making it an important therapeutic target for neuropsychiatric disorders. Using novel drug screening methods that allow analysis of specific G-protein subtype coupling, we found that, relative to dopamine, dihydrexidine and N-propyl-apomorphine behave as full D1R agonists when coupled to Gs, but as partial D1R agonists when coupled to Golf. The Gs/Golf- dependent biased agonism by dihydrexidine was consistently observed at the levels of cel- lular signaling, neuronal function, and behavior. Our findings of Gs/Golf-dependent functional selectivity in D1R ligands open a new avenue for the treatment of cortex-specific or striatum- specific neuropsychiatric dysfunction. 1 National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD 21224, USA. 2 Department of Psychiatry, College of Physicians & Surgeons, Columbia University, New York, NY 10032, USA. 3 Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY 10032, USA. Correspondence and requests for materials should be addressed to H.Y.
    [Show full text]
  • Making Sense of Pharmacology: Inverse Agonism and Functional Selectivity Kelly A
    International Journal of Neuropsychopharmacology (2018) 21(10): 962–977 doi:10.1093/ijnp/pyy071 Advance Access Publication: August 6, 2018 Review review Making Sense of Pharmacology: Inverse Agonism and Functional Selectivity Kelly A. Berg and William P. Clarke Department of Pharmacology, University of Texas Health, San Antonio, Texas. Correspondence: William P. Clarke, PhD, Department of Pharmacology, Mail Stop 7764, UT Health at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229 ([email protected]). Abstract Constitutive receptor activity/inverse agonism and functional selectivity/biased agonism are 2 concepts in contemporary pharmacology that have major implications for the use of drugs in medicine and research as well as for the processes of new drug development. Traditional receptor theory postulated that receptors in a population are quiescent unless activated by a ligand. Within this framework ligands could act as agonists with various degrees of intrinsic efficacy, or as antagonists with zero intrinsic efficacy. We now know that receptors can be active without an activating ligand and thus display “constitutive” activity. As a result, a new class of ligand was discovered that can reduce the constitutive activity of a receptor. These ligands produce the opposite effect of an agonist and are called inverse agonists. The second topic discussed is functional selectivity, also commonly referred to as biased agonism. Traditional receptor theory also posited that intrinsic efficacy is a single drug property independent of the system in which the drug acts. However, we now know that a drug, acting at a single receptor subtype, can have multiple intrinsic efficacies that differ depending on which of the multiple responses coupled to a receptor is measured.
    [Show full text]
  • When Simple Agonism Is Not Enough: Emerging Modalities of GPCR Ligands Nicola J
    When simple agonism is not enough: emerging modalities of GPCR ligands Nicola J. Smith, Kirstie A. Bennett, Graeme Milligan To cite this version: Nicola J. Smith, Kirstie A. Bennett, Graeme Milligan. When simple agonism is not enough: emerging modalities of GPCR ligands. Molecular and Cellular Endocrinology, Elsevier, 2010, 331 (2), pp.241. 10.1016/j.mce.2010.07.009. hal-00654484 HAL Id: hal-00654484 https://hal.archives-ouvertes.fr/hal-00654484 Submitted on 22 Dec 2011 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Accepted Manuscript Title: When simple agonism is not enough: emerging modalities of GPCR ligands Authors: Nicola J. Smith, Kirstie A. Bennett, Graeme Milligan PII: S0303-7207(10)00370-9 DOI: doi:10.1016/j.mce.2010.07.009 Reference: MCE 7596 To appear in: Molecular and Cellular Endocrinology Received date: 15-1-2010 Revised date: 15-6-2010 Accepted date: 13-7-2010 Please cite this article as: Smith, N.J., Bennett, K.A., Milligan, G., When simple agonism is not enough: emerging modalities of GPCR ligands, Molecular and Cellular Endocrinology (2010), doi:10.1016/j.mce.2010.07.009 This is a PDF file of an unedited manuscript that has been accepted for publication.
    [Show full text]
  • Membrane Selectivity by W-Tagging of Antimicrobial Peptides
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Biochimica et Biophysica Acta 1808 (2011) 1081–1091 Contents lists available at ScienceDirect Biochimica et Biophysica Acta journal homepage: www.elsevier.com/locate/bbamem Membrane selectivity by W-tagging of antimicrobial peptides Artur Schmidtchen a, Lovisa Ringstad b, Gopinath Kasetty a, Hiroyasu Mizuno c, Mark W. Rutland c, Martin Malmsten b,⁎ a Division of Dermatology and Venereology, Department of Clinical Sciences, Lund University, SE-221 84 Lund, Sweden b Department of Pharmacy, Uppsala University, SE-75123, Uppsala, Sweden c Division of Surface and Corrosion Science, Royal Institute of Technology, SE-10044 Stockholm, Sweden article info abstract Article history: A pronounced membrane selectivity is demonstrated for short, hydrophilic, and highly charged antimicrobial Received 8 October 2010 peptides, end-tagged with aromatic amino acid stretches. The mechanisms underlying this were investigated Received in revised form 16 December 2010 by a method combination of fluorescence and CD spectroscopy, ellipsometry, and Langmuir balance Accepted 20 December 2010 measurements, as well as with functional assays on cell toxicity and antimicrobial effects. End-tagging with Available online 28 December 2010 oligotryptophan promotes peptide-induced lysis of phospholipid liposomes, as well as membrane rupture Keywords: and killing of bacteria and fungi. This antimicrobial potency is accompanied by limited toxicity for human AMP epithelial cells and low hemolysis. The functional selectivity displayed correlates to a pronounced selectivity Antimicrobial peptide of such peptides for anionic lipid membranes, combined with a markedly reduced membrane activity in the Ellipsometry presence of cholesterol.
    [Show full text]
  • The Main Tea Eta a El Mattitauli Mali Malta
    THE MAIN TEA ETA USA 20180169172A1EL MATTITAULI MALI MALTA ( 19 ) United States (12 ) Patent Application Publication ( 10) Pub . No. : US 2018 /0169172 A1 Kariman (43 ) Pub . Date : Jun . 21 , 2018 ( 54 ) COMPOUND AND METHOD FOR A61K 31/ 437 ( 2006 .01 ) REDUCING APPETITE , FATIGUE AND PAIN A61K 9 / 48 (2006 .01 ) (52 ) U . S . CI. (71 ) Applicant : Alexander Kariman , Rockville , MD CPC . .. .. .. .. A61K 36 / 74 (2013 .01 ) ; A61K 9 / 4825 (US ) (2013 . 01 ) ; A61K 31/ 437 ( 2013 . 01 ) ; A61K ( 72 ) Inventor: Alexander Kariman , Rockville , MD 31/ 4375 (2013 .01 ) (US ) ( 57 ) ABSTRACT The disclosed invention generally relates to pharmaceutical (21 ) Appl . No. : 15 /898 , 232 and nutraceutical compounds and methods for reducing appetite , muscle fatigue and spasticity , enhancing athletic ( 22 ) Filed : Feb . 16 , 2018 performance , and treating pain associated with cancer, trauma , medical procedure , and neurological diseases and Publication Classification disorders in subjects in need thereof. The disclosed inven ( 51 ) Int. Ci. tion further relates to Kratom compounds where said com A61K 36 / 74 ( 2006 .01 ) pound contains at least some pharmacologically inactive A61K 31/ 4375 ( 2006 .01 ) component. pronuPatent Applicationolan Publication manu saJun . decor21, 2018 deSheet les 1 of 5 US 2018 /0169172 A1 reta Mitragynine 7 -OM - nitragynine *** * *momoda W . 00 . Paynantheine Speciogynine **** * * * ! 1000 co Speclociliatine Corynartheidine Figure 1 Patent Application Publication Jun . 21, 2018 Sheet 2 of 5 US 2018 /0169172 A1
    [Show full text]
  • The Utilization of Mu-Opioid Receptor Biased Agonists: Oliceridine, an Opioid Analgesic with Reduced Adverse Effects
    Current Pain and Headache Reports (2019) 23: 31 https://doi.org/10.1007/s11916-019-0773-1 HOT TOPICS IN PAIN AND HEADACHE (N. ROSEN, SECTION EDITOR) The Utilization of Mu-Opioid Receptor Biased Agonists: Oliceridine, an Opioid Analgesic with Reduced Adverse Effects Ivan Urits1 & Omar Viswanath2,3,4 & Vwaire Orhurhu1 & Kyle Gress5 & Karina Charipova5 & Alan D. Kaye6 & Anh Ngo1 Published online: 18 March 2019 # Springer Science+Business Media, LLC, part of Springer Nature 2019 Abstract Purpose of Review The purpose of this review is to summarize the current understanding of opioid pathways in mediating and/or modulating analgesia and adverse effects. Oliceridine is highlighted as a novel mu-opioid receptor agonist with selective activation of G protein and β-arrestin signaling pathways. Recent Findings Oliceridine (TRV130; [(3-methoxythiophen-2-yl)methyl]({2-[(9R)-9-(pyridin-2-yl)-6-oxaspiro[4.5]decan-9- yl]ethyl})amine) is a novel MOR agonist that selectively activates G protein and β-arrestin signaling pathways. A growing body of evidence suggests that compared to existing MOR agonists, Oliceridine and other G protein-selective modulators may produce therapeutic analgesic effects with reduced adverse effects. Summary Oliceridine provides analgesic benefits of a pure opioid agonist while limiting related adverse effects mediated through the β-arrestin pathway. Recent insights into the function and structure of G protein-coupled receptors has led to the development of novel analgesic therapies. Keywords Oliceridine . TRV130 . G protein-coupled receptors (GPCR) . Partial opioid agonists Introduction significant driver in an effort to develop novel opioid pharma- cotherapies with less adverse side effects.
    [Show full text]
  • Wednesday, June 12, 2019 4:00Pm
    Wednesday, June 12, 2019 4:00pm Oklahoma Health Care Authority 4345 N. Lincoln Blvd. Oklahoma City, OK 73105 The University of Oklahoma Health Sciences Center COLLEGE OF PHARMACY PHARMACY MANAGEMENT CONSULTANTS MEMORANDUM TO: Drug Utilization Review (DUR) Board Members FROM: Melissa Abbott, Pharm.D. SUBJECT: Packet Contents for DUR Board Meeting – June 12, 2019 DATE: June 5, 2019 Note: The DUR Board will meet at 4:00pm. The meeting will be held at 4345 N. Lincoln Blvd. Enclosed are the following items related to the June meeting. Material is arranged in order of the agenda. Call to Order Public Comment Forum Action Item – Approval of DUR Board Meeting Minutes – Appendix A Update on Medication Coverage Authorization Unit/Use of Angiotensin Converting Enzyme Inhibitor (ACEI)/ Angiotensin Receptor Blocker (ARB) Therapy in Patients with Diabetes and Hypertension (HTN) Mailing Update – Appendix B Action Item – Vote to Prior Authorize Aldurazyme® (Laronidase) and Naglazyme® (Galsulfase) – Appendix C Action Item – Vote to Prior Authorize Plenvu® [Polyethylene Glycol (PEG)-3350/Sodium Ascorbate/Sodium Sulfate/Ascorbic Acid/Sodium Chloride/Potassium Chloride] – Appendix D Action Item – Vote to Prior Authorize Consensi® (Amlodipine/Celecoxib) and Kapspargo™ Sprinkle [Metoprolol Succinate Extended-Release (ER)] – Appendix E Action Item – Vote to Update the Prior Authorization Criteria For H.P. Acthar® Gel (Repository Corticotropin Injection) – Appendix F Action Item – Vote to Prior Authorize Fulphila® (Pegfilgrastim-jmdb), Nivestym™ (Filgrastim-aafi),
    [Show full text]
  • State of the Art Opioid-Sparing Strategies for Post-Operative Pain in Adult Surgical Patients
    UC San Diego UC San Diego Previously Published Works Title State of the art opioid-sparing strategies for post-operative pain in adult surgical patients. Permalink https://escholarship.org/uc/item/3z9800kv Journal Expert opinion on pharmacotherapy, 20(8) ISSN 1465-6566 Authors Gabriel, Rodney A Swisher, Matthew W Sztain, Jacklynn F et al. Publication Date 2019-06-01 DOI 10.1080/14656566.2019.1583743 Peer reviewed eScholarship.org Powered by the California Digital Library University of California EXPERT OPINION ON PHARMACOTHERAPY https://doi.org/10.1080/14656566.2019.1583743 REVIEW State of the art opioid-sparing strategies for post-operative pain in adult surgical patients Rodney A. Gabriela,b,c, Matthew W. Swishera,c, Jacklynn F. Sztaina, Timothy J. Furnisha, Brian M. Ilfelda,c and Engy T. Saida aDepartment of Anesthesiology, Division of Regional Anesthesia and Acute Pain, University of California, San Diego, La Jolla, CA, USA; bDivision of Biomedical Informatics, University of California, San Diego, La Jolla, CA, USA; cOutcomes Research Consortium, Cleveland, OH, USA ABSTRACT ARTICLE HISTORY Introduction: There are various important implications associated with poorly controlled postoperative Received 17 October 2018 pain in the adult surgical patient – this includes cardiopulmonary complications, opioid-related side Accepted 13 February 2019 effects, unplanned hospital admissions, prolonged hospital stay, and the subsequent development of KEYWORDS chronic pain or opioid addiction. With the ongoing national opioid crisis, it is imperative that perio- Multimodal analgesia; acute perative providers implement pathways for surgical patients that reduce opioid requirements and pain- pain service; opioid; related complications. perioperative Areas covered: In this review, the authors discuss the components of a multimodal opioid-sparing analgesia pathway as it pertains to the perioperative environment.
    [Show full text]