Species Status Assessment Report for the Purple Lilliput (Toxolasma Lividum)

Total Page:16

File Type:pdf, Size:1020Kb

Species Status Assessment Report for the Purple Lilliput (Toxolasma Lividum) Species Status Assessment Report for the Purple Lilliput (Toxolasma lividum) Photo credit: The Mussel Project February 2020 Version 1.0 U.S. Fish and Wildlife Service South Atlantic-Gulf Atlanta, GA Primary Contributors • Andrew Henderson - Asheville Field Office, Lead Biologist (Legacy Region 4) • Heidi Crowell - Pacific Southwest Regional Office, SAT Project Manager (Legacy Region 8) • Gary Peeples - Asheville Field Office (Legacy Region 4) • Josh Hundley - Missouri Field Office (Legacy Region 3) • David Martinez - Oklahoma Field Office (Legacy Region 2) Peer Reviewer • Dr. Wendell Haag (U.S. Forest Service) Contributors & Partner Agency Reviewers (underlined) • Rose Agbalog, Angela Boyer, Bob Butler (retired), Stephanie Chance, Chris Davidson, Andy Ford, Leroy Koch (retired) (U.S. Fish & Wildlife Service) • Chuck Howard, Tim Keeling (Tennessee Valley Authority) • Kendall Moles (Arkansas Game and Fish Commission) • Peter Badra, Rebecca Rogers (Michigan Natural Features Inventory) • Stephanie Williams (Tennessee Department of Environment and Conservation) • Jeff Grabarkiewicz (Michigan Department of Transportation) • Dr. Arthur Bogan, Jamie Smith (North Carolina Museum of Natural Sciences) • Jeremy Tiemann, Rachel Vinsel, Kevin Cummings (Illinois Natural History Survey) • Heidi Dunn, Emily Grossman (Ecological Specialists, Inc.) • Brian Watson, Karen Horodysky (Virginia Department of Game and Inland Fisheries) • Dr. Paul Johnson, Jeff Garner, Michael Buntin, Todd Fobian, Ashley Peters (Alabama Department of Conservation and Natural Resources) • Gerry Dinkins (University of Tennessee McClung Museum) • Greg Zimmermann (EnviroScience, Inc.) • Steve McMurray (Missouri Department of Conservation) • Mike Compton, Ian Horn (Kentucky State Nature Preserves Commission) • Chad Lewis, Clarissa Lawliss (Lewis Environmental Consulting) • Debbie Wolschki (Ohio Natural Heritage Program) • Brant Fisher (Indiana Department of Natural Resources) • Dr. Monte McGregor, Keith Wethington (Kentucky Department of Fish and Wildlife Resources) • Stuart McGregor (Geological Survey of Alabama) • Don Hubbs (Tennessee Wildlife Resources Agency) iii SUGGESTED CITATION: U.S. Fish and Wildlife Service (Service). 2020. Species Status Assessment Report for the Purple Lilliput Mussel (Toxolasma lividum), Version 1.0. Asheville Ecological Services Field Office, Asheville, North Carolina. iv TABLE OF CONTENTS ACRONYMS .............................................................................................................................. viii EXECUTIVE SUMMARY .......................................................................................................... ix CHAPTER 1 - INTRODUCTION ............................................................................................. 13 1.1 Purpose of SSA .................................................................................................................. 13 1.2 Species Basics - Taxonomy and Evolution ...................................................................... 13 1.2.1 Taxonomy ................................................................................................................... 15 1.3 Petition History ................................................................................................................. 15 1.4 State Listing Status ........................................................................................................... 16 CHAPTER 2 - METHODOLOGY AND DATA...................................................................... 17 2.1 SSA Framework ................................................................................................................ 17 2.1.1 Species Needs .............................................................................................................. 17 2.1.2 Current Species Condition ........................................................................................ 18 2.1.3 Future Species Condition .......................................................................................... 20 CHAPTER 3 - SPECIES BACKGROUND AND ECOLOGY............................................... 21 3.1 Physical Description.......................................................................................................... 21 3.2 Genetics .............................................................................................................................. 22 3.3 Life History ........................................................................................................................ 22 3.4 Reproduction ..................................................................................................................... 23 CHAPTER 4 - RESOURCE NEEDS ........................................................................................ 25 4.1 Individual-level Resource Needs ...................................................................................... 25 4.1.1 Suitable Aquatic Habitats ......................................................................................... 26 4.1.2 Appropriate Water Quality and Temperatures ...................................................... 27 4.1.3 Food and Nutrients .................................................................................................... 28 4.2 Population- and Species-level Needs ............................................................................... 28 4.2.1 Connectivity of Aquatic Habitat ............................................................................... 28 4.2.2 Dispersal-Adult Abundance and Distribution......................................................... 28 4.2.3 Host Fish ..................................................................................................................... 29 4.3 Uncertainties ...................................................................................................................... 29 v 4.4 Summary of Resource Needs ........................................................................................... 30 CHAPTER 5 - CURRENT CONDITIONS, ABUNDANCE AND DISTRIBUTION .......... 31 5.1 Historical Conditions For Context .................................................................................. 32 5.2 Current Population Abundance, Trends, and Distribution .......................................... 33 5.3 Estimated Viability of Purple Lilliput Mussel Based on Current Conditions ............ 36 5.3.1 Resiliency .................................................................................................................... 36 5.3.2 Representation............................................................................................................ 45 5.3.3 Redundancy ................................................................................................................ 45 5.4 Uncertainties of Current Condition ................................................................................ 46 CHAPTER 6 - FACTORS INFLUENCING VIABILITY ...................................................... 46 6.1 Habitat Degradation or Loss ........................................................................................... 48 6.1.1 Agricultural Activities ............................................................................................... 48 6.1.2 Development/Urbanization ....................................................................................... 50 6.1.3 Contaminants ............................................................................................................. 54 6.1.4 Dams and Barriers ..................................................................................................... 58 6.1.5 Resource Extraction................................................................................................... 59 6.1.6 Changing Climate Conditions ................................................................................... 62 6.1.7 Forest Conversion ...................................................................................................... 63 6.2 Invasive and Nonnative Species ....................................................................................... 65 6.3 Genetic Isolation................................................................................................................ 68 6.4 Enigmatic Population Declines ........................................................................................ 69 6.5 Factors Currently Believed To Have Limited Effects on Purple Lilliput Populations .............................................................................................................................. 69 6.5.1 Parasites ...................................................................................................................... 69 6.5.2 Predation ..................................................................................................................... 69 6.6 Overall Summary of Factors Affecting the Species ....................................................... 70 CHAPTER 7 - FUTURE CONDITIONS ................................................................................. 71 7.1 Future Scenario Considerations ...................................................................................... 71 7.2 Future Scenarios ............................................................................................................... 71 7.3 Scenario 1 ..........................................................................................................................
Recommended publications
  • (Pyrgulopsis Spp.) in and Adjacent to the Spring Mountains, Nevada
    Western North American Naturalist 80(2), © 2020, pp. 183–193 An inventory of springsnails (Pyrgulopsis spp.) in and adjacent to the Spring Mountains, Nevada KEVIN S. MCKELVEY1,*, COREY KALLSTROM2, JERI LEDBETTER3, DONALD W. SADA4, KRISTINE L. PILGRIM1, AND MICHAEL K. SCHWARTZ1 1USDA Forest Service, National Genomics Center, Rocky Mountain Research Station, Missoula, MT 59801 2U.S. Fish and Wildlife Service, Southern Nevada Fish and Wildlife Office, Las Vegas, NV 89130 3Spring Stewardship Institute, Flagstaff, AZ 86001 4Desert Research Institute, Reno, NV 89512 ABSTRACT.—Springsnails (genus Pyrgulopsis, hereafter pyrgs) are small freshwater aquatic gastropods that occur in isolated springs in western North America. Pyrgs are species of conservation concern, but patterns of occupancy and speciation are complex. We investigated patterns of occurrence for pyrgs in the Spring Mountains, Clark County, Nevada. We were primarily concerned with identifying springs containing the species P. deaconi, the Spring Mountains pyrg, and P. turbatrix, the southeast Nevada pyrg. We identified species through genetic analysis of the COI-1 mito- chondrial region and examined patterns of genetic structure. We located aquatic gastropods in 26 springs and analyzed 420 aquatic gastropods, of which 392 were pyrgs, the remainder representing an unknown species of Physa. Of the 26 springs, 25 contained pyrgs and 5 contained Physa sp. For pyrgs, at COI-1 we identified a total of 29 haplotypes that formed 6 distinct monophyletic groups. Five of the 6 groups were consistent with pyrgs previously identified: P. bac- chus, P. deaconi, P. fausta, P. turbatrix, and an unknown species which had been identified previously in the Grapevine Springs.
    [Show full text]
  • North American Hydrobiidae (Gastropoda: Rissoacea): Redescription and Systematic Relationships of Tryonia Stimpson, 1865 and Pyrgulopsis Call and Pilsbry, 1886
    THE NAUTILUS 101(1):25-32, 1987 Page 25 . North American Hydrobiidae (Gastropoda: Rissoacea): Redescription and Systematic Relationships of Tryonia Stimpson, 1865 and Pyrgulopsis Call and Pilsbry, 1886 Robert Hershler Fred G. Thompson Department of Invertebrate Zoology Florida State Museum National Museum of Natural History University of Florida Smithsonian Institution Gainesville, FL 32611, USA Washington, DC 20560, USA ABSTRACT scribed) in the Southwest. Taylor (1966) placed Tryonia in the Littoridininae Taylor, 1966 on the basis of its Anatomical details are provided for the type species of Tryonia turreted shell and glandular penial lobes. It is clear from Stimpson, 1865, Pyrgulopsis Call and Pilsbry, 1886, Fonteli- cella Gregg and Taylor, 1965, and Microamnicola Gregg and the initial descriptions and subsequent studies illustrat- Taylor, 1965, in an effort to resolve the systematic relationships ing the penis (Russell, 1971: fig. 4; Taylor, 1983:16-25) of these taxa, which represent most of the generic-level groups that Fontelicella and its subgenera, Natricola Gregg and of Hydrobiidae in southwestern North America. Based on these Taylor, 1965 and Microamnicola Gregg and Taylor, 1965 and other data presented either herein or in the literature, belong to the Nymphophilinae Taylor, 1966 (see Hyalopyrgus Thompson, 1968 is assigned to Tryonia; and Thompson, 1979). While the type species of Pyrgulop- Fontelicella, Microamnicola, Nat ricola Gregg and Taylor, 1965, sis, P. nevadensis (Stearns, 1883), has not received an- Marstonia F. C. Baker, 1926, and Mexistiobia Hershler, 1985 atomical study, the penes of several eastern species have are allocated to Pyrgulopsis. been examined by Thompson (1977), who suggested that The ranges of both Tryonia and Pyrgulopsis include parts the genus may be a nymphophiline.
    [Show full text]
  • Harmful Algae 91 (2020) 101587
    Harmful Algae 91 (2020) 101587 Contents lists available at ScienceDirect Harmful Algae journal homepage: www.elsevier.com/locate/hal Review Progress and promise of omics for predicting the impacts of climate change T on harmful algal blooms Gwenn M.M. Hennona,c,*, Sonya T. Dyhrmana,b,* a Lamont-Doherty Earth Observatory, Columbia University, Palisades, NY, United States b Department of Earth and Environmental Sciences, Columbia University, New York, NY, United States c College of Fisheries and Ocean Sciences University of Alaska Fairbanks Fairbanks, AK, United States ARTICLE INFO ABSTRACT Keywords: Climate change is predicted to increase the severity and prevalence of harmful algal blooms (HABs). In the past Genomics twenty years, omics techniques such as genomics, transcriptomics, proteomics and metabolomics have trans- Transcriptomics formed that data landscape of many fields including the study of HABs. Advances in technology have facilitated Proteomics the creation of many publicly available omics datasets that are complementary and shed new light on the Metabolomics mechanisms of HAB formation and toxin production. Genomics have been used to reveal differences in toxicity Climate change and nutritional requirements, while transcriptomics and proteomics have been used to explore HAB species Phytoplankton Harmful algae responses to environmental stressors, and metabolomics can reveal mechanisms of allelopathy and toxicity. In Cyanobacteria this review, we explore how omics data may be leveraged to improve predictions of how climate change will impact HAB dynamics. We also highlight important gaps in our knowledge of HAB prediction, which include swimming behaviors, microbial interactions and evolution that can be addressed by future studies with omics tools. Lastly, we discuss approaches to incorporate current omics datasets into predictive numerical models that may enhance HAB prediction in a changing world.
    [Show full text]
  • Biology and Systematics of Heterokont and Haptophyte Algae1
    American Journal of Botany 91(10): 1508±1522. 2004. BIOLOGY AND SYSTEMATICS OF HETEROKONT AND HAPTOPHYTE ALGAE1 ROBERT A. ANDERSEN Bigelow Laboratory for Ocean Sciences, P.O. Box 475, West Boothbay Harbor, Maine 04575 USA In this paper, I review what is currently known of phylogenetic relationships of heterokont and haptophyte algae. Heterokont algae are a monophyletic group that is classi®ed into 17 classes and represents a diverse group of marine, freshwater, and terrestrial algae. Classes are distinguished by morphology, chloroplast pigments, ultrastructural features, and gene sequence data. Electron microscopy and molecular biology have contributed signi®cantly to our understanding of their evolutionary relationships, but even today class relationships are poorly understood. Haptophyte algae are a second monophyletic group that consists of two classes of predominately marine phytoplankton. The closest relatives of the haptophytes are currently unknown, but recent evidence indicates they may be part of a large assemblage (chromalveolates) that includes heterokont algae and other stramenopiles, alveolates, and cryptophytes. Heter- okont and haptophyte algae are important primary producers in aquatic habitats, and they are probably the primary carbon source for petroleum products (crude oil, natural gas). Key words: chromalveolate; chromist; chromophyte; ¯agella; phylogeny; stramenopile; tree of life. Heterokont algae are a monophyletic group that includes all (Phaeophyceae) by Linnaeus (1753), and shortly thereafter, photosynthetic organisms with tripartite tubular hairs on the microscopic chrysophytes (currently 5 Oikomonas, Anthophy- mature ¯agellum (discussed later; also see Wetherbee et al., sa) were described by MuÈller (1773, 1786). The history of 1988, for de®nitions of mature and immature ¯agella), as well heterokont algae was recently discussed in detail (Andersen, as some nonphotosynthetic relatives and some that have sec- 2004), and four distinct periods were identi®ed.
    [Show full text]
  • December 2015
    Ellipsaria Vol. 17 - No. 4 December 2015 Newsletter of the Freshwater Mollusk Conservation Society Volume 17 – Number 4 December 2015 Cover Story . 1 Society News . 5 Regional Meetings . 9 Upcoming Meetings . 14 Contributed Articles . 15 Obituary . 28 Lyubov Burlakova, Knut Mehler, Alexander Karatayev, and Manuel Lopes-Lima FMCS Officers . 33 On October 4-8, 2015, the Great Lakes Center of Buffalo State College hosted the Second International Meeting on Biology and Conservation of Freshwater Committee Chairs Bivalves. This meeting brought together over 80 scientists from 19 countries on four continents (Europe, and Co-chairs . 34 North America, South America, and Australia). Representation from the United States was rather low, Parting Shot . 35 but that was expected, as several other meetings on freshwater molluscs were held in the USA earlier in the year. Ellipsaria Vol. 17 - No. 4 December 2015 The First International Meeting on Biology and Conservation of Freshwater Bivalves was held in Bragança, Portugal, in 2012. That meeting was organized by Manuel Lopes-Lima and his colleagues from several academic institutions in Portugal. In addition to being a research scientist with the University of Porto, Portugal, Manuel is the IUCN Coordinator of the Red List Authority on Freshwater Bivalves. The goal of the first meeting was to create a network of international experts in biology and conservation of freshwater bivalves to develop collaborative projects and global directives for their protection and conservation. The Bragança meeting was very productive in uniting freshwater mussel biologists from European countries with their colleagues in North and South America. The meeting format did not include concurrent sessions, which allowed everyone to attend to every talk and all of the plenary talks by leading scientists.
    [Show full text]
  • Endangered Species
    FEATURE: ENDANGERED SPECIES Conservation Status of Imperiled North American Freshwater and Diadromous Fishes ABSTRACT: This is the third compilation of imperiled (i.e., endangered, threatened, vulnerable) plus extinct freshwater and diadromous fishes of North America prepared by the American Fisheries Society’s Endangered Species Committee. Since the last revision in 1989, imperilment of inland fishes has increased substantially. This list includes 700 extant taxa representing 133 genera and 36 families, a 92% increase over the 364 listed in 1989. The increase reflects the addition of distinct populations, previously non-imperiled fishes, and recently described or discovered taxa. Approximately 39% of described fish species of the continent are imperiled. There are 230 vulnerable, 190 threatened, and 280 endangered extant taxa, and 61 taxa presumed extinct or extirpated from nature. Of those that were imperiled in 1989, most (89%) are the same or worse in conservation status; only 6% have improved in status, and 5% were delisted for various reasons. Habitat degradation and nonindigenous species are the main threats to at-risk fishes, many of which are restricted to small ranges. Documenting the diversity and status of rare fishes is a critical step in identifying and implementing appropriate actions necessary for their protection and management. Howard L. Jelks, Frank McCormick, Stephen J. Walsh, Joseph S. Nelson, Noel M. Burkhead, Steven P. Platania, Salvador Contreras-Balderas, Brady A. Porter, Edmundo Díaz-Pardo, Claude B. Renaud, Dean A. Hendrickson, Juan Jacobo Schmitter-Soto, John Lyons, Eric B. Taylor, and Nicholas E. Mandrak, Melvin L. Warren, Jr. Jelks, Walsh, and Burkhead are research McCormick is a biologist with the biologists with the U.S.
    [Show full text]
  • Complaint for Declaratory and Injunctive Relief 1 1 2 3 4 5 6 7 8 9
    1 Justin Augustine (CA Bar No. 235561) Jaclyn Lopez (CA Bar No. 258589) 2 Center for Biological Diversity 351 California Street, Suite 600 3 San Francisco, CA 94104 Tel: (415) 436-9682 4 Fax: (415) 436-9683 [email protected] 5 [email protected] 6 Collette L. Adkins Giese (MN Bar No. 035059X)* Center for Biological Diversity 8640 Coral Sea Street Northeast 7 Minneapolis, MN 55449-5600 Tel: (651) 955-3821 8 Fax: (415) 436-9683 [email protected] 9 Michael W. Graf (CA Bar No. 136172) 10 Law Offices 227 Behrens Street 11 El Cerrito, CA 94530 Tel: (510) 525-7222 12 Fax: (510) 525-1208 [email protected] 13 Attorneys for Plaintiffs Center for Biological Diversity and 14 Pesticide Action Network North America *Seeking admission pro hac vice 15 16 IN THE UNITED STATES DISTRICT COURT 17 FOR THE NORTHERN DISTRICT OF CALIFORNIA 18 SAN FRANCISCO DIVISION 19 20 CENTER FOR BIOLOGICAL ) 21 DIVERSITY, a non-profit organization; and ) Case No.__________________ PESTICIDE ACTION NETWORK ) 22 NORTH AMERICA, a non-profit ) organization; ) 23 ) Plaintiffs, ) COMPLAINT FOR DECLARATORY 24 ) AND INJUNCTIVE RELIEF v. ) 25 ) ENVIRONMENTAL PROTECTION ) 26 AGENCY; and LISA JACKSON, ) Administrator, U.S. EPA; ) 27 ) Defendants. ) 28 _____________________________________ ) Complaint for Declaratory and Injunctive Relief 1 1 INTRODUCTION 2 1. This action challenges the failure of Defendants Environmental Protection Agency and 3 Lisa Jackson, Environmental Protection Agency Administrator, (collectively “EPA”) to consult with the 4 United States Fish and Wildlife Service (“FWS”) and National Marine Fisheries Service (“NMFS”) 5 (collectively “Service”) pursuant to Section 7(a)(2) of the Endangered Species Act (“ESA”), 16 U.S.C.
    [Show full text]
  • REPORT FOR: Preliminary Analysis for Identification, Distribution, And
    REPORT FOR: Preliminary Analysis for Identification, Distribution, and Conservation Status of Species of Fusconaia and Pleurobema in Arkansas Principle Investigators: Alan D. Christian Department of Biological Sciences, Arkansas State University, P.O. Box 599, State University, Arkansas 72467; [email protected]; Phone: (870)972-3082; Fax: (870)972-2638 John L. Harris Department of Biological Sciences, Arkansas State University, P.O. Box 599, State University, Arkansas 72467 Jeanne Serb Department of Ecology, Evolution, and Organismal Biology, Iowa State University, 251 Bessey Hall, Ames, Iowa 50011 Graduate Research Assistant: David M. Hayes, Department of Environmental Science, P.O. Box 847, State University, Arkansas 72467: [email protected] Kentaro Inoue, Department of Environmental Science, P.O. Box 847, State University, Arkansas 72467: [email protected] Submitted to: William R. Posey Malacologist and Commercial Fisheries Biologist, AGFC P.O. Box 6740 Perrytown, Arkansas 71801 April 2008 EXECUTIVE SUMMARY There are currently 13 species of Fusconaia and 32 species of Pleurobema recognized in the United States and Canada. Twelve species of Pleurobema and two species of Fusconaia are listed as Threatened or Endangered. There are 75 recognized species of Unionidae in Arkansas; however this number may be much higher due to the presence of cryptic species, many which may reside within the Fusconaia /Pleurobema complex. Currently, three species of Fusconaia and three species of Pleurobema are recognized from Arkansas. The true conservation status of species within these genera cannot be determined until the taxonomic identity of populations is confirmed. The purpose of this study was to begin preliminary analysis of the species composition of Fusconaia and Pleurobema in Arkansas and to determine the phylogeographic relationships within these genera through mitochondrial DNA sequencing and conchological analysis.
    [Show full text]
  • Freshwater Mussel Survey of Clinchport, Clinch River, Virginia: Augmentation Monitoring Site: 2006
    Freshwater Mussel Survey of Clinchport, Clinch River, Virginia: Augmentation Monitoring Site: 2006 By: Nathan L. Eckert, Joe J. Ferraro, Michael J. Pinder, and Brian T. Watson Virginia Department of Game and Inland Fisheries Wildlife Diversity Division October 28th, 2008 Table of Contents Introduction....................................................................................................................... 4 Objective ............................................................................................................................ 5 Study Area ......................................................................................................................... 6 Methods.............................................................................................................................. 6 Results .............................................................................................................................. 10 Semi-quantitative .................................................................................................. 10 Quantitative........................................................................................................... 11 Qualitative............................................................................................................. 12 Incidental............................................................................................................... 12 Discussion........................................................................................................................
    [Show full text]
  • Some Aspects of the Age and Growth of the Longear Sunfish, Lepomis Megalotis, in Arkansas Waters Edmond J
    Journal of the Arkansas Academy of Science Volume 22 Article 10 1968 Some Aspects of the Age and Growth of the Longear Sunfish, Lepomis Megalotis, in Arkansas Waters Edmond J. Bacon Jr. University of Arkansas, Fayetteville Raj V. Kilambi University of Arkansas, Fayetteville Follow this and additional works at: http://scholarworks.uark.edu/jaas Part of the Terrestrial and Aquatic Ecology Commons, and the Zoology Commons Recommended Citation Bacon, Edmond J. Jr. and Kilambi, Raj V. (1968) "Some Aspects of the Age and Growth of the Longear Sunfish, Lepomis Megalotis, in Arkansas Waters," Journal of the Arkansas Academy of Science: Vol. 22 , Article 10. Available at: http://scholarworks.uark.edu/jaas/vol22/iss1/10 This article is available for use under the Creative Commons license: Attribution-NoDerivatives 4.0 International (CC BY-ND 4.0). Users are able to read, download, copy, print, distribute, search, link to the full texts of these articles, or use them for any other lawful purpose, without asking prior permission from the publisher or the author. This Article is brought to you for free and open access by ScholarWorks@UARK. It has been accepted for inclusion in Journal of the Arkansas Academy of Science by an authorized editor of ScholarWorks@UARK. For more information, please contact [email protected], [email protected]. Journal of the Arkansas Academy of Science, Vol. 22 [1968], Art. 10 44 Arkansas Academy of Science Proceedings, Vol. 22, 1968 Some Aspects of the Age and Growth of the Longear Sunfish, Lepomis Megalotis, in Arkansas Waters 1 Edmond J. Bacon, Jr. and Raj V.
    [Show full text]
  • Department of the Interior
    Vol. 76 Thursday, No. 194 October 6, 2011 Part II Department of the Interior Fish and Wildlife Service 50 CFR Part 17 Endangered and Threatened Wildlife and Plants; 12-Month Finding on a Petition To List Texas Fatmucket, Golden Orb, Smooth Pimpleback, Texas Pimpleback, and Texas Fawnsfoot as Threatened or Endangered; Proposed Rule VerDate Mar<15>2010 16:27 Oct 05, 2011 Jkt 226001 PO 00000 Frm 00001 Fmt 4717 Sfmt 4717 E:\FR\FM\06OCP2.SGM 06OCP2 mstockstill on DSK4VPTVN1PROD with PROPOSALS2 62166 Federal Register / Vol. 76, No. 194 / Thursday, October 6, 2011 / Proposed Rules DEPARTMENT OF THE INTERIOR FOR FURTHER INFORMATION CONTACT: Gary additional mussels from eastern Texas, Mowad, Texas State Administrator, U.S. the Texas heelsplitter (Potamilus Fish and Wildlife Service Fish and Wildlife Service (see amphichaenus) and Salina mucket (P. ADDRESSES); by telephone at 512–927– metnecktayi), were also included in this 50 CFR Part 17 3557; or by facsimile at 512–927–3592. petition. The petition incorporated all If you use a telecommunications device analyses, references, and documentation [FWS–R2–ES–2011–0079; MO 92210–0–0008 for the deaf (TDD), please call the provided by NatureServe in its online B2] Federal Information Relay Service database at http://www.natureserve.org/ Endangered and Threatened Wildlife (FIRS) at 800–877–8339. into the petition. Included in and Plants; 12-Month Finding on a SUPPLEMENTARY INFORMATION: NatureServe was supporting information regarding the species’ Petition To List Texas Fatmucket, Background Golden Orb, Smooth Pimpleback, taxonomy and ecology, historical and Texas Pimpleback, and Texas Section 4(b)(3)(B) of the Act (16 current distribution, present status, and Fawnsfoot as Threatened or U.S.C.
    [Show full text]
  • Thesis Improving Rock Ramp Fishways for Small-Bodied
    THESIS IMPROVING ROCK RAMP FISHWAYS FOR SMALL-BODIED GREAT PLAINS FISHES Submitted by Tyler R. Swarr Department of Fish, Wildlife, and Conservation Biology In partial fulfillment of the requirements For the Degree of Master of Science Colorado State University Fort Collins, Colorado Summer 2018 Master’s Committee: Advisor: Christopher A. Myrick Kevin R. Bestgen Brian P. Bledsoe Copyright by Tyler R. Swarr 2018 All Rights Reserved ABSTRACT IMPROVING ROCK RAMP FISHWAYS FOR SMALL-BODIED GREAT PLAINS FISHES The growing global need to improve the longitudinal connectivity of lotic systems is often met by using fish passage structures (fishways). When designing fishways in the past, biologists and engineers focused primarily on strong swimming species such as salmonids. However, the majority of riverine species in the interior United States are not salmonids and may be excluded by fishways built using salmonid criteria due to lower swimming abilities and/or behavioral differences. I designed and built a 9.1-m long adjustable hydraulic research flume at the Colorado State University Foothills Fisheries Laboratory (FFL) to test fish passage and evaluate the effects of grade (slopes of 2 – 10%, in 2% increments) on the passage success of three Great Plains fish species: Flathead Chub Platygobio gracilis, Stonecat Noturus flavus, and Arkansas Darter Etheostoma cragini. A 6.1-m long rock ramp fishway was installed in the flume and four PIT tag antennas were used to detect full or partial passage success. In order to test the key assumption that tagging does not affect fish performance, I evaluated the impacts of 8-mm PIT tags on Arkansas Darter and found no significant difference in the survival and swimming abilities of PIT tagged fish versus non-tagged fish.
    [Show full text]