What Is Driving the Melting of the Greenland Ice Sheet
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Safeguarding the Arctic Why the U.S
Safeguarding the Arctic Why the U.S. Must Lead in the High North By Cathleen Kelly and Miranda Peterson January 22, 2015 “As the United States assumes the Chairmanship of the Arctic Council, it is more important than ever that we have a coordinated national effort that takes advantage of our combined expertise and efforts in the Arctic region to promote our shared values and priorities.” — President Obama, Executive Order on Enhancing Coordination of National Efforts in the Arctic, January 21, 20151 While many Americans do not consider the United States to be an Arctic nation, Alaska—which constitutes 16 percent of the country’s landmass and sits on the Arctic Circle—puts the country solidly in that category.2 Consequently, it is with good reason that the United States has a seat on the Arctic Council. As Arctic warming accelerates, U.S. leadership in the High North is key not only to the public health and safety of Americans and other people in the region, but also to U.S. national security and the fate of the planet. In just three months, U.S. Secretary of State John Kerry will become chairman of the Arctic Council. The two-year position rotates among the eight Arctic nations3—Canada, Finland, Iceland, Norway, Russia, Sweden, the United States, and Denmark, including Greenland and the Faroe Islands—and is a powerful platform for shaping how the risks and opportunities of increasing commercial activity at the top of the world are managed. To ready the administration for Secretary Kerry’s turn to hold the Arctic Council gavel from 2015 to 2017, President Barack Obama recently issued an executive order to better coordinate national efforts in the Arctic.4 The executive order is the latest signal from the White House that President Obama and Secretary Kerry are focused on preparing the nation for dramatic changes in the Arctic and protecting U.S. -
Convective Mixing in the Central Irminger Sea 2002–2010
Deep-Sea Research I 63 (2012) 36–51 Contents lists available at SciVerse ScienceDirect Deep-Sea Research I journal homepage: www.elsevier.com/locate/dsri Convective mixing in the central Irminger Sea: 2002–2010 M. Femke de Jong b,n,1, Hendrik M. van Aken b, Kjetil Vage˚ c, Robert S. Pickart a a Woods Hole Oceanographic Institution, 266 Woods Hole Rd. MS# 21, Woods Hole, MA 02543-1050, USA b NIOZ Royal Netherlands Institute of Sea Research, Texel, The Netherlands c Geophysical Institute, University of Bergen, Bergen, Norway article info abstract Article history: A near-continuous time series of 8 years of daily hydrographic profiles, recorded between fall 2002 and Received 6 July 2011 summer 2010 by moorings located in the central Irminger Sea, is presented. This record shows that Received in revised form convective mixing down to 400 m depth occurs in most winters. Under favorable conditions, convective 5 January 2012 mixing is seen to reach much deeper. During the cold winter of 2007–2008 mixed layers reached Accepted 7 January 2012 depths of 1 km. In the subsequent, more moderate winter of 2008–2009, a stronger preconditioning of Available online 17 January 2012 the Irminger Gyre led to mixed layers down to 800 m depth. The convectively formed waters in the Keywords: Irminger Sea are more saline and warmer than those formed in the Labrador Sea, but potential vorticity Deep convection is reduced to 0.7 10À12 mÀ1 sÀ1 in March 2009. Following the local wintertime convection of Convective mixing 2007–2008, columns of relatively fresh water were seen to arrive in the Irminger Sea in spring 2008. -
Exceptional 20Th Century Glaciological Regime of a Major SE Greenland Outlet Glacier Received: 18 January 2017 Camilla S
www.nature.com/scientificreports OPEN Exceptional 20th century glaciological regime of a major SE Greenland outlet glacier Received: 18 January 2017 Camilla S. Andresen1, Ulla Kokfelt1, Marie-Alexandrine Sicre2, Mads Faurschou Knudsen3, Accepted: 21 September 2017 Laurence M. Dyke1, Vincent Klein2, Fanny Kaczmar2, Martin W. Miles4,5 & David Wangner1 Published: xx xx xxxx The early 2000s accelerated ice-mass loss from large outlet glaciers in W and SE Greenland has been linked to warming of the subpolar North Atlantic. To investigate the uniqueness of this event, we extend the record of glacier and ocean changes back 1700 years by analyzing a sediment core from Sermilik Fjord near Helheim Glacier in SE Greenland. We show that multidecadal to centennial increases in alkenone-inferred Atlantic Water SSTs on the shelf occurred at times of reduced solar activity during the Little Ice Age, when the subpolar gyre weakened and shifted westward promoted by atmospheric blocking events. Helheim Glacier responded to many of these episodes with increased calving, but despite earlier multidecadal warming episodes matching the 20th century high SSTs in magnitude, the glacier behaved diferently during the 20th century. We suggest the presence of a foating ice tongue since at least 300 AD lasting until 1900 AD followed by elevated 20th century glacier calving due to the loss of the tongue. We attribute this regime shift to 20th century unprecedented low sea-ice occurrence in the East Greenland Current and conclude that properties of this current are important for the stability of the present ice tongues in NE Greenland. In the last two decades there has been a rapid increase in the loss of ice from the Greenland Ice Sheet1. -
The East Greenland Spill Jet*
JUNE 2005 P I CKART ET AL. 1037 The East Greenland Spill Jet* ROBERT S. PICKART,DANIEL J. TORRES, AND PAULA S. FRATANTONI Woods Hole Oceanographic Institution, Woods Hole, Massachusetts (Manuscript received 6 July 2004, in final form 3 November 2004) ABSTRACT High-resolution hydrographic and velocity measurements across the East Greenland shelf break south of Denmark Strait have revealed an intense, narrow current banked against the upper continental slope. This is believed to be the result of dense water cascading over the shelf edge and entraining ambient water. The current has been named the East Greenland Spill Jet. It resides beneath the East Greenland/Irminger Current and transports roughly 2 Sverdrups of water equatorward. Strong vertical mixing occurs during the spilling, although the entrainment farther downstream is minimal. A vorticity analysis reveals that the increase in cyclonic relative vorticity within the jet is partly balanced by tilting vorticity, resulting in a sharp front in potential vorticity reminiscent of the Gulf Stream. The other components of the Irminger Sea boundary current system are described, including a presentation of absolute transports. 1. Introduction current system—one that is remarkably accurate even by today’s standards (see Fig. 1). The first detailed study of the circulation and water Since these early measurements there have been nu- masses south of Denmark Strait was carried out in the merous field programs that have focused on the hy- mid-nineteenth century by the Danish Admiral Carl drography and circulation of the East Greenland shelf Ludvig Christian Irminger, after whom the sea is and slope. This was driven originally, in part, by the named (Fiedler 2003). -
Natural Resources in the Nanortalik District
National Environmental Research Institute Ministry of the Environment Natural resources in the Nanortalik district An interview study on fishing, hunting and tourism in the area around the Nalunaq gold project NERI Technical Report No. 384 National Environmental Research Institute Ministry of the Environment Natural resources in the Nanortalik district An interview study on fishing, hunting and tourism in the area around the Nalunaq gold project NERI Technical Report No. 384 2001 Christain M. Glahder Department of Arctic Environment Data sheet Title: Natural resources in the Nanortalik district Subtitle: An interview study on fishing, hunting and tourism in the area around the Nalunaq gold project. Arktisk Miljø – Arctic Environment. Author: Christian M. Glahder Department: Department of Arctic Environment Serial title and no.: NERI Technical Report No. 384 Publisher: Ministry of Environment National Environmental Research Institute URL: http://www.dmu.dk Date of publication: December 2001 Referee: Peter Aastrup Greenlandic summary: Hans Kristian Olsen Photos & Figures: Christian M. Glahder Please cite as: Glahder, C. M. 2001. Natural resources in the Nanortalik district. An interview study on fishing, hunting and tourism in the area around the Nalunaq gold project. Na- tional Environmental Research Institute, Technical Report No. 384: 81 pp. Reproduction is permitted, provided the source is explicitly acknowledged. Abstract: The interview study was performed in the Nanortalik municipality, South Green- land, during March-April 2001. It is a part of an environmental baseline study done in relation to the Nalunaq gold project. 23 fishermen, hunters and others gave infor- mation on 11 fish species, Snow crap, Deep-sea prawn, five seal species, Polar bear, Minke whale and two bird species; moreover on gathering of mussels, seaweed etc., sheep farms, tourist localities and areas for recreation. -
Measures Greenland Ice Velocity: Selected Glacier Site Velocity Maps from Optical Images, Version 1
MEaSURES Greenland Ice Velocity: Selected Glacier Site Velocity Maps from Optical Images, Version 1 USER GUIDE How to Cite These Data As a condition of using these data, you must include a citation: Howat, I. 2016. MEaSURES Greenland Ice Velocity: Selected Glacier Site Velocity Maps from Optical Images, Version 1. [Indicate subset used]. Boulder, Colorado USA. NASA National Snow and Ice Data Center Distributed Active Archive Center. https://doi.org/10.5067/EYV1IP7MUNSV. [Date Accessed]. FOR QUESTIONS ABOUT THESE DATA, CONTACT [email protected] FOR CURRENT INFORMATION, VISIT https://nsidc.org/data/nsidc-0646 USER GUIDE: MEaSURES Greenland Ice Velocity: Selected Glacier Site Velocity Maps from Optical Images, Version 1 TABLE OF CONTENTS 1 DATA DESCRIPTION ................................................................................................................. 2 1.1 Parameters ............................................................................................................................................ 2 1.1.1 Parameter Description ................................................................................................................. 2 1.2 File Information ...................................................................................................................................... 2 1.2.1 Format.......................................................................................................................................... 2 1.2.2 Directory Structure ...................................................................................................................... -
The Need for Fast Near-Term Climate Mitigation to Slow Feedbacks and Tipping Points
The Need for Fast Near-Term Climate Mitigation to Slow Feedbacks and Tipping Points Critical Role of Short-lived Super Climate Pollutants in the Climate Emergency Background Note DRAFT: 27 September 2021 Institute for Governance Center for Human Rights and & Sustainable Development (IGSD) Environment (CHRE/CEDHA) Lead authors Durwood Zaelke, Romina Picolotti, Kristin Campbell, & Gabrielle Dreyfus Contributing authors Trina Thorbjornsen, Laura Bloomer, Blake Hite, Kiran Ghosh, & Daniel Taillant Acknowledgements We thank readers for comments that have allowed us to continue to update and improve this note. About the Institute for Governance & About the Center for Human Rights and Sustainable Development (IGSD) Environment (CHRE/CEDHA) IGSD’s mission is to promote just and Originally founded in 1999 in Argentina, the sustainable societies and to protect the Center for Human Rights and Environment environment by advancing the understanding, (CHRE or CEDHA by its Spanish acronym) development, and implementation of effective aims to build a more harmonious relationship and accountable systems of governance for between the environment and people. Its work sustainable development. centers on promoting greater access to justice and to guarantee human rights for victims of As part of its work, IGSD is pursuing “fast- environmental degradation, or due to the non- action” climate mitigation strategies that will sustainable management of natural resources, result in significant reductions of climate and to prevent future violations. To this end, emissions to limit temperature increase and other CHRE fosters the creation of public policy that climate impacts in the near-term. The focus is on promotes inclusive socially and environmentally strategies to reduce non-CO2 climate pollutants, sustainable development, through community protect sinks, and enhance urban albedo with participation, public interest litigation, smart surfaces, as a complement to cuts in CO2. -
Early 20Th Century Fluctuations of Greenland Glaciers
Was there a 1930's Meltdown of Greenland Glaciers? A Senior Thesis Submitted in partial fulfillment of the requirements for the degree of Bachelor of Science in Geological Sciences with research distinction at The Ohio State University Spring 2009 by Adam Herrington Project Advisor: Professor Jason E. Box, Department of Geography Table of Contents Abstract 2 Introduction 3 Data 4 Methods 4 Results and Discussions Land Terminating Glaciers 6 Marine Terminating Glaciers 7 Individual Marine Terminating Glacier Behavior 8 Harald Moltke Bræ 9 Upernavik Isstrøm 10 Jakobshavn Isbræ 10 Arsuk Glacier 11 Kargerdlugssuaq Glacier 12 Conclusions 12 Acknowledgements 13 References 13 Figures 18 Tables 23 1 Abstract Warming around Greenland (1994-2007) has been implicated in widespread glacier recession observed by satellite sensors. To better understand if the recent glacier behavior is abnormal, we use maps, photos, and documentary data from 20th century expedition reports to document if similar glacier response occurred during an analogous warm period beginning in the 1920s. Analyzed together with existing published data, I find that the years containing the greatest proportion of retreating land terminating glaciers over a 90 year record (1870-1960) were 1920-1940 and that of marine terminating glaciers were 1930-1950 over a 140 year record (1850-1990). Furthermore, four marine terminating length change records show rapid length changes concurrent with anomalously high annual air temperatures, all occurring between 1923 and 1946. Thus, the recent precisely-documented Greenland glacier recession can be regarded as a case of a highly sensitive system useful in indicating climate change. 2 Introduction It had been conventional thought among glaciologist that ice sheet sensitivity to climate operates only on time scales of centuries to millennia. -
Shifting Surface Currents in the Northern North Atlantic Ocean Sirpa
I, Source of Acquisition / NASA Goddard Space mght Center Shifting surface currents in the northern North Atlantic Ocean Sirpa Hakkinen (1) and Peter B. Rhines (2) (1) NASA Goddard Space Flight Center, Code 614.2, Greenbelt, RID 20771 (2) University of Washington, Seattle, PO Box 357940, WA 98195 Analysis of surface drifter tracks in the North Atlantic Ocean from the time period 1990 to 2006 provides the first evidence that the Gulf Stream waters can have direct pathways to the Nordic Seas. Prior to 2000, the drifters entering the channels leading to the Nordic Seas originated in the western and central subpolar region. Since 2001 several paths fiom the western subtropics have been present in the drifter tracks leading to the Rockall Trough through wfuch the most saline North Atlantic Waters pass to the Nordic Seas. Eddy kinetic energy fiom altimetry shows also the increased energy along the same paths as the drifters, These near surface changes have taken effect while the altimetry shows a continual weakening of the subpolar gyre. These findings highlight the changes in the vertical structure of the northern North Atlantic Ocean, its dynamics and exchanges with the higher latitudes, and show how pathways of the thermohaline circulation can open up and maintain or increase its intensity even as the basin-wide circulation spins down. Shifting surface currents in the northern North Atlantic Ocean Sirpa Hakkinen (1) and Peter B. Rhines (2) (1) NASA Goddard Space Flight Center, Code 614.2, Greenbelt, MD 20771 (2) University of Washington, Seattle, PO Box 357940, WA 98195 Inflows to the Nordic seas from the main North Atlantic pass through three routes: through the Rockall Trough to the Faroe-Shetland Channel, through the Iceland basin over the Iceland-Faroe Ridge and via the Irminger Current passing west of Iceland. -
Thermohaline Changes in the Irminger Sea
ICES 1999 ICES eM 1999IL:16 Theme Session L Nordic Seas Exchanges Thermohaline changes in the Irminger Sea by John Mortensen and Beainn Valdimarsson Marine Research Institute (MRI), Reykjavik 121 Reykjavik Skulagata4 Fax: +3545623790 e-mail: [email protected] e-mail: [email protected] Abstract The Inninger Sea is part of the Subpolar Gyre in the northwestern North Atlantic and plays a central role in the large-scale thennohaline overturning of Atlantic Water which is believed to influence the long-tenn changes of the climate system. In this area thennohaline changes are observed at almost all depth levels in the nineties. The most pronounced change is connected to the Modified North Atlantic Water (MNAW) where an overall increase of temperature and salinity were observed during the nineties. Time series from the Icelandic continental slope reveal that the recent onset of increasing temperatures took place in the winter 199511996 and was accompanied by a more pronounced salinity increase in late summer 1997. A historical comparison with nearby sections occupied in the early eighties and late nineties reveals that changes in the distribution of water masses have taken place recently. The reason is likely to be connected to the densification of the Labrador Sea Water (LSW) since the late eighties. The change is seen as a downward movement of the LSW core now occupying in the Inninger Sea the depth range of 1500 to 2100 m instead of 500 to 1200 m in e.g. 1981. The changes are observed as a freshening and cooling of the LSW. Keywords: Inninger Sea, thermohaline changes, Labrador Sea Water and Modified North Atlantic Water. -
Iron Biogeochemistry in the High Latitude North Atlantic Ocean Eric P
www.nature.com/scientificreports OPEN Iron Biogeochemistry in the High Latitude North Atlantic Ocean Eric P. Achterberg1,2, Sebastian Steigenberger1,3, Chris M. Marsay1,5, Frédéric A. C. LeMoigne2,3, Stuart C. Painter3, Alex R. Baker 4, Douglas P. Connelly3, C. Mark Moore1, 6 2 Received: 3 July 2017 Alessandro Tagliabue & Toste Tanhua Accepted: 2 January 2018 Iron (Fe) is an essential micronutrient for marine microbial organisms, and low supply controls Published: xx xx xxxx productivity in large parts of the world’s ocean. The high latitude North Atlantic is seasonally Fe limited, but Fe distributions and source strengths are poorly constrained. Surface ocean dissolved Fe (DFe) concentrations were low in the study region (<0.1 nM) in summer 2010, with signifcant perturbations during spring 2010 in the Iceland Basin as a result of an eruption of the Eyjafallajökull volcano (up to 2.5 nM DFe near Iceland) with biogeochemical consequences. Deep water concentrations in the vicinity of the Reykjanes Ridge system were infuenced by pronounced sediment resuspension, with indications for additional inputs by hydrothermal vents, with subsequent lateral transport of Fe and manganese plumes of up to 250–300 km. Particulate Fe formed the dominant pool, as evidenced by 4–17 fold higher total dissolvable Fe compared with DFe concentrations, and a dynamic exchange between the fractions appeared to bufer deep water DFe. Here we show that Fe supply associated with deep winter mixing (up to 103 nmol m−2 d−1) was at least ca. 4–10 times higher than atmospheric deposition, difusive fuxes at the base of the summer mixed layer, and horizontal surface ocean fuxes. -
Arctic Report Card 2018 Effects of Persistent Arctic Warming Continue to Mount
Arctic Report Card 2018 Effects of persistent Arctic warming continue to mount 2018 Headlines 2018 Headlines Video Executive Summary Effects of persistent Arctic warming continue Contacts to mount Vital Signs Surface Air Temperature Continued warming of the Arctic atmosphere Terrestrial Snow Cover and ocean are driving broad change in the Greenland Ice Sheet environmental system in predicted and, also, Sea Ice unexpected ways. New emerging threats Sea Surface Temperature are taking form and highlighting the level of Arctic Ocean Primary uncertainty in the breadth of environmental Productivity change that is to come. Tundra Greenness Other Indicators River Discharge Highlights Lake Ice • Surface air temperatures in the Arctic continued to warm at twice the rate relative to the rest of the globe. Arc- Migratory Tundra Caribou tic air temperatures for the past five years (2014-18) have exceeded all previous records since 1900. and Wild Reindeer • In the terrestrial system, atmospheric warming continued to drive broad, long-term trends in declining Frostbites terrestrial snow cover, melting of theGreenland Ice Sheet and lake ice, increasing summertime Arcticriver discharge, and the expansion and greening of Arctic tundravegetation . Clarity and Clouds • Despite increase of vegetation available for grazing, herd populations of caribou and wild reindeer across the Harmful Algal Blooms in the Arctic tundra have declined by nearly 50% over the last two decades. Arctic • In 2018 Arcticsea ice remained younger, thinner, and covered less area than in the past. The 12 lowest extents in Microplastics in the Marine the satellite record have occurred in the last 12 years. Realms of the Arctic • Pan-Arctic observations suggest a long-term decline in coastal landfast sea ice since measurements began in the Landfast Sea Ice in a 1970s, affecting this important platform for hunting, traveling, and coastal protection for local communities.