PLANTAS Comunes De HYCA SUA 1

Total Page:16

File Type:pdf, Size:1020Kb

PLANTAS Comunes De HYCA SUA 1 Campo Escuela Nacional Hyca Sua, Guasca, Cundinamarca, COLOMBIA PLANTAS Comunes de HYCA SUA 1 José A. Muñoz Díaz y Claudia P. Ortíz Parra – Universidad Distrital Francisco José de Caldas Fotos de J. Muñoz, J. Bernal, y C. Vargas. Producido por: Heike Betz, R. Foster, T. Wachter, J. Philipp, con apoyo de Connie Keller, Andrew Mellon Foundation, Adriana Pico, Janice Valencia, Carlos Vargas, Andrés Orejuela, Gustavo Morales, Nubia Orozco -- Programa Flora de Bogotá, Jardín Botánico de Bogotá José Celestino Mutis. © José A. Muñoz [jamunozd@correo udistrital.edu.co] y Claudia P. Ortiz Parra [[email protected]]. Ingeniería Ambiental, Facultad del Medio Ambiente y Recursos Naturales, UDFJC. © Science & Education, The Field Museum, Chicago [[email protected]] [fieldguides.fieldmuseum.org] Rapid Color Guide # 589 versión 1 05/2015 1 Bomarea multiflora 2 Oreopanax incisus 3 Oreopanax incisus 4 Achyrocline satureioides 5 Achyrocline satureioides ALSTROEMERIACEAE ARALIACEAE ARALIACEAE ASTERACEAE ASTERACEAE pecosa, rompeplatos mano de oso mano de oso yerba de chivo, viravira yerba de chivo, viravira 6 Ageratina gracilis 7 Ageratina tinifolia 8 Barnadesia spinosa 9 Munnozia senecionidis 10 Munnozia senecionidis ASTERACEAE ASTERACEAE ASTERACEAE ASTERACEAE ASTERACEAE amargoso amargoso guasco, espino camargo camargo 11 Mutisia orbignyana 12 Mutisia orbignyana 13 Taraxacum officinale 14 Taraxacum officinale 15 Alnus acuminata ASTERACEAE ASTERACEAE ASTERACEAE ASTERACEAE BETULACEAE clavellino clavellino diente de león diente de león aliso 16 Moricandia arvensis 17 Tllandsia biflora 18 Tillandsia complanata 19 Tillandsia fendleri 20 Calceolaria perfoliata BRASSICACEAE BROMELIACEAE BROMELIACEAE BROMELIACEAE CALCEOLARIACEAE quiche cerrielito Campo Escuela Nacional Hyca Sua, Guasca, Cundinamarca, COLOMBIA PLANTAS Comunes de HYCA SUA 2 José A. Muñoz Díaz y Claudia P. Ortíz Parra – Universidad Distrital Francisco José de Caldas Fotos de J. Muñoz, J. Bernal, y C. Vargas. Producido por: Heike Betz, R. Foster, T. Wachter, J. Philipp, con apoyo de Connie Keller, Andrew Mellon Foundation, Adriana Pico, Janice Valencia, Carlos Vargas, Andrés Orejuela, Gustavo Morales, Nubia Orozco -- Programa Flora de Bogotá, Jardín Botánico de Bogotá José Celestino Mutis. © José A. Muñoz [jamunozd@correo udistrital.edu.co] y Claudia P. Ortiz Parra [[email protected]]. Ingeniería Ambiental, Facultad del Medio Ambiente y Recursos Naturales, UDFJC. © Science & Education, The Field Museum, Chicago [[email protected]] [fieldguides.fieldmuseum.org] Rapid Color Guide # 589 versión 1 05/2015 21 Kalanchoe blossfeldiana 22 Weinmannia tomentosa 23 Trifolium pratense 24 Ulex europaeus 25 Lepechinia conferta CRASSULACEAE CUNONIACEAE FABACEAE FABACEAE LAMIACEAE encenillo trébol rojo, carretón retamo espinoso 26 Salvia palifolia 27 Salvia palifolia 28 Bucquetia glutinosa 29 Miconia biappendiculata 30 Myrcianthes leucoxyla LAMIACEAE LAMIACEAE MELASTOMATACEAE MELASTOMATACEAE MYRTACEAE salvia salvia charne, saltón sietecueros arrayán 31 Fuchsia boliviana 32 Fuchsia boliviana 33 Fuchsia boliviana 34 Acianthera casapensis 35 Epidendrum sp. ONAGRACEAE ONAGRACEAE ONAGRACEAE ORCHIDACEAE ORCHIDACEAE platanito, cigarrillito platanito, cigarrillito platanito, cigarrillito 36 Pleurothallis sp. 37 Ponthieva similis 38 Telipogon antioquianus 39 Castilleja arvensis 40 Oxalis medicaginea ORCHIDACEAE ORCHIDACEAE ORCHIDACEAE OROBANCHACEAE OXALIDACEAE peona, venadillo acedera, chulco Campo Escuela Nacional Hyca Sua, Guasca, Cundinamarca, COLOMBIA PLANTAS Comunes de HYCA SUA 3 José A. Muñoz Díaz y Claudia P. Ortíz Parra – Universidad Distrital Francisco José de Caldas Fotos de J. Muñoz, J. Bernal, y C. Vargas. Producido por: Heike Betz, R. Foster, T. Wachter, J. Philipp, con apoyo de Connie Keller, Andrew Mellon Foundation, Adriana Pico, Janice Valencia, Carlos Vargas, Andrés Orejuela, Gustavo Morales, Nubia Orozco -- Programa Flora de Bogotá, Jardín Botánico de Bogotá José Celestino Mutis. © José A. Muñoz [jamunozd@correo udistrital.edu.co] y Claudia P. Ortiz Parra [[email protected]]. Ingeniería Ambiental, Facultad del Medio Ambiente y Recursos Naturales, UDFJC. © Science & Education, The Field Museum, Chicago [[email protected]] [fieldguides.fieldmuseum.org] Rapid Color Guide # 589 versión 1 05/2015 41 Passiflora mixta 42 Phytolacca bogotensis 43 Phytolacca bogotensis 44 Piper bogotense 45 Digitalis purpurea PASSIFLORACEAE PHYTOLACCACEAE PHYTOLACCACEAE PIPERACEAE PLANTAGINACEAE curuba de indio hierba de culebra hierba de culebra cordoncillo dedalera, guergüerón 46 Digitalis purpurea 47 Chusquea tassellata cf. 48 Monnina aestuans 49 Rubus bogotensis 50 Rubus floribundus PLANTAGINACEAE POACEAE POLYGALACEAE ROSACEAE ROSACEAE chusque tintillo zarzamora mora 51 Abatia parviflora 52 Alonsoa meridionalis 53 Cestrum buxifolium 54 Cestrum buxifolium 55 Physalis peruviana SALICACEAE SCROPHULARIACEAE SOLANACEAE SOLANACEAE SOLANACEAE duraznillo, velitas cascabelito uvilla uvilla uchuva 56 Tropaeolum smithii 57 Kniphofia uvaria 58 Pleopeltis macrocarpa 59 Serpocaulon sp. 60 Thelypteris sp. TROPAEOLACEAE XANTHORRHOEACEAE POLYPODIACEAE POLYPODIACEAE THELYPTERIDACEAE papasitas llamitas calaguala helecho helecho Campo Escuela Nacional Hyca Sua, Guasca, Cundinamarca, COLOMBIA PLANTAS Comunes de HYCA SUA 4 José A. Muñoz Díaz y Claudia P. Ortíz Parra – Universidad Distrital Francisco José de Caldas Fotos de J. Muñoz, J. Bernal, y C. Vargas. Producido por: Heike Betz, R. Foster, T. Wachter, J. Philipp, con apoyo de Connie Keller, Andrew Mellon Foundation, Adriana Pico, Janice Valencia, Carlos Vargas, Andrés Orejuela, Gustavo Morales, Nubia Orozco -- Programa Flora de Bogotá, Jardín Botánico de Bogotá José Celestino Mutis. © José A. Muñoz [jamunozd@correo udistrital.edu.co] y Claudia P. Ortiz Parra [[email protected]]. Ingeniería Ambiental, Facultad del Medio Ambiente y Recursos Naturales, UDFJC. © Science & Education, The Field Museum, Chicago [[email protected]] [fieldguides.fieldmuseum.org] Rapid Color Guide # 589 versión 1 05/2015 Bosque fragmentado con Vegetación secundaria Vegetación Secundaria Baja Bosque Ripario Intervenido Plantación Forestal Pastos Limpios Mosaico de Cultivos, Pastos y Espacios Naturales .
Recommended publications
  • Leaf Anatomy and C02 Recycling During Crassulacean Acid Metabolism in Twelve Epiphytic Species of Tillandsia (Bromeliaceae)
    Int. J. Plant Sci. 154(1): 100-106. 1993. © 1993 by The University of Chicago. All rights reserved. 1058-5893/93/5401 -0010502.00 LEAF ANATOMY AND C02 RECYCLING DURING CRASSULACEAN ACID METABOLISM IN TWELVE EPIPHYTIC SPECIES OF TILLANDSIA (BROMELIACEAE) VALERIE S. LOESCHEN,* CRAIG E. MARTIN,' * MARIAN SMITH,t AND SUZANNE L. EDERf •Department of Botany, University of Kansas, Lawrence, Kansas 66045-2106; and t Department of Biological Sciences, Southern Illinois University, Edwardsville, Illinois 62026-1651 The relationship between leaf anatomy, specifically the percent of leaf volume occupied by water- storage parenchyma (hydrenchyma), and the contribution of respiratory C02 during Crassulacean acid metabolism (CAM) was investigated in 12 epiphytic species of Tillandsia. It has been postulated that the hydrenchyma, which contributes to C02 exchange through respiration only, may be causally related to the recently observed phenomenon of C02 recycling during CAM. Among the 12 species of Tillandsia, leaves of T. usneoides and T. bergeri exhibited 0% hydrenchyma, while the hydrenchyma in the other species ranged from 2.9% to 53% of leaf cross-sectional area. Diurnal malate fluctuation and nighttime atmospheric C02 uptake were measured in at least four individuals of each species. A significant excess of diurnal malate fluctuation as compared with atmospheric C02 absorbed overnight was observed only in T. schiedeana. This species had an intermediate proportion (30%) of hydrenchyma in its leaves. Results of this study do not support the hypothesis that C02 recycling during CAM may reflect respiratory contributions of C02 from the tissue hydrenchyma. Introduction tions continue through fixation of internally re• leased, respired C02 (Szarek et al.
    [Show full text]
  • Caracterización Funcional De Plantas Y Su Utilidad En La Selección De Especies Para La Restauración Ecológica De Ecosistemas Altoandinos Biota Colombiana, Vol
    Biota colombiana ISSN: 0124-5376 ISSN: 2539-200X Instituto Alexander von Humboldt Cogollo Calderón, Angélica María; Velasco Linares, Patricia; Manosalva, Leonardo Caracterización funcional de plantas y su utilidad en la selección de especies para la restauración ecológica de ecosistemas altoandinos Biota colombiana, vol. 21, núm. 1, 2020, Enero-Junio, pp. 1-15 Instituto Alexander von Humboldt DOI: https://doi.org/10.21068/c2020.v21n01a01 Disponible en: https://www.redalyc.org/articulo.oa?id=49163257001 Cómo citar el artículo Número completo Sistema de Información Científica Redalyc Más información del artículo Red de Revistas Científicas de América Latina y el Caribe, España y Portugal Página de la revista en redalyc.org Proyecto académico sin fines de lucro, desarrollado bajo la iniciativa de acceso abierto DOI: 10.21068/c2020.v21n01a01 Caracterización funcional de plantas y su utilidad en la selección de especies para la restauración ecológica de ecosistemas altoandinos Functional characterization of plants and their utility in the selection of species for the ecological restoration of high-Andean ecosystems Angélica María Cogollo Calderón , Patricia Velasco Linares , Leonardo Manosalva Resumen Para iniciar un proceso de restauración en áreas disturbadas, es importante seleccionar especies vegetales nativas que aporten diversidad funcional al ecosistema en recuperación y permitan el establecimiento de nuevos individuos hacia etapas sucesionales más avanzadas. Evaluamos 14 rasgos de historia de vida en 20 especies de una zona de transición entre bosque altoandino y páramo en la reserva Aguas Vivas, Soacha, Colombia. Registramos información de tipos de polinización y dispersión, hábito de crecimiento, altura máxima, tipo y tamaño del fruto, número de semillas por fruto, textura de la hoja, tipo de indumento, área foliar, área foliar específica, nitrógeno foliar, contenido foliar de materia seca y dureza foliar.
    [Show full text]
  • ISB: Atlas of Florida Vascular Plants
    Longleaf Pine Preserve Plant List Acanthaceae Asteraceae Wild Petunia Ruellia caroliniensis White Aster Aster sp. Saltbush Baccharis halimifolia Adoxaceae Begger-ticks Bidens mitis Walter's Viburnum Viburnum obovatum Deer Tongue Carphephorus paniculatus Pineland Daisy Chaptalia tomentosa Alismataceae Goldenaster Chrysopsis gossypina Duck Potato Sagittaria latifolia Cow Thistle Cirsium horridulum Tickseed Coreopsis leavenworthii Altingiaceae Elephant's foot Elephantopus elatus Sweetgum Liquidambar styraciflua Oakleaf Fleabane Erigeron foliosus var. foliosus Fleabane Erigeron sp. Amaryllidaceae Prairie Fleabane Erigeron strigosus Simpson's rain lily Zephyranthes simpsonii Fleabane Erigeron vernus Dog Fennel Eupatorium capillifolium Anacardiaceae Dog Fennel Eupatorium compositifolium Winged Sumac Rhus copallinum Dog Fennel Eupatorium spp. Poison Ivy Toxicodendron radicans Slender Flattop Goldenrod Euthamia caroliniana Flat-topped goldenrod Euthamia minor Annonaceae Cudweed Gamochaeta antillana Flag Pawpaw Asimina obovata Sneezeweed Helenium pinnatifidum Dwarf Pawpaw Asimina pygmea Blazing Star Liatris sp. Pawpaw Asimina reticulata Roserush Lygodesmia aphylla Rugel's pawpaw Deeringothamnus rugelii Hempweed Mikania cordifolia White Topped Aster Oclemena reticulata Apiaceae Goldenaster Pityopsis graminifolia Button Rattlesnake Master Eryngium yuccifolium Rosy Camphorweed Pluchea rosea Dollarweed Hydrocotyle sp. Pluchea Pluchea spp. Mock Bishopweed Ptilimnium capillaceum Rabbit Tobacco Pseudognaphalium obtusifolium Blackroot Pterocaulon virgatum
    [Show full text]
  • Tillandsia Recurvata Is the Most Wide
    ZLATKO JANEBA Tillandsia recurvata illandsia recurvata is the most wide- even known to grow on roofs and power lines. spread bromeliad. It occurs in the T. recurvata is the type species of subgenus Dia- southern US, where it stretches phoranthema, which contains some 30 variable and from Florida all the way to Arizo- mostly miniature species that have small, incon- na, and as far south as as Argenti- spicuous flowers. Members of Diaphoranthema are na and Chile. It grows epiphytical- common and locally abundant in South Ameri- ly on trees, bushes, and cacti or as ca, with a distribution centered in Argentina and a petrophyte on rocky cliffs. It is Bolivia. Only two species reach North America: T. recurvata (aka Small Ballmoss) was found growing close to the ground on the side of the barrel cactus Echinocactus platyacanthus near La Ascención, Nuevo León, Mexico (right). More often, T. recurvata is spotted (right) clinging to the bark of pine trees (Pinus johannis and Pinus arizonica var stormiae), as seen here at a Tspot between Santa Lucia and El Pinito, Nuevo León. 2 CACTUS AND SUCCULENT JOURNAL T. recurvata, sometimes called Small Ballmoss, and Tillandsia species, such as T. capillaris, T. croca- T. usneoides, the well known Spanish Moss. ta, and T. mallemontii, which are found in simi- Polyploidy, the condition wherein a plant con- lar habitats but which have different flower char- tains more than one set of chromosomes in its acteristics. cells, is common in this subgenus. Normally we T. recurvata was described by Carl Linnaeus think of polyploidy resulting in larger-than-nor- as Renealmia recurvata in 1753, the same year mal plants, but these bromeliads tend to be quite that he erected the genus Tillandsia.
    [Show full text]
  • Spanish Moss, Ball Moss, and Lichens - Harmless Epiphytes 1 Joe Sewards and Sydney Park Brown2
    ENH1224 Spanish Moss, Ball Moss, and Lichens - Harmless Epiphytes 1 Joe Sewards and Sydney Park Brown2 Epiphytes are “air” plants that survive on moisture and Despite their common names, Spanish moss (Tillandsia nutrients in the atmosphere. Several epiphytic plants, like usneoides) and ball moss (Tillandsia recurvata) are not Spanish moss, ball moss, and lichen, are common to the mosses, but members of the Bromeliad family. Spanish Florida landscape and southeast United States. People moss (Figure 1) is easily recognizable by its pendant unfamiliar with epiphytes sometimes worry that they may strands. Ball moss (Figure 2) is a small, tufted, gray-green injure the plants they perch in. Epiphytes attach themselves plant. Both prefer high light and will therefore thrive on to plants, but they do not harm the plants, unlike mistletoe, weak or dead trees that have lost their leaves. Their pres- a plant parasite. Without soil as a source of nutrients, ence on dead or dying trees does not implicate them as the epiphytic plants have evolved the capacity to obtain miner- cause of the plant’s deterioration, however. Sick or dead als dissolved in water that flows across leaves and down host trees likely succumbed to soil compaction, altered branches. drainage, disease, or other problems that can compromise plant health. Spanish moss may speed the decline of failing While epiphytes may grow on wires, fences and other trees. This is because branches heavily laden with Spanish non-living structures, they are particularly well-adapted to moss may shade lower leaves, intercepting light needed well-lit, moist habitats commonly found near rivers, ponds for photosynthesis, and sometimes concealing structural and lakes.
    [Show full text]
  • How Prevalent Is Crassulacean Acid Metabolism Among Vascular Epiphytes?
    Oecologia (2004) 138: 184-192 DOI 10.1007/s00442-003-1418-x ECOPHYSIOLOGY Gerhard Zotz How prevalent is crassulacean acid metabolism among vascular epiphytes? Received: 24 March 2003 / Accepted: 1Í September 2003 / Published online: 31 October 2003 © Springer-Verlag 2003 Abstract The occurrence of crassulacean acid metabo- the majority of plant species using this water-preserving lism (CAM) in the epiphyte community of a lowland photosynthetic pathway live in trees as epiphytes. In a forest of the Atlantic slope of Panama was investigated. I recent review on the taxonomic occurrence of CAM, hypothesized that CAM is mostly found in orchids, of Winter and Smith (1996) pointed out that Orchidaceae which many species are relatively small and/or rare. Thus, present the greatest uncertainty concerning the number of the relative proportion of species with CAM should not be CAM plants. This family with >800 genera and at least a good indicator for the prevalence of this photosynthetic 20,000 species (Dressier 1981) is estimated to have 7,000, pathway in a community when expressed on an individual mostly epiphytic, CAM species (Winter and Smith 1996), or a biomass basis. In 0.4 ha of forest, 103 species of which alone would account for almost 50% of all CAM vascular epiphytes with 13,099 individuals were found. As plants. A number of studies, mostly using stable isotope judged from the C isotope ratios and the absence of Kranz techniques, documented a steady increase in the propor- anatomy, CAM was detected in 20 species (19.4% of the tion of CAM plants among local epiphyte floras from wet total), which were members of the families Orchidaceae, tropical rainforest and moist tropical forests to dry forests.
    [Show full text]
  • Plantas Del Parque Arqueológico Cochasqui 1
    Parroquia Cochasqui, cantón Tabacundo, Pichincha, Ecuador Plantas del Parque Arqueológico Cochasqui 1 Carlos Eduardo Cerón Martínez Herbario Alfredo Paredes (QAP), Universidad Central del Ecuador, Quito [[email protected]]. © Fotos de Carlos Eduardo Cerón Martínez [fieldguides.fieldmuseum.org] [1069] versión 1 10/2018 1 Entrada al parque 2 Maqueta de las pirámides 3 Pirámides 4 Pirámide de rosas 5 Museo 6 Jardín medicinal 7 Turismo 8 Selaginella microphylla 9 Equisetum bogotense 10 Asplenium gilliesi SELAGINELLAC. Alfombrilla EQUISETACEAE Caballo chupa ASPLENIACEAE Yana sampi 11 Asplenium monanthes 12 Cystopteris fragilis 13 Niphidium albopunctatissimum 14 Niphidium longifolium 15 Polypodium murorum ASPLENIACEAE Culantrillo CYSTOPTERID. Lali helecho POLYPODIACEAE Calawala POLYPODIACEAE Calawala POLYPOD. Helecho hembra 16 Adiantum poiretii 17 Cheilanthes myriophylla 18 Pellaea ternifolia 19 Cupressus aff. semperflorens 20 Pinus radiata PTERIDACEAE Culantrillo PTERIDACEAE Chujcho PTERIDACEAE Urpi chaki CUPRESSACEAE Ciprés PINACEAE Pino Parroquia Cochasqui, cantón Tabacundo, Pichincha, Ecuador Plantas del Parque Arqueológico Cochasqui 2 Carlos Eduardo Cerón Martínez Herbario Alfredo Paredes (QAP), Universidad Central del Ecuador, Quito [[email protected]]. © Fotos de Carlos Eduardo Cerón Martínez [fieldguides.fieldmuseum.org] [1069] versión 1 10/2018 21 Alternanthera porrigens 22 Amaranthus caudatus 23 Chenopodium album 24 Chenopodium ambrosioides 25 Arracia xanthorrhiza AMARANTHACEAE Moradilla AMARANTHACEAE Sangoracha AMARANTHACEAE
    [Show full text]
  • Diversidad De Plantas Y Vegetación Del Páramo Andino
    Plant diversity and vegetation of the Andean Páramo Diversidad de plantas y vegetación del Páramo Andino By Gwendolyn Peyre A thesis submitted for the degree of Doctor from the University of Barcelona and Aarhus University University of Barcelona, Faculty of Biology, PhD Program Biodiversity Aarhus University, Institute of Bioscience, PhD Program Bioscience Supervisors: Dr. Xavier Font, Dr. Henrik Balslev Tutor: Dr. Xavier Font March, 2015 Aux peuples andins Summary The páramo is a high mountain ecosystem that includes all natural habitats located between the montane treeline and the permanent snowline in the humid northern Andes. Given its recent origin and continental insularity among tropical lowlands, the páramo evolved as a biodiversity hotspot, with a vascular flora of more than 3400 species and high endemism. Moreover, the páramo provides many ecosystem services for human populations, essentially water supply and carbon storage. Anthropogenic activities, mostly agriculture and burning- grazing practices, as well as climate change are major threats for the páramo’s integrity. Consequently, further scientific research and conservation strategies must be oriented towards this unique region. Botanical and ecological knowledge on the páramo is extensive but geographically heterogeneous. Moreover, most research studies and management strategies are carried out at local to national scale and given the vast extension of the páramo, regional studies are also needed. The principal limitation for regional páramo studies is the lack of a substantial source of good quality botanical data covering the entire region and freely accessible. To meet the needs for a regional data source, we created VegPáramo, a floristic and vegetation database containing 3000 vegetation plots sampled with the phytosociological method throughout the páramo region and proceeding from the existing literature and our fieldwork (Chapter 1).
    [Show full text]
  • Ball Moss Tillandsia Recurvata
    Ball Moss Tillandsia recurvata Like Spanish moss, ball moss is an epiphyte and belongs to family Bromeliaceae. Ball moss [Tillandsia recurvata (L.) L], or an air plant, is not a true moss but rather is a small flowering plant. It is neither a pathogen nor a parasite. During the past couple of years, ball moss has increas- ingly been colonizing trees and shrubs, including oaks, pines, magnolias, crape myrtles, Bradford pears and others, on the Louisiana State University campus and surrounding areas in Baton Rouge. In addition to trees and shrubs, ball moss can attach itself to fences, electric poles and other physical structures with the help of pseudo-roots. Ball moss uses trees or plants as surfaces to grow on but does not derive any nutrients or water from them. Ball moss is a true plant and can prepare its own food by using water vapors and nutrient from the environment. Extending from Georgia to Arizona and Mexico, ball moss thrives in high humidity and low intensity sunlight environments. Unlike loose, fibrous Spanish moss, ball moss grows in a compact shape of a ball ranging in size from a Figure 1. Young ball moss plant. golf ball to a soccer ball. Ball moss leaves are narrow and grayish-green, with pointed tips that curve outward from the center of the ball. It gets its mosslike appearance from the trichomes present on the leaves. Blue to violet flowers emerge on long central stems during spring. Ball moss spreads to new locations both through wind-dispersed seeds and movement of small vegetative parts of the plant.
    [Show full text]
  • Lyonia Preserve Plant Checklist
    I -1 Lyonia Preserve Plant Checklist Volusia County, Florida I, I Aceraceae (Maple) Asteraceae (Aster) Red Maple Acer rubrum • Bitterweed Helenium amarum • Blackroot Pterocaulon virgatum Agavaceae (Yucca) Blazing Star Liatris sp. B Adam's Needle Yucca filamentosa Blazing Star Liatris tenuifolia BNolina Nolina brittoniana Camphorweed Heterotheca subaxillaris Spanish Bayonet Yucca aloifolia § Cudweed Gnaphalium falcatum • Dog Fennel Eupatorium capillifolium Amaranthaceae (Amaranth) Dwarf Horseweed Conyza candensis B Cottonweed Froelichia floridana False Dandelion Pyrrhopappus carolinianus • Fireweed Erechtites hieracifolia B Anacardiaceae (Cashew) Garberia Garberia heterophylla Winged Sumac Rhus copallina Goldenaster Pityopsis graminifolia • § Goldenrod Solidago chapmanii Annonaceae (Custard Apple) Goldenrod Solidago fistulosa Flag Paw paw Asimina obovata Goldenrod Solidago spp. B • Mohr's Throughwort Eupatorium mohrii Apiaceae (Celery) BRa gweed Ambrosia artemisiifolia • Dollarweed Hydrocotyle sp. Saltbush Baccharis halimifolia BSpanish Needles Bidens alba Apocynaceae (Dogbane) Wild Lettuce Lactuca graminifolia Periwinkle Catharathus roseus • • Brassicaceae (Mustard) Aquifoliaceae (Holly) Poorman's Pepper Lepidium virginicum Gallberry Ilex glabra • Sand Holly Ilex ambigua Bromeliaceae (Airplant) § Scrub Holly Ilex opaca var. arenicola Ball Moss Tillandsia recurvata • Spanish Moss Tillandsia usneoides Arecaceae (Palm) • Saw Palmetto Serenoa repens Cactaceae (Cactus) BScrub Palmetto Sabal etonia • Prickly Pear Opuntia humifusa Asclepiadaceae
    [Show full text]
  • Tillandsia (Bromeliaceae) of BELIZE 1
    Tillandsia (Bromeliaceae) of BELIZE 1 Bruce K. Holst1, David Amaya2, Ella Baron2, Marvin Paredes2, Elma Kay3 1Marie Selby Botanical Gardens, 2 Ian Anderson’s Caves Branch Botanical Garden, 3University of Belize © Marie Selby Botanical Gardens ([email protected]), Ian Anderson’s Caves Branch Botanical Garden ([email protected]). Photos by D. Amaya (DA), E. Baron (EB), W. Collier (WC), B. Holst (BH); J. Meerman (JM), L. Munsey (LM), M. Paredes (MP), P. Nelson (PN), D. Troxell (DT) Support from the Marie Selby Botanical Gardens, Ian Anderson’s Caves Branch Jungle Lodge, Environmental Resource Institute - University of Belize [fieldguides.fieldmuseum.org] [964] version 1 11/2017 The genus Tillandsia in Belize includes approximately 30 species, which can be found growing singly, or in large colonies, and can usually be identified by their non-spiny leaves, often flattened inflorescence branches, symmetrical sepals, free petals, and often colorful flower clusters which fade quickly after flowering. They are most always epiphytic growing on trees and shrubs to gain better access to sunlight; an occasional species is found on rocks or on the ground (e.g., T. dasyliriifolia). Many have gray/silvery, scaly leaves (e.g., T. pruinosa, T. streptophylla). The scales (or “trichomes”) help capture water and nutrients from the environment. Some spe- cies form water-holding tanks by means of their overlapping leaves. These tanks are rich with nutrients from the environment, provide sustenance for the plant, and create important habitat for animals in the forest canopy. The genus is found throughout Belize, but reaches its peak of species diversity on the high summits of the Maya Mountains.
    [Show full text]
  • Caracterización Vegetal Del Bosque Altoandino En Diferentes Estados
    PONTIFICIA UNIVERSIDAD JAVERIANA FACULTAD DE ESTUDIOS AMBIENTALES Y RURALES CARRERA DE ECOLOGÍA BOGOTÁ D.C El estudiante JUAN FELIPE RESTREPO ABADÍA C.C 1.020.768.213 realizó el trabajo de grado titulado: Caracterización vegetal del Bosque Altoandino en diferentes estados sucesionales de la Reserva Biológica “Encenillo”, Guasca- Cundinamarca Trabajo de grado presentado para obtener el título de ECÓLOGO Mayo de 2016 A mis tíos Silvia y Mauricio. Q.E.P.D. 2 TABLA DE CONTENIDO 1. ARTÍCULO EN FORMATO DE LA REVISTA COLOMBIANA DE CIENCIAS EXACTAS Y NATURALES ……………………………………………………….… 7 2. MARCO TEÓRICO AMPLIADO...................................................................... 45 2.1 Descripción del problema………………………………………………………… 45 2.2 Justificación………………………………………………………………………… 46 2.3 Antecedentes……………………………………………………………………… 47 2.4 Área de estudio…………………………………………………………………… 50 2.5 Bosque Altoandino………………………………………………………………… 51 2.6 Sucesión Ecológica……………………………………………………………… 54 2.7 Ecología de comunidades……………………………………………………… 57 2.7.1 Composición, estructura y organización de las comunidades……………… 58 2.8 Restauración Ecológica………………………………………………………… 59 3. OBJETIVOS………………………………………………………………………… 62 3.1 Objetivo general…………………………………………………………………… 62 3.2 Objetivos específicos……………………………………………………………… 62 3 4. METODOLOGÍA AMPLIADA…………………………………………………… 63 4.1 Diseño del estudio……………………………………………………………… 63 4.2 Parámetros para la selección de las parcelas en la reserva……………… 64 4.3 Fase de campo……………………………………………………………..…… 65 4.3.1 Parcelación…………………………………………………………………… 65 4.4 Análisis de datos…………………………………………………………….… 67 4.4.1 Composición florística……………………………………………………… 67 4.4.2 Estructura de la vegetación………………………………………………… 67 4.4.3 Indices estructurales y de diversidad……………………………………… 70 4.4.3.1 Diversidad Alfa……………………………………………………….…… 70 4.4.3.2 Diversidad Beta…………………………………………………………… 72 5. BIBLIOGRAFIA………………………………………………………………… 75 ANEXOS…………………………………………………………………………… 86 4 Listado de figuras: Figura 1. Ubicación área de estudio, caracterización vegetal (Tomado de Acuña, 2010). Figura 2.
    [Show full text]