Graeme T. Lloyd <[email protected]>

Total Page:16

File Type:pdf, Size:1020Kb

Graeme T. Lloyd <Graeme.Lloyd@Bristol.Ac.Uk> Can palaeobiogeography explain low rates of morphological evolution in ‘living fossil’ lungfish? Graeme T. Lloyd <[email protected]> n=124 Introduction Methods and Materials A B In a classic work Westoll (1949) used a character-taxon matrix to show that Aside from the inevitable addition of new taxa and refinements to the lungfish underwent rapid morphological evolution early in their history geological timescale since 1949 there are some significant flaws in No followed by an extended period of morphological stagnation (Figure 1): a Westoll’s method: 1) the ancestor is purely hypothetical, 2) a selective Change textbook example (literally) of evolution in a ‘living fossil’. Here I update suite of taxa was used, 3) error bars (missing data) constrain Contraction 45 Westoll’s method for use with cladistic datasets and place it in its correct interpretation, 4) a stratigraphically ordered ancestor-descendant 55.5 phylogenetic context. One proposed explanation for the existence of living sequence was assumed, and 5) reversal (character loss) wasn’t taken into fossils is geographic isolation in refugia, where lack of competition negates account. Although modern cladistic matrices are more inclusive and more Expansion the need for morphological change. Here this hypothesis is tested by often contain a real outgroup (answering points 1 and 2 above) missing 23.5 C comparing lungfish dispersal patterns during their rapid Devonian phase data is still a major issue. To overcome this the internal nodes (rather than with their slower post-Devonian phase of evolution. the taxa themselves) were scored as these are complete under a given phylogenetic hypothesis. Nodes were scored as the total number of Figure 4 The Devonian (rapid phase) of lungfish evolution (416 - 385.3Ma). A a palaeogeo- accumulated character changes between that node and the root. Here graphic map of the Early Devonian (source: www.scotese.com). B a pie-chart showing the relative proportion of branches that reflect range expansion, contraction or continuity (no DELTRAN was used as it dumps equivocal changes on the terminal change). C The long-snouted marine genus Griphognathus known from the Late Devonian branches (which aren’t used). Nodes were dated based on the stage of Europe and Australia. A B mid-point (using Gradstein et al., 2004) of the oldest taxon stemming from it. Here this method is applied to a ‘supermatrix’ (of 86 taxa and 132 morphological characters) based on six published cladistic analyses of lungfish interrrelationships. A B n=46 Palaeobiogeographic analysis involved assignment of each taxon to a geographic region, in this case modern continents. Despite lungfish No undergoing a change in habitat preference from marine to freshwater Change environments it is assumed that this didn’t significantly affect dispersal Contraction 16 patterns, especially as Mesozoic taxa are thought to have retained a 19.5 C tolerance to marine conditions (Schultze 2004). Ancestral distributions were then reconstructed using Fitch (1972) parsimony. Each branch was Expansion then classified as either: a) a range expansion (e.g. a change from an 10.5 Australasian distribution to an Australasian plus Asian distribution), b) a range contraction (e.g. a Eurasian distribution to an Asian distribution) or, Figure 1 A classic work in macroevolution. A Thomas Stanley Westoll (1912 - 1995) B The results of c) no change. Figure 5 The post-Devonian (slow phase) of lungfish evolution (385.3Ma - Pres- Westoll’s study of the evolution of the lungfish character complex. Sixteen dipnoan taxa (A - M) were ent). A a palaeogeographic map of the Permian (source: www.scotese.com). B a scored from 100 (primitive ancestor) to 0 (the extant Lepidosiren and Protopterus). The slope of the graph pie-chart showing the relative proportion of branches that reflect range expan- represents the rate of evolution, with the steep rapid phase contained within the Devonian. sion, contraction or continuity (no change). C The extant species Protopterus an- nectens known from modern day Africa. $EVONIAN POST $EVONIAN RAPIDPHASE SLOWPHASE !CCUMULATEDCHARACTERCHANGES Psarolepis [AS] Discussion AS Diabolepis [AS] Westollrhynchus [EU] The broad congruence between the results presented here and those of Westoll suggest either that the pattern AS,AU,EU Ichnomylax [AU] AU Chirodipterus onawayensis [NA] AU,EU AU,NA Dipnorhynchus cathlesae [AU] of two evolutionary tempos for lungfish is robust, and hence biologically real, or consistently biased, either by AU Dipnorhynchus kiandrensis [AU] Archaeonectes [EU] AU worker methodology or the fossil record. A more comprehensive discussion of the causes of this disparity is AU,EU Speonesydrion iani [AU] AU Dipnorhynchus sussmilchi [AU] AU Dipnorhynchus kurikae [AU] given elsewhere (Lloyd, in prep.). However, the results presented here present strong evidence that AU,EU,NA AU,EU Jessenia [EU] Uranolophus [NA] palaeobiogeographic processes do not impact on rates of lungfish evolution at all. Interestingly lungfish seem to Melanognathus [NA] NA Stomiahykus [NA] NA Tarachomylax [AS] show no retardation of dispersal ability following their transition from marine to freshwater environments, EU,NA AS,EU Dipterus valenciennesi [EU] Dipterus cf. valenciennesi [EU] EU although it seems likely that dispersal rates did drop off as the branches used in the post-Devonian phase Adalolopas [AU] AU,EU Adelargo [AU] represent larger spans of time. The three extant genera (Lepidosiren, Neoceratodus and Protopterus) are more AU AU Barwickia [AU] AU,EU Chirodipterus rhenanus [EU] Chirodipterus wildungensis [EU] AU closely related to each other than almost all of the extinct taxa and are now restricted to freshwater habitats in Chirodipterus australis [AU] AU,EU,NA Pillarhynchus [AU] AU,EU RAPIDPHASE Sorbitorhynchus [AS] the southern hemisphere (South America, Australia and Africa respectively). It seems probable that this shift AS,NA Iowadipterus [NA] $EVONIAN AS,AU,EU,NA AU Palaedaphus [EU,AS] towards a more endemic distribution, and the last intercontinental dispersal, didn’t occur until the Cretaceous AS Orlovichthys [AS] AS,NA Sunwapta [NA] AU,EU Rhinodipterus ulrichi [EU] period, some 200 million years after evolutionary rates dropped off dramatically. EU Rhinodipterus secans [EU] AS,EU Rhinodipterus stolbovi [AS] Eoctenodus [AU] 4IME-A AU,EU Gogodipterus [AU] AU,EU Grossipterus crassus [EU] Figure 3 The results of the application of the cladistic modification of Westoll’s (1949) original method. AU,EU Holodipterus santacrucensis [EU] AU Holodipterus elderae [AU] AU,EU Note the broad congruence with Westoll’s original results and the split between the two tempos of lungfish AU Holodipterus gogoensis [AU] AU Holodipterus longi [AU] evolution. (Open circles indicate freshwater habits and closed circles marine habits; grey lines describe Acknowledgements AU Holodipterus meemannae [AU] AU,EU the branching structure of the phylogeny in Figure 2). Howidipterus [AU] This work is part of my PhD project which was initially conceived by Oervigia [EU] Andreyevichthys [AS] EU Fleurantia [NA] my supervisors, Phil Donoghue and Mike Benton (both University of AU,EU AS,EU,NA Jarvikia [EU] EU,NA EU Soederberghia groenlandica [EU] Bristol) and is funded by a NERC studentship. Hans-Peter Schultze AU,EU Soederberghia simpsoni [AU] EU Rhynchodipterus [EU] EU EU Griphognathus minutidens [EU] Results (University of Kansas) kindly provided me with a copy of his unpub- EU Griphognathus sculpta [EU] AU,EU Griphognathus whitei [AU] A phylogenetic tree was derived from the ‘supermatrix’ (based first on parsi- lished lungfish matrix and Matt Friedman (University of Chicago) Phaneropleuron [EU] Delatitia [AU] EU Pentlandia [EU] mony analysis and then on stratigraphic ‘fit’) and ancestral distributions shared useful advice concerning the finer points of lungfish tax- AU,EU EU,NA Scaumenacia [NA] Straitonia [EU] added (Figure 2). Despite the various modifications made here the results for onomy. Leonard P. Annectens (Departmental Lungfish, University of EU EU,NA Tranodis [NA] Ctenodus [EU] EU Ganopristodus [EU] lungfish (Figure 3) are broadly congruent with Westoll’s original analysis Bristol: at right) is thanked for his contributions to my knowledge of EU EU Nielsenia [EU] EU Conchopoma [NA,EU] (Figure 1; note Westoll’s graph can be considered as ‘upside-down’ as he lungfish anatomy. Sandra Jasinoski and Sarda Sahney (both Uni- EU,NA Sagenodus [NA,EU] Palaeophichthys [NA] NA Megapleuron [NA,EU] was investigating a loss of primtive characters whereas here the focus is on versity of Bristol) gave useful advice on an earlier draft of this NA Paraceratodus [AF] Gosfordia [AU] POST $EVONIAN acquired characters). Using this data the tree was split into two parts ref- poster. Outstanding errors, the garish colour scheme and overuse AF,AS,EU,NA AU Archaeoceratodus [AU] AU Asiatoceratodus [AS] SLOWPHASE Neoceratodus [AU] electing the two evolutionary ‘tempos’ (a rapid Devonian phase and a much AF,AU AS,AU of drop shadows are solely attributable to the author. AU Mioceratodus [AU] AF,AU,SA Lepidosiren [SA] slower post-Devonian phase). The results here (Figures 4B and 5B) show AF,SA Protopterus [AF] AU Microceratodus [AF] Namatozodia [AU] that the slower phase actually reflects an increase in range expansion at the AF,AU AU Ariguna [AU] Figure 2 The phylogeny of lungfish used AF,AS,AU Beltanodus [AF] expense of both range contraction or continuity of range. However, a chi- AF,AS Parasagenodus [AS] here. Terminal taxa and internal nodes are AU AS Gnathoriza [NA,AS] References cited Ptychoceratodus [AF,AS,AU,EU] squared test shows that there is no significant difference (p 0.99-0.975) be- assigned to continents (AF = Africa, AS = AU Aphelodus [AU] FITCH, W. M., 1971. Towards defining the course of evolution: minimum change for a specific tree topology. Systematic Zoology, 20, 406-416. Ceratodus sturii [EU] AU tween the relative proportions of expansion, contraction and continutiy be- GRADSTEIN, F. M., J. G. OGG and A. G. SMITH, 2004. A Geologic Time Scale 2004. Cambridge University Press, Cambridge. Asia, AU = Australasia, EU = Europe, NA EU Ceratodus latissimus [EU] AS,AU,EU Ferganoceratodus [AS] SCHULTZE, H.-P., 2004.
Recommended publications
  • This Content Downloaded from 157.193.10.229 on Tue, 07 Jul
    This content downloaded from 157.193.10.229 on Tue, 07 Jul 2015 14:17:10 UTC All use subject to JSTOR Terms and Conditions CLEMENT and BOISVERT-DEVONIAN LUNGFISH FROM BELGIUM 277 tra. In addition to his incorrect taxonomic attribution, Lohest idae Berg, 1940 (including Fleurantia and Jarvikia); and Rhyn- misinterpreted the operculum as a scapula, the cleithrum as a chodipteridae Moy-Thomas, 1939 (including Rhynchodipterus, coracoid, and the E bone as an isolated rib (Fig. 2A, B). How- Griphognathus, and Soederberghia). Schultze (1993) defined the ever, he accurately identified a pleural rib (Fig. 2A, B). Rhynchodipteridae as including at least Soederberghia, Jarvikia, and Fleurantia. Later, Schultze (2001) presented a cladogram of SYSTEMATIC PALEONTOLOGY Devonian dipnoans that included a radiation of denticulated forms: Barwickia [Fleurantia + Rhynchodipteridae], in which included SARCOPTERYGII Romer, 1955 Rhynchodipteridae Griphognathus [Rhynchodipterus + The and affinities of the DIPNOMORPHA Ahlberg, 1991 [Soederberghia Jarvikia]]. monophyly DIPNOI 1845 Rhynchodipteridae have been reviewed by Ahlberg et al. (2001), Muiller, who that be unrelated RHYNCHODIPTERIDAE Moy-Thomas, 1939 tentatively suggested Griphognathus may to Rhynchodipterus and Soederberghia, but regarded Rhyncho- Remarks-Campbell and Barwick (1990) proposed that the dipterus and Soederberghia as most closely related to each other. denticulated lungfish lineage should be recognized as suborder However, Friedman (2003b) considered this suggestion prema- Uranolophina which incorporates four families: Uranolophidae ture and suggested that the Rhynchodipteridae, if defined as Miles, 1977; Holodontidae Gorizdro-Kulczycka, 1950; Fleuranti- including only Soederberghia, Rhynchodipterus, and Griphogna- FIGURE 2. Soederberghiasp. indet. Modave, Liege Province, Belgium, upper Famennian,Upper Devonian. Liege University, paleontology collection no. 5390a,b. A, no.
    [Show full text]
  • RESPIRATORY CONTROL in the LUNGFISH, NEOCERATODUS FORSTERI (KREFT) KJELL JOHANSEN, CLAUDE LENFANT and GORDON C
    Comp. Biochem. Physiol., 1967, Vol. 20, pp. 835-854 RESPIRATORY CONTROL IN THE LUNGFISH, NEOCERATODUS FORSTERI (KREFT) KJELL JOHANSEN, CLAUDE LENFANT and GORDON C. GRIGG Abstract-1. Respiratory control has been studied in the lungfish, Neoceratodus forsteri by measuring ventilation (Ve), oxygen uptake (VO2), per cent O2 extraction from water, breathing rates of branchial and aerial respiration and changes in blood gas and pulmonary gas composition during exposure to hypoxia and hypercarbia. 2. Hypoxic water represents a strong stimulus for compensatory increase in both branchial and aerial respiration. Water ventilation increases by a factor of 3 or 4 primarily as a result of increased depth of breathing. 3. The ventilation perfusion ratio decreased during hypoxia because of a marked increase in cardiac output. Hypoxia also increased the fraction of total blood flow perfusing the lung. Injection of nitrogen into the lung evoked no compensatory changes. 4. It is concluded that the chemoreceptors eliciting the compensatory changes are located on the external side facing the ambient water or in the efferent branchial blood vessels. 5. Elevated pCO2 in the ambient water depressed the branchial respiration but stimulated aerial respiration. 6. It is suggested that the primary regulatory effect of the response to increased ambient pCO2 is to prevent CO2 from entering the animal, while the secondary stimulation of air breathing is caused by hypoxic stimulation of chemoreceptors located in the efferent branchial vessels. INTRODUCTION I t i s generally accepted that vertebrates acquired functional lungs before they possessed a locomotor apparatus for invasion of a terrestrial environment. Shortage of oxygen in the environment is thought to have been the primary driving force behind the development of auxiliary air breathing.
    [Show full text]
  • Cambridge University Press 978-1-107-17944-8 — Evolution And
    Cambridge University Press 978-1-107-17944-8 — Evolution and Development of Fishes Edited by Zerina Johanson , Charlie Underwood , Martha Richter Index More Information Index abaxial muscle,33 Alizarin red, 110 arandaspids, 5, 61–62 abdominal muscles, 212 Alizarin red S whole mount staining, 127 Arandaspis, 5, 61, 69, 147 ability to repair fractures, 129 Allenypterus, 253 arcocentra, 192 Acanthodes, 14, 79, 83, 89–90, 104, 105–107, allometric growth, 129 Arctic char, 130 123, 152, 152, 156, 213, 221, 226 alveolar bone, 134 arcualia, 4, 49, 115, 146, 191, 206 Acanthodians, 3, 7, 13–15, 18, 23, 29, 63–65, Alx, 36, 47 areolar calcification, 114 68–69, 75, 79, 82, 84, 87–89, 91, 99, 102, Amdeh Formation, 61 areolar cartilage, 192 104–106, 114, 123, 148–149, 152–153, ameloblasts, 134 areolar mineralisation, 113 156, 160, 189, 192, 195, 198–199, 207, Amia, 154, 185, 190, 193, 258 Areyongalepis,7,64–65 213, 217–218, 220 ammocoete, 30, 40, 51, 56–57, 176, 206, 208, Argentina, 60–61, 67 Acanthodiformes, 14, 68 218 armoured agnathans, 150 Acanthodii, 152 amphiaspids, 5, 27 Arthrodira, 12, 24, 26, 28, 74, 82–84, 86, 194, Acanthomorpha, 20 amphibians, 1, 20, 150, 172, 180–182, 245, 248, 209, 222 Acanthostega, 22, 155–156, 255–258, 260 255–256 arthrodires, 7, 11–13, 22, 28, 71–72, 74–75, Acanthothoraci, 24, 74, 83 amphioxus, 49, 54–55, 124, 145, 155, 157, 159, 80–84, 152, 192, 207, 209, 212–213, 215, Acanthothoracida, 11 206, 224, 243–244, 249–250 219–220 acanthothoracids, 7, 12, 74, 81–82, 211, 215, Amphioxus, 120 Ascl,36 219 Amphystylic, 148 Asiaceratodus,21
    [Show full text]
  • Identifying Heterogeneity in Rates of Morphological Evolution: Discrete Character Change in the Evolution of Lungfish (Sarcopterygii; Dipnoi)
    ORIGINAL ARTICLE doi:10.1111/j.1558-5646.2011.01460.x IDENTIFYING HETEROGENEITY IN RATES OF MORPHOLOGICAL EVOLUTION: DISCRETE CHARACTER CHANGE IN THE EVOLUTION OF LUNGFISH (SARCOPTERYGII; DIPNOI) Graeme T. Lloyd,1,2 Steve C. Wang,3 and Stephen L. Brusatte4,5 1Department of Palaeontology, Natural History Museum, Cromwell Road, London SW7 5BD, United Kingdom 2E-mail: [email protected] 3Department of Mathematics and Statistics, Swarthmore College, Swarthmore, Pennsylvania 19081 4Division of Paleontology, American Museum of Natural History, Central Park West at 79th Street, New York, New York 10024 5Department of Earth and Environmental Sciences, Columbia University, New York, New York 10025 Received February 9, 2010 Accepted August 15, 2011 Data Archived: Dryad: doi:10.5061/dryad.pg46f Quantifying rates of morphological evolution is important in many macroevolutionary studies, and critical when assessing possible adaptive radiations and episodes of punctuated equilibrium in the fossil record. However, studies of morphological rates of change have lagged behind those on taxonomic diversification, and most authors have focused on continuous characters and quantifying patterns of morphological rates over time. Here, we provide a phylogenetic approach, using discrete characters and three statistical tests to determine points on a cladogram (branches or entire clades) that are characterized by significantly high or low rates of change. These methods include a randomization approach that identifies branches with significantly high rates and likelihood ratio tests that pinpoint either branches or clades that have significantly higher or lower rates than the pooled rate of the remainder of the tree. As a test case for these methods, we analyze a discrete character dataset of lungfish, which have long been regarded as “living fossils” due to an apparent slowdown in rates since the Devonian.
    [Show full text]
  • Morphology, Phylogeny, and Evolution of Diadectidae (Cotylosauria: Diadectomorpha)
    Morphology, Phylogeny, and Evolution of Diadectidae (Cotylosauria: Diadectomorpha) by Richard Kissel A thesis submitted in conformity with the requirements for the degree of doctor of philosophy Graduate Department of Ecology & Evolutionary Biology University of Toronto © Copyright by Richard Kissel 2010 Morphology, Phylogeny, and Evolution of Diadectidae (Cotylosauria: Diadectomorpha) Richard Kissel Doctor of Philosophy Graduate Department of Ecology & Evolutionary Biology University of Toronto 2010 Abstract Based on dental, cranial, and postcranial anatomy, members of the Permo-Carboniferous clade Diadectidae are generally regarded as the earliest tetrapods capable of processing high-fiber plant material; presented here is a review of diadectid morphology, phylogeny, taxonomy, and paleozoogeography. Phylogenetic analyses support the monophyly of Diadectidae within Diadectomorpha, the sister-group to Amniota, with Limnoscelis as the sister-taxon to Tseajaia + Diadectidae. Analysis of diadectid interrelationships of all known taxa for which adequate specimens and information are known—the first of its kind conducted—positions Ambedus pusillus as the sister-taxon to all other forms, with Diadectes sanmiguelensis, Orobates pabsti, Desmatodon hesperis, Diadectes absitus, and (Diadectes sideropelicus + Diadectes tenuitectes + Diasparactus zenos) representing progressively more derived taxa in a series of nested clades. In light of these results, it is recommended herein that the species Diadectes sanmiguelensis be referred to the new genus
    [Show full text]
  • 71St Annual Meeting Society of Vertebrate Paleontology Paris Las Vegas Las Vegas, Nevada, USA November 2 – 5, 2011 SESSION CONCURRENT SESSION CONCURRENT
    ISSN 1937-2809 online Journal of Supplement to the November 2011 Vertebrate Paleontology Vertebrate Society of Vertebrate Paleontology Society of Vertebrate 71st Annual Meeting Paleontology Society of Vertebrate Las Vegas Paris Nevada, USA Las Vegas, November 2 – 5, 2011 Program and Abstracts Society of Vertebrate Paleontology 71st Annual Meeting Program and Abstracts COMMITTEE MEETING ROOM POSTER SESSION/ CONCURRENT CONCURRENT SESSION EXHIBITS SESSION COMMITTEE MEETING ROOMS AUCTION EVENT REGISTRATION, CONCURRENT MERCHANDISE SESSION LOUNGE, EDUCATION & OUTREACH SPEAKER READY COMMITTEE MEETING POSTER SESSION ROOM ROOM SOCIETY OF VERTEBRATE PALEONTOLOGY ABSTRACTS OF PAPERS SEVENTY-FIRST ANNUAL MEETING PARIS LAS VEGAS HOTEL LAS VEGAS, NV, USA NOVEMBER 2–5, 2011 HOST COMMITTEE Stephen Rowland, Co-Chair; Aubrey Bonde, Co-Chair; Joshua Bonde; David Elliott; Lee Hall; Jerry Harris; Andrew Milner; Eric Roberts EXECUTIVE COMMITTEE Philip Currie, President; Blaire Van Valkenburgh, Past President; Catherine Forster, Vice President; Christopher Bell, Secretary; Ted Vlamis, Treasurer; Julia Clarke, Member at Large; Kristina Curry Rogers, Member at Large; Lars Werdelin, Member at Large SYMPOSIUM CONVENORS Roger B.J. Benson, Richard J. Butler, Nadia B. Fröbisch, Hans C.E. Larsson, Mark A. Loewen, Philip D. Mannion, Jim I. Mead, Eric M. Roberts, Scott D. Sampson, Eric D. Scott, Kathleen Springer PROGRAM COMMITTEE Jonathan Bloch, Co-Chair; Anjali Goswami, Co-Chair; Jason Anderson; Paul Barrett; Brian Beatty; Kerin Claeson; Kristina Curry Rogers; Ted Daeschler; David Evans; David Fox; Nadia B. Fröbisch; Christian Kammerer; Johannes Müller; Emily Rayfield; William Sanders; Bruce Shockey; Mary Silcox; Michelle Stocker; Rebecca Terry November 2011—PROGRAM AND ABSTRACTS 1 Members and Friends of the Society of Vertebrate Paleontology, The Host Committee cordially welcomes you to the 71st Annual Meeting of the Society of Vertebrate Paleontology in Las Vegas.
    [Show full text]
  • Geological Survey of Ohio
    GEOLOGICAL SURVEY OF OHIO. VOL. I.—PART II. PALÆONTOLOGY. SECTION II. DESCRIPTIONS OF FOSSIL FISHES. BY J. S. NEWBERRY. Digital version copyrighted ©2012 by Don Chesnut. THE CLASSIFICATION AND GEOLOGICAL DISTRIBUTION OF OUR FOSSIL FISHES. So little is generally known in regard to American fossil fishes, that I have thought the notes which I now give upon some of them would be more interesting and intelligible if those into whose hands they will fall could have a more comprehensive view of this branch of palæontology than they afford. I shall therefore preface the descriptions which follow with a few words on the geological distribution of our Palæozoic fishes, and on the relations which they sustain to fossil forms found in other countries, and to living fishes. This seems the more necessary, as no summary of what is known of our fossil fishes has ever been given, and the literature of the subject is so scattered through scientific journals and the proceedings of learned societies, as to be practically inaccessible to most of those who will be readers of this report. I. THE ZOOLOGICAL RELATIONS OF OUR FOSSIL FISHES. To the common observer, the class of Fishes seems to be well defined and quite distin ct from all the other groups o f vertebrate animals; but the comparative anatomist finds in certain unusual and aberrant forms peculiarities of structure which link the Fishes to the Invertebrates below and Amphibians above, in such a way as to render it difficult, if not impossible, to draw the lines sharply between these great groups.
    [Show full text]
  • Gondwana Vertebrate Faunas of India: Their Diversity and Intercontinental Relationships
    438 Article 438 by Saswati Bandyopadhyay1* and Sanghamitra Ray2 Gondwana Vertebrate Faunas of India: Their Diversity and Intercontinental Relationships 1Geological Studies Unit, Indian Statistical Institute, 203 B. T. Road, Kolkata 700108, India; email: [email protected] 2Department of Geology and Geophysics, Indian Institute of Technology, Kharagpur 721302, India; email: [email protected] *Corresponding author (Received : 23/12/2018; Revised accepted : 11/09/2019) https://doi.org/10.18814/epiiugs/2020/020028 The twelve Gondwanan stratigraphic horizons of many extant lineages, producing highly diverse terrestrial vertebrates India have yielded varied vertebrate fossils. The oldest in the vacant niches created throughout the world due to the end- Permian extinction event. Diapsids diversified rapidly by the Middle fossil record is the Endothiodon-dominated multitaxic Triassic in to many communities of continental tetrapods, whereas Kundaram fauna, which correlates the Kundaram the non-mammalian synapsids became a minor components for the Formation with several other coeval Late Permian remainder of the Mesozoic Era. The Gondwana basins of peninsular horizons of South Africa, Zambia, Tanzania, India (Fig. 1A) aptly exemplify the diverse vertebrate faunas found Mozambique, Malawi, Madagascar and Brazil. The from the Late Palaeozoic and Mesozoic. During the last few decades much emphasis was given on explorations and excavations of Permian-Triassic transition in India is marked by vertebrate fossils in these basins which have yielded many new fossil distinct taxonomic shift and faunal characteristics and vertebrates, significant both in numbers and diversity of genera, and represented by small-sized holdover fauna of the providing information on their taphonomy, taxonomy, phylogeny, Early Triassic Panchet and Kamthi fauna.
    [Show full text]
  • REPRINTED from KOOLEWONG Vol
    REPRINTED FROM KOOLEWONG Vol. 4, No. 2 The Lungfish-Creature from the Past by GORDON C. GRIGG The survivor from prehistoric times, the salmon-fleshed Queensland lungfish, may fall victim to agricultural destruction of its habitat. Along the more remote reaches of Queensland's Burnett River, particularly toward evening, it is easy to believe that prehistoric creatures exist in the still, dark pools. Yet despite the heavily primeval atmosphere of the river it has so far produced only one genuine survivor from prehistoric times-the Queensland lungfish, Neoceratodus forsteri. Dissection of a lungfish (above) reveals the structure of its single lung. The lungfish also has a set of gills and can breathe air or water at will. Photo by Gordon C. Grigg. Fossil evidence suggests that this fish has remained essentially unaltered by any evolutionary processes for at least the last 150 million years. The lungfish is a member of an extraordinary group of fishes, the Dipnoi, which have lungs as well as gills, allowing them to breathe air as well as water. Of the once widespread Dipnoan fish, only three survive today: Neoceratodus in Queensland, Protopterus in Africa and Lepidosiren in South America. Neoceratodus appears to be more primitive than its overseas cousins. It is the closest surviving relative of the fish from which the first land vertebrates, the labyrinthodonts, arose about 325 million years ago. This makes it of particular interest to zoologists. The Queensland lungfish inhabits waterholes in rivers where the channel widens, deepens and flows more slowly. During the day it remains on the bottom and can sometimes be seen in the shade of overhanging trees.
    [Show full text]
  • The Fishesof Uganda-I
    1'0 of the Pare (tagu vaIley.': __ THE FISHES OF UGANDA-I uku-BujukUf , high peaks' By P. H. GREENWOOD Fons Nilus'" East African Fisheries Research Organization ~xplorersof' . ;ton, Fresh_ CHAPTER I I\.bruzzi,Dr: knowledge : INTRODUCTION ~ss to it, the ,THE fishes of Uganda have been subject to considerable study. Apart from .h to take it many purely descriptive studies of the fishes themselves, three reports have . been published which deal with the ecology of the lakes in relation to fish and , fisheries (Worthington (1929a, 1932b): Graham (1929)).Much of the literature is scattered in various scientific journals, dating back to the early part of the ; century and is difficult to obtain iIi Uganda. The more recent reports also are out of print and virtually unobtainable. The purpose .of this present survey is to bring together the results of these many researches and to present, in the light of recent unpublished information, an account of the taxonomy and biology of the many fish species which are to be found in the lakes and rivers of Uganda. Particular attention has been paid to the provision of keys, so that most of the fishesmay be easily identified. It is hardly necessary to emphasize that our knowledge of the East African freshwater fishes is still in an early and exploratory stage of development. Much that has been written is known to be over-generalized, as conclusions were inevitably drawn from few and scattered observations or specimens. From the outset it must be stressed that the sections of this paper dealing with the classification and description of the fishes are in no sense a full tax- onomicrevision although many of the descriptions are based on larger samples than were previously available.
    [Show full text]
  • Protopterus Annectens (OWEN) in IDAH AREA of RIVER NIGER, NIGERIA
    Animal Research International (2010) 7(3): 1264 – 1266 1264 LENGTH-WEIGHT RELATIONSHIP AND CONDITION FACTOR OF Protopterus annectens (OWEN) IN IDAH AREA OF RIVER NIGER, NIGERIA ADEYEMI, Samuel Olusegun Department of Biological Sciences, Kogi State University, PMB 1008, Anyigba Email: [email protected] Phone: +234 8062221968 ABSTRACT A total of 62 samples of Protopterus annectens (Owen) were examined for this study from Idah area of River Niger between August and November 2008. The length-weight relationship calculated for species gave a b-value of 2.55 which is indicative of negative allometric growth. It attained a length of 59cm and weight of 397g. The condition factor varied from 0.23 to 0.76 with a mean of 0.39+0.08 and showed that the fish was well and in good environment for growth and survival. Keywords: Protopterus annectens, Allometric growth, Survival, Length-weight relationship, Condition INTRODUCTION factor of P. annectens in order to aid its management in the river. Fish found in tropical and sub-tropical water system experience frequency growth MATERIALS AND METHODS fluctuations due to changes in food composition, environmental variables and spawning Study Area: The study area is Idah area of conditions among others. Length-weight and River Niger in Idah Local Government Area of length-length relationships can be used to asses Kogi State, Nigeria. The river extends from the influence of these factors in fish. Kulbicki et Lokoja via Ajaokuta, Itobe to Idah. The river is al. (1993) and King (1996) reported that fish located on latitude 7007N and longitude 6044E. growth, mean weight at a given body length of The water temperature range between 220C and fish and the relative wellbeing in fish can be 310C, Idah has a tropical savannah climate with known through this relationship.
    [Show full text]
  • A Redescription of the Lungfish Eoctenodus Hills 1929, with Reassessment of Other Australian Records of the Genus Dipterns Sedgwick & Murchison 1828
    Ree. West. Aust. Mus. 1987, 13 (2): 297-314 A redescription of the lungfish Eoctenodus Hills 1929, with reassessment of other Australian records of the genus Dipterns Sedgwick & Murchison 1828. J.A. Long* Abstract Eoctenodus microsoma Hills 1929 (= Dipterus microsoma Hills, 1931) from the Frasnian Blue Range Formation, near Taggerty, Victoria, is found to be a valid genus, differing from Dipterus, and other dipnoans, by the shape of the parasphenoid and toothplates. The upper jaw toothp1ates and entopterygoids, parasphenoid, c1eithrum, anoc1eithrum and scales of Eoctenodus are described. Eoctenodus may represent the earliest member of the Ctenodontidae. Dipterus cf. D. digitatus. from the Late Devonian Gneudna Formation, Western Australia (Seddon, 1969), is assigned to Chirodipterus australis Miles 1977; and Dipterus sp. from the Late Devonian of Gingham Gap, New South Wales (Hills, 1936) is thought to be con­ generic with a dipnoan of similar age from the Hunter Siltstone, New South Wales. This form differs from Dipterus in the shape of the parasphenoid. The genus Dipterus appears to be restricted to the Middle-Upper Devonian of Europe, North America and the USSR (Laurasia). Introduction Although Hills (1929) recognised a new dipnoan, Eoctenodus microsoma, in the Late Devonian fish remains from the Blue Range Formation, near Taggerty, he later (Hills 1931) altered the generic status of this species after a study trip to Britain in which D,M.S. Watson pointed out similarities between the Australian form and the British genus Dipterus Sedgwick and Murchison 1828. Studies of the head of Dipterus by Westoll (1949) and White (1965) showed the structure of the palate and, in particular, the shape of the parasphenoid which differs from that in the Taggerty dipnoan.
    [Show full text]