Clinical Implications of Minocycline Use in Acne Vulgaris: Focus on Antimicrobial and Anti-Inflammatory Properties James Q

Total Page:16

File Type:pdf, Size:1020Kb

Clinical Implications of Minocycline Use in Acne Vulgaris: Focus on Antimicrobial and Anti-Inflammatory Properties James Q BENCH TOP TO BEDSIDE Clinical Implications of Minocycline Use in Acne Vulgaris: Focus on Antimicrobial and Anti-inflammatory Properties James Q. Del Rosso, DO he decreased sensitivity of Propionibacterium acnes studies reporting decreased therapeutic responses and a to commonly used oral antibiotics has increased greater recognition of treatment failures among patients Tworldwide during the last 20 to 30 years. Depending identified with antibiotic-resistant P acnes strains.4-8 on the country involved and the specific antibiotic in ques- Literature review of the prevalence of antibiotic- tion, the prevalence of P acnes resistance ranges from 20% resistant P acnes and evaluation of MIC data for mul- to higher than 90%. Studies with P acnes isolates, which tiple oral antibiotics indicate that P acnes resistance measure minimum inhibitory concentrations (MICs) and has continued to be lowest overall with minocycline. degrees of prevalence of decreased antibiotic sensitivity, Additionally, the therapeutic benefit of minocycline and demonstrate that among all the antibiotics tested, resis- other tetracycline derivatives when used to treat inflam- tance to minocycline has beenCOS low. In addition, as withDERM matory dermatoses such as acne vulgaris appears to relate other tetracycline agents, minocycline exhibits multiple also to anti-inflammatory properties that are unrelated to anti-inflammatory properties, which, in addition to its antimicrobial activity. This article provides a historical antibiotic activity, appear to contribute to clinical efficacy review of P acnes antibiotic resistance and discusses anti- in the treatment of acne vulgaris. inflammatory properties of minocycline that appear to be In many countries, theDo most commonly Not used systemic of therapeuticCopy benefit in acne vulgaris. antibiotic treatments for acne vulgaris have been erythro- mycin, clindamycin, tetracycline, doxycycline, minocy- Historical Review of P acnes Resistance cline, and trimethoprim. During the last 20 to 30 years, to Antibiotics Used to Treat Acne there has been a growing recognition within the derma- In 1979, Crawford et al1 were the first to report tologic community that patterns of P acnes resistance to P acnes resistance to erythromycin and clindamycin, systemic antibiotic treatment are emerging and increasing averaging approximately 20% in 43 evaluated patients. worldwide. This perspective is based in part on studies Subsequently, in 1983, Leyden et al9 published findings showing that the prevalence of P acnes resistance ranges, from 75 patients with nonresponding or worsening acne depending on the antibiotic and the country, from as low receiving long-term antibiotic treatment and concluded as less than 5% for minocycline to 20% or higher (.90%) that P acnes resistance to tetracycline and erythromycin for many other antibiotics.1-3 It is further supported by was readily apparent. In 1988, Kurokawa et al10 evaluated 46 patients with acne who were treated with different antibiotics and com- Dr. Del Rosso is Clinical Associate Professor, Dermatology, University pared those results to historical observations for other of Nevada School of Medicine, Las Vegas; Clinical Associate Professor, individuals spanning a 15-year period. Using MIC data Dermatology, Touro University Nevada College of Osteopathic from different strains of P acnes, they determined that Medicine, Henderson; and Dermatology Residency Director, Valley P acnes resistance to erythromycin, tetracycline, and Hospital Medical Center, Las Vegas. clindamycin was evident, whereas resistance to minocy- Dr. Del Rosso is a consultant, speaker, and researcher for Allergan, cline was not. The widespread topical use of erythromy- Inc; Coria Laboratories; Galderma Laboratories, LP; Intendis cin may be a factor in the marked progressive emergence GmbH; Medicis Pharmaceutical Corporation; OrthoNeutrogena; of decreased sensitivity of P acnes strains to this agent. QLT Inc; Ranbaxy Pharmaceuticals Inc; SkinMedica, Inc; Stiefel Eady et al11 showed in 1993 that 178 patients with Laboratories, Inc; Triax Pharmaceuticals, LLC; and Warner Chilcott. acne harbored P acnes strains that were resistant to most VOL. 21 NO. 8 • AUGUST 2008 • Cosmetic Dermatology® 437 Copyright Cosmetic Dermatology 2010. No part of this publication may be reproduced, stored, or transmitted without the prior written permission of the Publisher. BENCH TOP TO BEDSIDE commonly used antibiotics. Altogether, 153 patients (86%) That same year, Ross et al17 published an evaluation demonstrated resistance to erythromycin or trimeth- of 73 different antibiotic-resistant P acnes strains isolated oprim. In addition, 61 of 178 patients (34%) harbored from patients in the United Kingdom, United States, strains of P acnes that were resistant to tetracycline and France, Germany, Australia, and Japan. Using break-point cross-resistant to doxycycline, whereas all patients were antibiotic concentrations for the initial screen with eryth- sensitive to minocycline. In the same year, Eady et al12 romycin and tetracycline, resistance was demonstrated evaluated MICs for 46 resistant strains and 19 sensitive for 35 of 73 strains (48%) and for 15 of 73 strains (21%) strains of P acnes isolated from patients with nonre- for erythromycin and tetracycline, respectively. Using sponding acne who were treated with tetracyclines. MIC these same isolates, the average MIC90 for minocycline data obtained for the resistant P acnes isolates showed (4 μg/mL) was half than that observed for doxycycline that minocycline was more active than tetracycline (8 μg/mL); 8 times lower than that observed for tetracy- or doxycycline. cline (32 μg/mL); 16 times lower than that observed for In 1995, Cunliffe5 reported that levels of P acnes resis- clindamycin (64 μg/mL); and at least 128 times less than tance to erythromycin and clindamycin were 72.5%; to that observed for erythromycin (~512 μg/mL). trimethoprim, 17.5%; to doxycycline and tetracycline, 35.6%; and to minocycline less than 1%. In 1998, Mechanisms of Antibiotic Resistance Cooper4 published his findings after reviewing 12 manu- On a cellular level, erythromycin, clindamycin, and tet- scripts that discussed P acnes antibiotic resistance. It was racycline bind to the ribosomal RNA (rRNA) of P acnes, concluded that the prevalence of P acnes resistance had blocking protein synthesis and disrupting crucial cellular increased from 20% in 1978 to 62% in 1996 and that processes.16 Resistance to these agents develops when resistance of P acnes to several commonly prescribed anti- point mutations take place within the bacterial rRNA, biotics such as erythromycin, clindamycin, tetracycline, most likely interfering with or compromising attachment and doxycycline was common,COS with a low prevalence ofDERM of these drugs to P acnes ribosomal subunits.16 It has also P acnes resistance to minocycline. been suggested that tet gene products cause ribosomal In 1998, Eady13 described a 6-year study with conformational changes, which may interfere with or 2853 outpatients, during which antibiotic resistance in cause dissociation of drug binding to ribosomes.18,19 patients with acne was evaluated. Based on MIC evalua- Employing tetracycline as a model, it has been shown tions for erythromycin,Do clindamycin, and Nottetracycline, it that aCopy point mutation in 16S rRNA of the small ribosomal was concluded that the prevalence of antibiotic-resistant subunit is responsible for resistance with P acnes.15,17 propionibacteria to these 3 antibiotics progressively rose The reason that minocycline has demonstrated over from 5% during 1991 to 60% in 1996. time the lowest level of P acnes resistance based on One year later in 1999, Kurokawa et al14 reported on evaluation of MICs and prevalence data is not com- the effects of various antimicrobial agents versus resistant pletely understood. Assuming that an attachment to the P acnes isolated from acne lesions. Results showed that ribosomal subunit of P acnes is necessary for inhibition resistance to erythromycin, clindamycin, tetracycline, of protein synthesis, minocycline may possess molecu- and doxycycline could be observed for several strains of lar structural properties that are less susceptible to the P acnes, whereas no strains were resistant to minocycline. P acnes resistance response. Comparative preferential bind- In 1998, Ross et al15 obtained 21 clinically resistant ing studies with tetracycline, doxycycline, and minocy- isolates of P acnes from the skin of patients with acne. cline to ribosomes from resistant P acnes could shed more Respective MIC ranges for tetracycline, doxycycline, and understanding on differences in resistance patterns. minocycline were 2 to 64 µg/mL, 1 to 32 μg/mL, and 0.25 to 4 μg/mL, respectively. Among the major agents Anti-inflammatory Properties of Minocycline used to treat acne vulgaris from the tetracycline antibiotic The lipophilic nature of minocycline is believed to result in category, minocycline was shown to be the most active its propensity for accumulation within the sebaceous fol- against resistant P acnes strains. licle.20-24 As a result, the drug is capable of exerting its anti- In 2001, Tan et al16 reported the MICs of resistant microbial effect against P acnes by reaching the target site of P acnes strains isolated from 150 patients. The profile of the disease. However, reduction of P acnes does not explain resistant strains was highest with erythromycin (11/13 all of the mechanisms whereby minocycline and other tetra- [85%]),
Recommended publications
  • The Role of Nanobiosensors in Therapeutic Drug Monitoring
    Journal of Personalized Medicine Review Personalized Medicine for Antibiotics: The Role of Nanobiosensors in Therapeutic Drug Monitoring Vivian Garzón 1, Rosa-Helena Bustos 2 and Daniel G. Pinacho 2,* 1 PhD Biosciences Program, Universidad de La Sabana, Chía 140013, Colombia; [email protected] 2 Therapeutical Evidence Group, Clinical Pharmacology, Universidad de La Sabana, Chía 140013, Colombia; [email protected] * Correspondence: [email protected]; Tel.: +57-1-8615555 (ext. 23309) Received: 21 August 2020; Accepted: 7 September 2020; Published: 25 September 2020 Abstract: Due to the high bacterial resistance to antibiotics (AB), it has become necessary to adjust the dose aimed at personalized medicine by means of therapeutic drug monitoring (TDM). TDM is a fundamental tool for measuring the concentration of drugs that have a limited or highly toxic dose in different body fluids, such as blood, plasma, serum, and urine, among others. Using different techniques that allow for the pharmacokinetic (PK) and pharmacodynamic (PD) analysis of the drug, TDM can reduce the risks inherent in treatment. Among these techniques, nanotechnology focused on biosensors, which are relevant due to their versatility, sensitivity, specificity, and low cost. They provide results in real time, using an element for biological recognition coupled to a signal transducer. This review describes recent advances in the quantification of AB using biosensors with a focus on TDM as a fundamental aspect of personalized medicine. Keywords: biosensors; therapeutic drug monitoring (TDM), antibiotic; personalized medicine 1. Introduction The discovery of antibiotics (AB) ushered in a new era of progress in controlling bacterial infections in human health, agriculture, and livestock [1] However, the use of AB has been challenged due to the appearance of multi-resistant bacteria (MDR), which have increased significantly in recent years due to AB mismanagement and have become a global public health problem [2].
    [Show full text]
  • Environmental Risk Assessment of Antibiotics: Investigations Into Cyanobacteria Interspecies Sensitivities and Establishing Appropriate Protection Limits
    Environmental Risk Assessment of Antibiotics: Investigations into Cyanobacteria Interspecies Sensitivities and Establishing Appropriate Protection Limits Submitted by Gareth Curtis Le Page to the University of Exeter as a thesis for the degree of Doctor of Philosophy in Biological Sciences In December 2018 This thesis is available for Library use on the understanding that it is copyright material and that no quotation from the thesis may be published without proper acknowledgement I certify that all material in this thesis which is not my own work has been identified and that no material has previously been submitted and approved for the award of a degree by this or any other University. Signature: …………………………………………………………...(Gareth Le Page) 1 Abstract Antibiotics have been described as a ‘wonder drug’ that have transformed medicine since their discovery at the beginning of the 20th century and are used globally in safeguarding human and animal health. Environmental risk assessment (ERA) aims to ensure their environmental safety by setting protection limits that seek to prevent adverse effects upon populations and ecosystem function. In the case of antibiotics however, there is concern that ERA may not be fully protective of bacterial populations. This thesis examines the ERA of antibiotics and highlights that protection limits may in some cases be under-protective or over-protective for bacteria populations (including cyanobacteria), depending on the antibiotic mode of action and the species on which the protection limit is based. The first section of the thesis contains a systematic review including a meta-analysis of all publically available aquatic ecotoxicity data. The results illustrate that generally bacteria are the most sensitive taxa to antibiotics compared with eukaryotes but that interspecies variability in sensitivity among bacteria can range by up to five orders of magnitude.
    [Show full text]
  • Structural Basis for Potent Inhibitory Activity of the Antibiotic Tigecycline During Protein Synthesis
    Structural basis for potent inhibitory activity of the antibiotic tigecycline during protein synthesis Lasse Jennera,b,1, Agata L. Starostac,1, Daniel S. Terryd,e, Aleksandra Mikolajkac, Liudmila Filonavaa,b,f, Marat Yusupova,b, Scott C. Blanchardd, Daniel N. Wilsonc,g,2, and Gulnara Yusupovaa,b,2 aInstitut de Génétique et de Biologie Moléculaire et Cellulaire, Institut National de la Santé et de la Recherche Médicale U964, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7104, 67404 Illkirch, France; bUniversité de Strasbourg, F-67084 Strasbourg, France; cGene Center and Department for Biochemistry, University of Munich, 81377 Munich, Germany; dDepartment of Physiology and Biophysics, Weill Medical College of Cornell University, New York, NY 10065; eTri-Institutional Training Program in Computational Biology and Medicine, New York, NY 10065; fMax Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany; and gCenter for Integrated Protein Science Munich, University of Munich, 81377 Munich, Germany Edited by Rachel Green, Johns Hopkins University, Baltimore, MD, and approved January 17, 2013 (received for review September 28, 2012) + Here we present an X-ray crystallography structure of the clinically C1054 via a coordinated Mg2 ion (Fig. 1 D and E), as reported relevant tigecycline antibiotic bound to the 70S ribosome. Our previously for tetracycline (2). In addition, ring A of tigecycline + structural and biochemical analysis indicate that the enhanced coordinates a second Mg2 ion to facilitate an indirect interaction potency of tigecycline results from a stacking interaction with with the phosphate-backbone of G966 in h31 (Fig. 1 C–E). We also nucleobase C1054 within the decoding site of the ribosome.
    [Show full text]
  • Treatment with Sub-Inhibitory Kanamycin Induces Adaptive Resistance to Aminoglycoside Antibiotics Via the Acrd Multidrug Efflux Pump in Escherichia Coli K-12
    Journal of Experimental Microbiology and Immunology (JEMI) Vol. 16: 11 – 16 Copyright © April 2012, M&I UBC Treatment with Sub-inhibitory Kanamycin Induces Adaptive Resistance to Aminoglycoside Antibiotics via the AcrD Multidrug Efflux Pump in Escherichia coli K-12 Kiran Sidhu, Martha Talbot, Kirstin Van Mil, and Meghan Verstraete Department of Microbiology & Immunology, University of British Columbia Research has shown that exposing Escherichia coli cells to sub-inhibitory concentrations of kanamycin induces adaptive resistance upon subsequent exposure to lethal levels of both structurally-similar and unrelated antibiotics. AcrD is an efflux pump that forms a complex with the outer membrane pore TolC and the periplasmic membrane fusion protein AcrA. Together, this complex works to export a variety of aminoglycosides and amphiphilic compounds from the cell. The involvement of AcrD in the observed adaptive resistance was assessed by comparing the induction of adaptive resistance upon exposure to kanamycin in wild- type and acrD-deficient Escherichia coli strains. Both strains were pretreated with sub- inhibitory concentrations of kanamycin and subsequently exposed to lethal concentrations of ampicillin, kanamycin, nalidixic acid, streptomycin, and tetracycline. Growth was monitored over 18 hours via optical density readings. Comparing the relative growth of the different treatments revealed that adaptive resistance was only induced in the wild-type strain towards kanamycin and streptomycin. This indicates that AcrD is necessary for the induced adaptive resistance and that it is specific to aminoglycosides. Additionally, molecular techniques were used to assess the level of expression of acrA, which was found to be upregulated in both the wild-type and acrD deletion strains following pretreatment with kanamycin.
    [Show full text]
  • Tetracyclines, Oral Therapeutic Class Review (TCR)
    Tetracyclines, Oral Therapeutic Class Review (TCR) September 1, 2019 No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, digital scanning, or via any information storage or retrieval system without the express written consent of Magellan Rx Management. All requests for permission should be mailed to: Magellan Rx Management Attention: Legal Department 6950 Columbia Gateway Drive Columbia, Maryland 21046 The materials contained herein represent the opinions of the collective authors and editors and should not be construed to be the official representation of any professional organization or group, any state Pharmacy and Therapeutics committee, any state Medicaid Agency, or any other clinical committee. This material is not intended to be relied upon as medical advice for specific medical cases and nothing contained herein should be relied upon by any patient, medical professional or layperson seeking information about a specific course of treatment for a specific medical condition. All readers of this material are responsible for independently obtaining medical advice and guidance from their own physician and/or other medical professional in regard to the best course of treatment for their specific medical condition. This publication, inclusive of all forms contained herein, is intended to be educational in nature and is intended to be used for informational purposes only. Send comments and suggestions to [email protected]. September
    [Show full text]
  • Norm Norm-Vet 2013
    2O13 NORM NORM-VET Usage of Antimicrobial Agents and Occurrence of Antimicrobial Resistance in Norway DESIGN, FORSIDE: IDA SKAAR IDA FORSIDE: DESIGN, – SVANEGODKJENT TRYKKSAK – 241 762 241 – TRYKKSAK SVANEGODKJENT – ISSN: 1502-2307 (print) / 1890-9965 (electronic) AS MEDIA LUNDBLAD 2013 NORM NORM-VET Usage of Antimicrobial Agents and Occurrence of Antimicrobial Resistance in Norway ISSN: 1502-2307 (print) / 1890-9965 (electronic) Any use of data from NORM/NORM-VET 2013 should include specific reference to this report. Suggested citation: NORM/NORM-VET 2013. Usage of Antimicrobial Agents and Occurrence of Antimicrobial Resistance in Norway. Tromsø / Oslo 2014. ISSN:1502-2307 (print) / 1890-9965 (electronic). This report is available at www.vetinst.no and www.antibiotikaresistens.no 1 NORM / NORM-VET 2013 CONTRIBUTORS AND PARTICIPANTS Editors: Gunnar Skov Simonsen NORM, Univ. Hosp. of North Norway Anne Margrete Urdahl NORM-VET, Norwegian Veterinary Institute Authors: Cecilie Torp Andersen Candida spp. [email protected] Oslo Univ. Hosp. Trude Margrete Arnesen Tuberculosis [email protected] Norw. Inst. of Pub. Health Hege Salvesen Blix Antibiotic usage in humans [email protected] Norw. Inst. of Pub. Health Dominique Caugant Meningococci [email protected] Norw. Inst. of Pub. Health Petter Elstrøm MRSA [email protected] Norw. Inst. of Pub. Health Kari Grave Antibiotic usage in animals [email protected] Norw. Vet. Inst. Ina Haagensen Enteropathogenic bacteria from humans [email protected] Norw. Inst. of Pub. Health Kjersti Wik Larssen MRSA [email protected] St. Olav Univ. Hosp. Madelaine Norström Bacteria from animals [email protected] Norw.
    [Show full text]
  • The Effect of Kanamycin and Tetracycline on Growth and Photosynthetic Activity of Two Chlorophyte Algae
    Hindawi Publishing Corporation BioMed Research International Volume 2016, Article ID 5656304, 8 pages http://dx.doi.org/10.1155/2016/5656304 Research Article The Effect of Kanamycin and Tetracycline on Growth and Photosynthetic Activity of Two Chlorophyte Algae Khawaja Muhammad Imran Bashir and Man-Gi Cho Department of Biotechnology, Division of Energy and Bioengineering, Dongseo University, Busan, Republic of Korea Correspondence should be addressed to Man-Gi Cho; [email protected] Received 20 April 2016; Revised 22 July 2016; Accepted 26 July 2016 Academic Editor: Jinsong Ren Copyright © 2016 K. M. I. Bashir and M.-G. Cho. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Antibiotics are routinely used in microalgae culture screening, stock culture maintenance, and genetic transformation. By studying the effect of antibiotics on microalgae growth, we can estimate the least value to inhibit growth of undesired pathogens inalgal culture. We studied the effect of kanamycin and tetracycline on the growth and photosynthetic activity of two chlorophyte −1 microalgae, Dictyosphaerium pulchellum and Micractinium pusillum. We measured CFU mL on agar plates, optical density, fluorescence yields, and photosynthetic inhibition. Our results showed a significant effectof kan and tet on the tested microalgae species except tet, which showed a minor effect on M. pusillum. Both antibiotics are believed to interact with the protein synthesis machinery; hence, the inhibitory effect of the tested antibiotics was further confirmed by isolation and quantification of thewhole −1 cell protein. A significant reduction in protein quantity was observed at concentrations more than 5mgL , except M.
    [Show full text]
  • Options for a Strategic Approach to Pharmaceuticals in the Environment
    Options for a strategic approach to pharmaceuticals in the environment Task 1 Report Revised version September 2016 Since 26 June 2013 the legal entity BIO Intelligence Service is a 100% owned subsidiary of Société Fiduciaire Internationale d’Audit which is owned by Deloitte. Document information CLIENT European Commission – DG ENV REPORT TITLE Task 1 report – Revised version PROJECT NAME Options for a strategic approach to pharmaceuticals in the environment DATE September 2016 PROJECT TEAM Deloitte, INERIS, Klaus Kümmerer, LSE, Milieu Ltd AUTHORS Ms Sarah Lockwood, Deloitte Ms Nada Saïdi, Deloitte Ms Valerie Ann Morgan, Deloitte REVIEWERS Ms Katherine Salès, Deloitte Ms Florence Didier-Noaro, Deloitte Mr Sébastien Soleille, Deloitte Mr Klaus Kümmerer Mr Tony Zamparutti, Milieu Ltd. Ms Yoline Kuipers, Milieu Ltd. Ms Sandrine Andres, INERIS DISCLAIMER The information and views set out in this report are those of the author(s) and do not necessarily reflect the official opinion of the Commission. The Commission does not guarantee the accuracy of the data included in this study. Neither the Commission nor any person acting on the Commission’s behalf may be held responsible for the use which may be made of the information contained therein. 2 Options for a strategic approach to pharmaceuticals in the environment – Task 1 Report Contents 1. INTRODUCTION ________________________________________________________ 7 1.1. Background to the study _________________________________________________ 7 1.2. Objectives of the study and of this report ___________________________________ 8 1.3. Objectives of this report _________________________________________________ 8 2. SETTING THE SCENE: THE PRODUCTION AND CONSUMPTION OF PHARMACEUTICALS IN THE EU ___________________________________________________________ 11 2.1. The EU pharmaceutical industry in figures _________________________________ 12 2.2.
    [Show full text]
  • Treatment Options for Mrsa Infections
    TREATMENT OPTIONS FOR MRSA INFECTIONS Arjana© Tambic by author Andrasevic University Hospital for Infectious Diseases ESCMID OnlineZagreb, Lecture Croatia Library © by author ESCMID Online Lecture Library Managing MRSA Infection in Europe – Opinions and Practice An Interactive Workshop © by author ESCMIDECCMID, Online Helsinki Lecture Library 18 May, 2009 Which is the most frequent infection caused by MRSA in your practice? Pneumonia Expert Panel (N = 13) ECCMID Delegates (N = 415) Osteomyelitis Bloodstream © by author SkinESCMID and soft Online Lecture Library tissue 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100% ECCMID 2009 Which is the Most Common Focus of MRSA Bloodstream Infections in Your Practice? 5.5% BJI ECCMID Delegates (N = 400) 29.5% SSTI Urinary catheters (3.0%) 49.0% Bone/joint (5.5%) IV/vascular lines © by author Skin and soft tissue (29.5%) Respiratory tract (13.0%) ESCMID Online Lecture LibraryIV/vascular lines (49.0%) 13% Respiratory tract ECCMID 2009 Should All Patients With a Clinical Suspicion of HCAP/HAP/VAP Be Treated With an Antimicrobial Agent Active Against MRSA? Expert Panel (n = 13) ECCMID Delegates (n = 321) 30.8% 19.9% Yes Yes © by author 69.2% 80.1% No ESCMID Online LectureNo Library 0% 50% 100% 0% 50% 100% ECCMID 2009 If the Answer to the Previous Question is NO, Then Which Categories of Patients With a Clinical Suspicion of HCAP/HAP/VAP Should Be Treated With an Antimicrobial Agent Active Against MRSA? (choose all that apply) Patients previously identified as colonised or infected by MRSA ECCMID Delegates (n = 267) Patients with prior hospitalisation in high-risk settings such as nursing homes with high (> 20%) local MRSA Expert Panel (n = 13) prevalance Patients with the late-onset infection and/or prior antimicrobial treatment when ICU MRSA prevalence is high (>20%) Patients with MRSA present in the© nasopharynx by author All of the above.
    [Show full text]
  • Antimicrobial Resistance and Reduced Susceptibility in Clostridium Difficile: Potential Consequences for Induction, Treatment, and Recurrence of C
    Antibiotics 2015, 4, 267-298; doi:10.3390/antibiotics4030267 OPEN ACCESS antibiotics ISSN 2079-6382 www.mdpi.com/journal/antibiotics Review Antimicrobial Resistance and Reduced Susceptibility in Clostridium difficile: Potential Consequences for Induction, Treatment, and Recurrence of C. difficile Infection Simon D. Baines 1,* and Mark H. Wilcox 2,3 1 Department of Biological and Environmental Sciences, School of Life and Medical Sciences, University of Hertfordshire, Hatfield AL10 9AB, UK 2 Leeds Institute of Biomedical and Clinical Sciences, Faculty of Medicine and Health, University of Leeds, Leeds LS2 9JT, UK; E-Mail: [email protected] 3 Department of Microbiology, Leeds Teaching Hospitals NHS Trust, The General Infirmary, Leeds LS1 3EX, UK * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +44-1706-284-549. Academic Editor: Yung-Fu Chang Received: 31 May 2015 / Accepted: 3 July 2015 / Published: 10 July 2015 Abstract: Clostridium difficile infection (CDI) remains a substantial burden on healthcare systems and is likely to remain so given our reliance on antimicrobial therapies to treat bacterial infections, especially in an aging population in whom multiple co-morbidities are common. Antimicrobial agents are a key component in the aetiology of CDI, both in the establishment of the infection and also in its treatment. The purpose of this review is to summarise the role of antimicrobial agents in primary and recurrent CDI; assessing why certain antimicrobial classes may predispose to the induction of CDI according to a balance between antimicrobial activity against the gut microflora and C. difficile. Considering these aspects of CDI is important in both the prevention of the infection and in the development of new antimicrobial treatments.
    [Show full text]
  • Escherichia Coli and Antibiotic Resistance to Tetracycline Antibiotics
    E. coli Antibiotic Resistance 1 E. COLI ANTIBIOTIC RESISTANCE Escherichia coli and Antibiotic Resistance to Tetracycline Antibiotics Taylor Dodgen A Senior Thesis submitted in partial fulfillment of the requirements for graduation in the Honors Program Liberty University Spring 2008 E. coli Antibiotic Resistance 2 Acceptance of Senior Honors Thesis This Senior Honors Thesis is accepted in partial fulfillment of the requirements for graduation from the Honors Program of Liberty University. ______________________________ Randall Hubbard Ph.D. Chair of Thesis ______________________________ Marcus Ross Ph.D. Committee Member ______________________________ Mark Hamilton Ph.D. Committee Member ______________________________ Marilyn Gadomski, Ph.D. Assistant Honors Director ______________________________ Date E. coli Antibiotic Resistance 3 Abstract Escherichia coli cells growing under ideal conditions are able to complete one reproduction cycle in as little as every twenty minutes. Since so many generations are able to be observed, one should theoretically be able to observe thousands of generations and determine evolution’s effects over a short period of time. In this experiment, E. coli K12 cells were cultured under ideal growth conditions but in the presence of antibiotics as a selective environmental stress in order to select for resistance. This was accomplished by serially passing colonies that were in close contact with two different, but similar antibiotics over a period of more than 4,000 generations. The goal was to improve research in the antibiotic sensitivity properties of E. coli and to determine if the data are in agreement with the theory that bacteria or other species will accumulate new phenotypic traits via development of genotypic changes that will enhance the survival of the organism, especially under selective pressure (e.g.
    [Show full text]
  • MINOCIN (Minocycline Hydrochloride) Oral Suspension
    MINOCIN (minocycline hydrochloride) Oral Suspension Rx only To reduce the development of drug-resistant bacteria and maintain the effectiveness of MINOCIN® Oral Suspension and other antibacterial drugs, MINOCIN® Oral Suspension should be used only to treat or prevent infections that are proven or strongly suspected to be caused by bacteria. DESCRIPTION MINOCIN® minocycline hydrochloride, is a semisynthetic derivative of tetracycline, 4,7­ Bis(dimethylamino)-1,4,4a,5,5a,6,11,12a-octahydro-3,10,12,12a-tetrahydroxy-1,11-dioxo-2­ naphthacenecarboxamide monohydrochloride. Its structural formula is: C23 H27 N3O7•HCl M.W. 493.94 MINOCIN® Oral Suspension contains of minocycline HCl equivalent to 50 mg of minocycline per 5 mL (10 mg/mL) and the following inactive ingredients: Alcohol, Butylparaben, Calcium Hydroxide, Cellulose, Decaglyceryl Tetraoleate, Edetate Calcium Disodium, Guar Gum, Polysorbate 80, Propylparaben, Propylene Glycol, Sodium Saccharin, Sodium Sulfite (see WARNINGS) and Sorbitol. CLINICAL PHARMACOLOGY Following a single dose of two 100 mg minocycline HCl powder-filled capsules administered to ten normal adult volunteers, serum levels ranged from 0.74 to 4.45 µg/mL in 1 hour (average 2.24); after 12 hours they ranged from 0.34 to 2.36 µg/mL (average 1.25). The serum half-life following a single 200 mg dose in 12 essentially normal volunteers ranged from 11 to 17 hours. In seven patients with hepatic dysfunction it ranged from 11 to 16 hours, and in 5 patients with renal dysfunction it ranged from 18 to 69 hours. The urinary and fecal recovery of minocycline when administered to 12 normal volunteers was one-half to one-third that of other tetracyclines.
    [Show full text]