Structure Determination How to Determine What Compound That You Have? One Way to Determine Compound Is to Get an Elemental

Total Page:16

File Type:pdf, Size:1020Kb

Structure Determination How to Determine What Compound That You Have? One Way to Determine Compound Is to Get an Elemental Structure Determination How to determine what compound that you have? One way to determine compound is to get an elemental analysis -basically burn the compound to determine %C, %H, %O, etc. from these percentages can determine the molecular formula Still need to determine structure from molecular formula We have learned various isomers can result from a given molecular formula Consider O O OH C3H6O H Could have a Different type No carbonyl ketone of carbonyl present If we only know the molecular formula, would not know which structure is present Structure Determination Even if a pure sample is obtained, how do we know the actual structure of the compound? The development and improvement of analytical instruments to determine structure has been one of the biggest advancements in organic chemistry during the past 60 years Today almost any structure can be determined with these instruments The important part is to recognize what information each instrument provides, and if deciding between possible isomers which technique can be used to differentiate Techniques to be learned: Mass Spectrometry UV-vis Spectroscopy IR Spectroscopy NMR Spectroscopy -mass of compound -conjugation present -functional groups -bond connectivity of -isotopes present structure -distinguish some atoms -symmetry -most important for structure determination Mass Spectrometry Can determine the molecular weight of a sample and some information about the structure A key part of a mass spectrometry is the need to create a charged species The most common method to create the charged species is electron impact ionization e H H H H H H e H C C C H H C C C H e H H H H H H An electron is accelerated toward a gaseous sample of the compound under consideration Due to the high energy of the electron moving at high speed, an electron is expelled The sample thus is now positively charged, due to the loss of one electron, and is a radical/cation structure Mass Spectrometry The compound (R) thus becomes a radical/cation when bombarded with electrons magnet e R(•+) detector R The radical/cation continues along a path until it reaches a magnetic field Charged species become deflected (are attracted to one magnet) in the presence of the magnetic field and hence the path direction is bent The radius of curvature is dependent upon the mass of the species (m/z), lighter mass species are deflected more and heavier species are deflected less Only a certain mass can thus deflect the correct amount with the curvature of the instrument, heavier species will hit one wall while lighter species will hit the other wall The magnet strength is changed and depending upon when species hit the detector the mass of the compound can be determined Mass Spectrometry The parent ion is called the molecular ion peak (M+) m/z 72 Can find molecular ion, but what are the other peaks? Mass Spectrometry The molecular ion peak can fragment Due to the high energy of the radical/cation generated, this species can fragment CH3CH2 m/z 72 m/z 43 CH3 m/z 57 Remember only the charged species will be detected (the radical species will not be affected by the magnetic field) The probability of obtaining a given fragment is due to the STABILITY of the cations produced Effect of Isotopes Remember that an isotope has the same number of protons and electrons, but a different number of neutrons Since neutrons and protons are the “heavy” parts of an atom, the extra number of neutrons will cause a greater mass In a mass spectrometer we can see the effect of this by peaks above the molecular ion peak (M, M+1, M+2, etc.) The ratio of these peaks is diagnostic for which atoms are present The natural abundance of isotopes is well known M M+1 M+2 H 100% C 98.9% 1.1% S 95% 0.8% 4.2% Cl 75.5% 24.5% Br 50.5% 49.5% I 100% Effect of Isotopes Can distinguish atoms by the ratio of peaks above the molecular ion Especially useful to distinguish which halogen is present Cl Br I m/z 78 m/z 122 m/z 170 M/M+2 = 3 M/M+2 = 1 M/M+2~ 3/1 = 1 Mass Spectrometry Nitrogen Nitrogen is also diagnostic in a mass spectrum due to the odd/even parity of the mass Consider small molecules and their corresponding mass CH4 m/z = 16 NH3 m/z = 17 The molecular ion peak for a molecule with one nitrogen is always odd, all other common atoms in an organic compound yield an even mass Fragmentation Behavior of Common Functional Groups Alkenes With an alkene the common fragmentation is to create an allylic carbocation m/z 70 m/z 55 Alcohols Two common effects 1) Loss of water OH H2O m/z 74 m/z 56 Alcohols 2) α-cleavage OH OH OH CH2CH3 m/z 74 m/z 45 McLafferty Rearrangement Any ketone containing a γ-hydrogen can rearrange to the enol form in a MS H H O O m/z 100 m/z 58 Ketones Ketones can also do α-cleavage similar to alcohols O O O CH2CH2CH2CH3 m/z 100 m/z 43 High Resolution Mass Spectrometry (HRMS) These high sensitivity mass spectrometers, called HRMS, can be used to determine molecular formula a HRMS can detect particle masses with an accuracy of 1/20,000 therefore > 0.0001 amu (atomic mass units) Can use this to distinguish compounds with a similar rough mass but with a different molecular formula 12C 12.0000 amu (by definition) 1H 1.0078 amu 16O 15.9949 amu Many structures may have the same integer value molecular weight, but different molecular formulas For example: O HN NH C4H6O1 C5H10 C3H6N2 70.0418 amu 70.0783 amu 70.0531 amu Structure Determination Using Spectroscopy Need methods to distinguish between possible structures A nondestructive way is to use absorption spectroscopy In a simplified picture: Beam splitter Monochromatic sample detector light source blank The ability of the sample to absorb incident radiation is measured by the difference in absorbance at the detector versus the blank Electromagnetic Spectrum All light travels at a constant speed The difference is the wavelength of the light (which also determines the energy of the light) E = hν = (hc) / λ NMR IR UV-vis Infrared Region Wavelength of infrared radiation is ~800 cm-1 to 4000 cm-1 wavenumbers (wavenumbers correspond to number of wavelengths of light in 1 cm) -common descriptor for IR frequencies by organic chemists As the wavenumber becomes larger the energy increases The energy level of infrared light corresponds to the energy required to cause molecular vibrations Depending upon what type of bond is present determines the exact energy required to cause the vibration The energy of light absorbed therefore indicates what functional group is present Bond Vibration The energy of the infrared light can interact with the resonant vibrational frequency of the bond Since different bonds have different energies, they require different energy to cause vibration consider acetone O O E H3C CH3 H3C CH3 The carbonyl has a strong dipole When electric field aligns with dipole, bond shortens The absorption of the infrared light thus changes the dipole for this bond as it vibrates Infrared Spectroscopy Active versus Inactive IR only causes a vibration if there is a change in dipole during vibration Therefore symmetric bonds are inactive CH3-CH3 the carbon-carbon bond of ethane will not observe an IR stretch Or any other symmetric bond An IR “active” bond is therefore a bond that changes dipole during vibration, While an IR “inactive” bond is a symmetric bond that doesn’t change dipole during vibration Number of Vibrations The number of possible vibrations for a given molecule is determined by the number of atoms present For nonlinear molecules obtain 3N-6 vibrations (N equals number of atoms present) 3N-5 vibrations for linear molecule For example consider acetone again (C3H6O1) Acetone has 10 atoms and is nonlinear Therefore expect 3(10)-6 = 24 vibrations The other vibrations are due to different bonds besides the carbonyl stretching, for example the hydrogens Or bending motions Intensity of Absorbance Intensity of light absorbed by a molecule is related to the dipole of the bond The greater the dipole, the greater the absorbance intensity C-O bond stretches are therefore more intense than C-C stretches O C O Realize the intensity of absorbance is not related to the wavenumber The wavenumber is related to the force constant for the bond vibrating (the stiffness of the bond) Infrared Spectroscopy Factors to be considered in an IR spectrum 1) Position of absorbance (wavenumber) Energy required for absorbance 2) Intensity of absorbance Related to the dipole of the bond 3) Shape of absorbance (broad or sharp peaks) Tells information about the type of bond Infrared Spectroscopy Specific functional groups As mentioned specific functional groups have characteristic absorbance frequencies Consider carbon-carbon bonds Wavenumber (cm-1) C C ~1200 cm-1 C C ~1660 cm-1 C C ~2200 cm-1 As the number of bonds increases between two atoms, the stiffness of the bond increases which results in a harder bond to stretch Infrared Spectroscopy Conjugation lowers the stretching frequency (RESONANCE!!!) Wavenumber (cm-1) ~1640-1680 cm-1 ~1620-1640 cm-1 Whenever a functional group becomes more conjugated (adjacent to double bonds for example) the stretching frequency lowers Infrared Spectroscopy C-H bond stretching As the %s character increases in a bond, the bond becomes stiffer (already saw that sp hybridized C-C bonds are stiffer than sp3 hybridized C-C bonds) Same is true for carbon-hydrogen bonds sp3 hybridized 2800-3000 cm-1 sp2 hybridized 3000-3100 cm-1 sp hybridized ~3300 cm-1 Key point: only sp3 hybridized C-H bond stretches are below 3000 cm-1 Infrared Spectroscopy Alcohols and amines Both O-H and N-H bonds are “stiff” bonds
Recommended publications
  • Analytical Techniques Used for Elemental Analysis in Various Matrices
    Helaluddin et al Tropical Journal of Pharmaceutical Research February 2016; 15 (2): 427-434 ISSN: 1596-5996 (print); 1596-9827 (electronic) © Pharmacotherapy Group, Faculty of Pharmacy, University of Benin, Benin City, 300001 Nigeria. All rights reserved. Available online at http://www.tjpr.org http://dx.doi.org/10.4314/tjpr.v15i2.29 Review Article Main Analytical Techniques Used for Elemental Analysis in Various Matrices ABM Helaluddin1, Reem Saadi Khalid1, Mohamed Alaama and Syed Atif Abbas2 1Analytical and Bio-Analytical Research Laboratory, Department of Pharmaceutical Chemistry, Faculty of Pharmacy, International Islamic University Malaysia (IIUM), Jalan Istana, Bandar Indera Mahkota, 25200 Kuantan, Pahang, 2 Malaysia School of Pharmacy, Taylors University, 1 Jalan Taylor’s, 47500 Subang Jaya, Selangor Darul Ehsan, Malaysia *For correspondence: Email: [email protected]; [email protected] Received: 20 August 2015 Revised accepted: 4 January 2016 Abstract Heavy metal pollution is a serious environmental problem. The presence of such metals in different areas of an ecosystem subsequently leads to the contamination of consumable products such as dietary and processed materials. Accurate monitoring of metal concentrations in various samples is of importance in order to minimize health hazards resulting from exposure to such toxic substances. For this purpose, it is essential to have a general understanding of the basic principles for different methods of elemental analysis. This article provides an overview of the most sensitive
    [Show full text]
  • Developing Back Reflectance Absorbance As a Useful Technique
    Design of a Simple Cryogenic System for Ultraviolet-Visible Absorption Spectroscopy with a Back-reflectance Fiber Optic Probe Andrew Vinyard, Kaj Hansen, Ross Byrd, Douglas A Stuart * and John Hansen * Department of Chemistry, University of West Georgia *Corresponding Authors, email: [email protected] and [email protected] Abstract We report a convenient and inexpensive technique for the rapid acquisition of absorption spectra from small samples at cryogenic temperatures using a home built cryostat with novel collection optics. A cylindrical copper block was constructed with a coaxial bore to hold a 4.00 mm diameter EPR tube and mounted on a copper feed in thermal contact with liquid nitrogen. A 6.35 mm diameter hole was bored into the side of the cylinder so a fiber optic cable bundle could be positioned orthogonally to the EPR tube. The light passing through the sample is reflected off of the opposing surfaces of the EPR tube and surrounding copper, back through the sample. The emergent light is then collected by the fiber optic bundle, and analyzed by a dispersive spectrometer. Absorption spectra for KMnO4 were measured between 400 nm and 700 nm. Absorption intensity at 506 nm, 525 nm, 545 nm and 567 nm was found to be proportional to concentration, displaying Beer’s law like behavior. The EPR tube had an internal diameter of 3.2 mm; the double pass of the probe beam through the sample affords a central path length of about 6.4 mm. Comparing these measurements with those recorded on a conventional tabletop spectrometer using a cuvette with a 10.00 mm path length, we consistently found a ratio between intensities of 0.58 rather than the anticipated 0.64.
    [Show full text]
  • Why the Gas Chromatographic Separation Method Used in the Thermo Scientific Flashsmart Elemental Analyzer Is the Most Reliable for Elemental Analysis?
    FlashSmart Elemental Analyzer SmartNotes Why the gas chromatographic separation method used in the Thermo Scientific FlashSmart Elemental Analyzer is the most reliable for elemental analysis? The Thermo Scientific™ FlashSmart™ Elemental Analyzer (Figure 1) operates with the dynamic flash combustion (modified Dumas Method) of the sample for CHNS determination while for oxygen analysis, the system operates in pyrolysis mode. The resulted gases are carried by a helium (or argon) flow till a gas chromatographic column that provides the separation of the gases, and finally, detected by a thermal conductivity detector (TCD). A complete report is automatically generated by the Thermo Scientific™ EagerSmart™ Data Handling Software and displayed at the end of the analysis. Thermo Scientific FlashSmart: The Elemental Analyzer Figure 1. Thermo Scientific FlashSmart Elemental Analyzer. The gas chromatography IC (GC) provides a “real” picture The advantages of the separation method are: of the analytical process during combustion (CHNS) and pyrolysis (O). • “Real” peak of each element. • Easy integration of the peaks by the EagerSmart Data GC technique provides you with complete peak Handling Software. separation and sharp peak shapes, which ensure superior precision and higher sensitivity. • The area of the peak corresponds to the total amount of the element. From the chromatogram you can quantify the amount • Proper quantification of the elements. of elements in your sample and recognize what it is happening inside the analyzer anytime. GC separation • Maintenance free, long lifetime GC column operating features provide you with: for years without the need for replacement: it is not a consumable. • Full insight of the combustion showing complete • GC Column easy to use, directly installed in the analyzer conversion of: • Straightforward continuous flow design from sample – Nitrogen and nitrogen oxide in N 2 processing through gas separation and detection.
    [Show full text]
  • 2 in 1 Fluorescence and Absorbance Spectrometer
    2 in 1 Fluorescence and Application Fluorescence Absorbance Spectrometer: Note How does it work? Life Sciences Figure 1: Duetta (left) and the inside of the Duetta sample compartment (right) with direction of the light path Introduction Duetta™ is a 2-in-1 fluorescence and absorbance excitation energy and the spectrum at longer wavelengths spectrometer from HORIBA Scientific. There are several is acquired to measure the distribution of intensity and benefits of having two different spectroscopies in one energy (wavelength) of the photons emitted. instrument. For high concentration solutions of interest, both primary and secondary inner-filter effects will affect Fluorescence Excitation Spectrum the fluorescence spectrum measured on a standard Acquiring the intensity of photons emitted at a single fluorometer. Having absorbance and fluorescence emission wavelength and scanning the excitation spectroscopy on the same instrument enables Duetta monochromator to excite the population of molecules in and EzSpec software to apply corrections for inner-filter the sample with different wavelengths. A fluorescence effect and provide more accurate data, for a wider range of excitation spectrum is analogous to an absorbance sample concentrations. Another benefit of the two in one spectrum, but is specific to a single emitting species/ instrument is that absorbance results and fluorescence wavelength as opposed to collecting all absorbing species results contain less error since the sample does not move in a sample or solution. from one instrument to another to get both measurements. Standard fluorescence methods such as Emission %Transmittance Spectrum Spectrum and Excitation Spectrum are available on Duetta, This is a ratio, in terms of percentage, of the intensity of but EzSpec software gives a user the ability to measure transmitted light through an absorbing sample (I) compared the Absorbance Spectrum as a stand-alone method or to the transmitted light through a blank solvent (I0).
    [Show full text]
  • Stark Broadening Measurements in Plasmas Produced by Laser Ablation of Hydrogen Containing Compounds Miloš Burger, Jorg Hermann
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Archive Ouverte en Sciences de l'Information et de la Communication Stark broadening measurements in plasmas produced by laser ablation of hydrogen containing compounds Miloš Burger, Jorg Hermann To cite this version: Miloš Burger, Jorg Hermann. Stark broadening measurements in plasmas produced by laser ablation of hydrogen containing compounds. Spectrochimica Acta Part B: Atomic Spectroscopy, Elsevier, 2016, 122, pp.118-126. 10.1016/j.sab.2016.06.005. hal-02348424 HAL Id: hal-02348424 https://hal.archives-ouvertes.fr/hal-02348424 Submitted on 5 Nov 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Stark broadening measurements in plasmas produced by laser ablation of hydrogen containing compounds Milosˇ Burgera,∗,Jorg¨ Hermannb aUniversity of Belgrade, Faculty of Physics, POB 44, 11000 Belgrade, Serbia bLP3, CNRS - Aix-Marseille University, 13008 Marseille, France Abstract We present a method for the measurement of Stark broadening parameters of atomic and ionic spectral lines based on laser ablation of hydrogen containing compounds. Therefore, plume emission spectra, recorded with an echelle spectrometer coupled to a gated detector, were compared to the spectral radiance of a plasma in local thermal equi- librium.
    [Show full text]
  • Good Practice Guide for Isotope Ratio Mass Spectrometry, FIRMS (2011)
    Good Practice Guide for Isotope Ratio Mass Spectrometry Good Practice Guide for Isotope Ratio Mass Spectrometry First Edition 2011 Editors Dr Jim Carter, UK Vicki Barwick, UK Contributors Dr Jim Carter, UK Dr Claire Lock, UK Acknowledgements Prof Wolfram Meier-Augenstein, UK This Guide has been produced by Dr Helen Kemp, UK members of the Steering Group of the Forensic Isotope Ratio Mass Dr Sabine Schneiders, Germany Spectrometry (FIRMS) Network. Dr Libby Stern, USA Acknowledgement of an individual does not indicate their agreement with Dr Gerard van der Peijl, Netherlands this Guide in its entirety. Production of this Guide was funded in part by the UK National Measurement System. This publication should be cited as: First edition 2011 J. F. Carter and V. J. Barwick (Eds), Good practice guide for isotope ratio mass spectrometry, FIRMS (2011). ISBN 978-0-948926-31-0 ISBN 978-0-948926-31-0 Copyright © 2011 Copyright of this document is vested in the members of the FIRMS Network. IRMS Guide 1st Ed. 2011 Preface A few decades ago, mass spectrometry (by which I mean organic MS) was considered a “black art”. Its complex and highly expensive instruments were maintained and operated by a few dedicated technicians and its output understood by only a few academics. Despite, or because, of this the data produced were amongst the “gold standard” of analytical science. In recent years a revolution occurred and MS became an affordable, easy to use and routine technique in many laboratories. Although many (rightly) applaud this popularisation, as a consequence the “black art” has been replaced by a “black box”: SAMPLES GO IN → → RESULTS COME OUT The user often has little comprehension of what goes on “under the hood” and, when “things go wrong”, the inexperienced operator can be unaware of why (or even that) the results that come out do not reflect the sample that goes in.
    [Show full text]
  • Elemental Analysis: CHNS/O Determination in Carbon
    APPLICATION NOTE 42182 Elemental Analysis: CHNS/O determination in carbon Authors Introduction Dr. Liliana Krotz and Carbon occurs as a variety of allotropes. There are two crystalline forms, Dr. Guido Giazzi diamond and graphite, and a number of amorphous (non-crystalline) forms, Thermo Fisher Scientific, such as charcoal, coke, and carbon black. The most common use of carbon Milan, Italy black is as a pigment and reinforcing phase in automobile tires. Coke is the solid carbonaceous material derived from destructive distillation of low-ash, Keywords low-sulfur bituminous coal. Coke is also used as a fuel and as a reducing Coal, Coke, Carbon Black, agent in smelting iron ore in a blast furnace. Graphite, CHNS/O, Heat Value For quality control purposes, the organic elements in carbon need to be Goal determined. For the determination of carbon, hydrogen, nitrogen, sulfur and This application note reports data oxygen, the combustion method is used. on CHNS/O determination on carbon samples needed for quality The Thermo Scientific™ FlashSmart™ Elemental Analyzer (Figure 1) allows control purposes, performed with the quantitative determination of carbon, hydrogen, nitrogen and oxygen in the FlashSmart EA. carbon. The FlashSmart EA based on the dynamic flash combustion of the sample, provides automated and simultaneous CHNS determination in a single analysis run and oxygen determination by pyrolysis in a second run. To perform total sulfur determination at trace levels, the analyzer has been coupled with the Flame Photometric Detector (FPD). Methods For CHNS determination, the FlashSmart EA operates according to the dynamic flash combustion of the sample. Liquid samples are weighed in tin containers and introduced into the combustion reactor via the Thermo Scientific™ MAS Plus Autosampler.
    [Show full text]
  • Comparison of the Characteristic Mass Fragmentations of Phenethylamines and Tryptamines by Electron Ionization Gas Chromatograph
    applied sciences Article Comparison of the Characteristic Mass Fragmentations of Phenethylamines and Tryptamines by Electron Ionization Gas Chromatography Mass Spectrometry, Electrospray and Matrix-Assisted Laser Desorption Ionization Mass Spectrometry Bo-Hong Chen, Ju-Tsung Liu, Hung-Ming Chen, Wen-Xiong Chen and Cheng-Huang Lin * Department of Chemistry, National Taiwan Normal University, 88 Sec. 4 Tingchow Road, Taipei 11677, Taiwan; [email protected] (B.-H.C.); [email protected] (J.-T.L.); [email protected] (H.-M.C.); [email protected] (W.-X.C.) * Correspondence: [email protected]; Tel.: +886-2-7734-6170; Fax: +886-2-2932-4249 Received: 18 April 2018; Accepted: 19 June 2018; Published: 22 June 2018 Abstract: Characteristic mass fragmentation of 20 phenethylamine/tryptamine standards were investigated and compared by means of matrix assisted laser desorption/time-of-flight mass spectrometry (MALDI/TOFM), gas chromatography–electron ionization–mass spectrometry (GC-EI/MS) and liquid chromatography–electrospray ionization/mass spectrometry (LC-ESI/MS) + methods. As a result, three characteristic peaks ([M] and fragments from the Cβ-Cα bond breakage) were found to be unique and contained information useful in identifying 2C series compounds based on the GC-EI/MS method. We found that the protonated molecular ion ([M+H]+) and two types of fragments produced from the α-cleavage and β-cleavage processes were useful mass spectral information in the rapid screening and confirmation of phenethylamine and tryptamine derivatives when ESI/MS and MALDI/TOFMS methods were applied. This assay was successfully used to determine samples that contain illicit drugs. Keywords: phenethylamine; tryptamine; MALDI/TOFMS; GC-EI/MS; LC-ESI/MS 1.
    [Show full text]
  • Coupling Gas Chromatography to Mass Spectrometry
    Coupling Gas Chromatography to Mass Spectrometry Introduction The suite of gas chromatographic detectors includes (roughly in order from most common to the least): the flame ionization detector (FID), thermal conductivity detector (TCD or hot wire detector), electron capture detector (ECD), photoionization detector (PID), flame photometric detector (FPD), thermionic detector, and a few more unusual or VERY expensive choices like the atomic emission detector (AED) and the ozone- or fluorine-induce chemiluminescence detectors. All of these except the AED produce an electrical signal that varies with the amount of analyte exiting the chromatographic column. The AED does that AND yields the emission spectrum of selected elements in the analytes as well. Another GC detector that is also very expensive but very powerful is a scaled down version of the mass spectrometer. When coupled to a GC the detection system itself is often referred to as the mass selective detector or more simply the mass detector. This powerful analytical technique belongs to the class of hyphenated analytical instrumentation (since each part had a different beginning and can exist independently) and is called gas chromatograhy/mass spectrometry (GC/MS). Placed at the end of a capillary column in a manner similar to the other GC detectors, the mass detector is more complicated than, for instance, the FID because of the mass spectrometer's complex requirements for the process of creation, separation, and detection of gas phase ions. A capillary column is required in the chromatograph because the entire MS process must be carried out at very low pressures (~10-5 torr) and in order to meet this requirement a vacuum is maintained via constant pumping using a vacuum pump.
    [Show full text]
  • Optical and Electron Paramagnetic Resonance Characterization of Point Defects in Semiconductors
    Air Force Institute of Technology AFIT Scholar Theses and Dissertations Student Graduate Works 3-1-2019 Optical and Electron Paramagnetic Resonance Characterization of Point Defects in Semiconductors Elizabeth M. Scherrer Follow this and additional works at: https://scholar.afit.edu/etd Part of the Electromagnetics and Photonics Commons Recommended Citation Scherrer, Elizabeth M., "Optical and Electron Paramagnetic Resonance Characterization of Point Defects in Semiconductors" (2019). Theses and Dissertations. 2463. https://scholar.afit.edu/etd/2463 This Dissertation is brought to you for free and open access by the Student Graduate Works at AFIT Scholar. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of AFIT Scholar. For more information, please contact [email protected]. OPTICAL AND ELECTRON PARAMAGNETIC RESONANCE CHARACTERIZATION OF POINT DEFECTS IN SEMICONDUCTORS DISSERTATION Elizabeth M. Scherrer, Captain, USAF AFIT-ENP-DS-19-M-091 DEPARTMENT OF THE AIR FORCE AIR UNIVERSITY AIR FORCE INSTITUTE OF TECHNOLOGY Wright-Patterson Air Force Base, Ohio DISTRIBUTION STATEMENT A APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED. The views expressed in this thesis are those of the author and do not reflect the official policy or position of the United States Air Force, Department of Defense, or the United States Government. This material is declared a work of the U.S. Government and is not subject to copyright protection in the United States. AFIT-ENP-DS-19-M-091 OPTICAL AND ELECTRON PARAMAGNETIC RESONANCE CHARACTERIZATION OF POINT DEFECTS IN SEMICONDUCTORS DISSERTATION Presented to the Faculty Department of Engineering Physics Graduate School of Engineering and Management Air Force Institute of Technology Air University Air Education and Training Command In Partial Fulfillment of the Requirements for the Doctor of Philosophy Degree Elizabeth M.
    [Show full text]
  • The Role of Nanoanalytics in the Development of Organic-Inorganic Nanohybrids—Seeing Nanomaterials As They Are
    nanomaterials Review The Role of Nanoanalytics in the Development of Organic-Inorganic Nanohybrids—Seeing Nanomaterials as They Are Daria Semenova 1 and Yuliya E. Silina 2,* 1 Process and Systems Engineering Center (PROSYS), Department of Chemical and Biochemical Engineering, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark; [email protected] 2 Institute of Biochemistry, Saarland University, 66123 Saarbrücken, Germany * Correspondence: [email protected] or [email protected]; Tel.: +49-681-302-64717 Received: 23 October 2019; Accepted: 19 November 2019; Published: 23 November 2019 Abstract: The functional properties of organic-inorganic (O-I) hybrids can be easily tuned by combining system components and parameters, making this class of novel nanomaterials a crucial element in various application fields. Unfortunately, the manufacturing of organic-inorganic nanohybrids still suffers from mechanical instability and insufficient synthesis reproducibility. The control of the composition and structure of nanosurfaces themselves is a specific analytical challenge and plays an important role in the future reproducibility of hybrid nanomaterials surface properties and response. Therefore, appropriate and sufficient analytical methodologies and technical guidance for control of their synthesis, characterization and standardization of the final product quality at the nanoscale level should be established. In this review, we summarize and compare the analytical merit of the modern analytical methods, viz. Fourier transform infrared spectroscopy (FTIR), RAMAN spectroscopy, surface plasmon resonance (SPR) and several mass spectrometry (MS)-based techniques, that is, inductively coupled plasma mass spectrometry (ICP-MS), single particle ICP-MS (sp-ICP-MS), laser ablation coupled ICP-MS (LA-ICP-MS), time-of-flight secondary ion mass spectrometry (TOF-SIMS), liquid chromatography mass spectrometry (LC-MS) utilized for characterization of O-I nanohybrids.
    [Show full text]
  • Spectrophotometry Light and Spectra
    Page: 1 Spectrophotometry Spectrophotometry and colorimetry are conventional techniques for quantitatively determining substances encountered in biochemistry. All substances in solution absorb light of some wavelength and transmit light of other wavelengths. Absorbance is a characteristic of a substance just like melting point, boiling point, density and solubility. Absorbance can be related to the amount of the substance in solution, thus it can be used to quantitatively determine the amount of substance that is present. Light and Spectra Light or electromagnetic radiation is composed of photons moving in a wave that oscillates along the path of motion. The wavelength of light is defined as the distance between adjacent peaks in the wave and can be further defined by the equation: λ = c / ν where λ is the wavelength, c is the speed of light, and ϖ is the frequency or number of waves passing a certain point per unit time. Photons of different wavelengths have different energies that are given by: E = hc / λ = h ν where h is Planck's constant. Thus, the shorter the wavelength, the greater the energy. Electromagnetic radiation can be divided into various regions according to wavelength: the ultraviolet region has wavelengths 200-400 nm and the visible region has wavelengths of 400-700 nm. There are other regions such as infrared, radio wave, microwave and more, but you will not apply them in this course. In the visible region, lights of different wavelengths have different colors: violet and blue in the low wavelength region and orange and red in the high wavelength region. When a substance in solution appears blue, it means that the substance is absorbing red light and transmitting blue light.
    [Show full text]