CULTURE of Tillandsia Species in the DESERT

Total Page:16

File Type:pdf, Size:1020Kb

CULTURE of Tillandsia Species in the DESERT ARIZONA-SONORA DESERT MUSEUM PLANT CARE INFORMATION CULTURE OF Tillandsia species IN THE DESERT DESCRIPTION: Most bromeliads are epiphytes (they grow on trees or rocks) and are native to the New World wet tropics. Pineapple (which grows in the ground) and the Spanish moss of the Southern U.S. are familiar but atypical examples. Most kinds have rosettes of leaves which catch rain and hold the water for short dry spells. Most of the hundreds of species of Tillandias are adapted to the dry tropics where there is a long rainless season, but always high humidity. These do not hold water in their centers, but instead have tough leathery leaves which may also be succulent. The plants are nearly or completely rootless; the leaves have taken over the job of water and nutrient absorption. These are for dedicated plant lovers who are willing to give them special treatment. Tillandsia exserta grows in the Sonoran Desert near Guaymas, which receives only 5 inches of rain per year, all in summer. The plants grow on the outer branches of shrubs and cacti, often in full sun. In southern Arizona the air is much drier, so this plant must be grown in a greenhouse or, if outdoors, protected from wind and watered frequently (whenever not visibly wet). It is not recommended as a houseplant, because the indoor environment is dry, stagnant, and either too dark or too hot if in a sunny window. CULTURE: Hardiness: It will tolerate cold temperatures, but not frost. Sun tolerance: High light intensity. At least 50% to almost full sun. Watering and feeding: High humidity (i.e. a greenhouse), or almost daily watering. Growth will be better if the plant is sprayed with a dilute complete fertilizer monthly. Ample air circulation is critical. Pruning: Prune finished flower stalks, or entire flowered rosette, restarting the pups. .
Recommended publications
  • Leaf Anatomy and C02 Recycling During Crassulacean Acid Metabolism in Twelve Epiphytic Species of Tillandsia (Bromeliaceae)
    Int. J. Plant Sci. 154(1): 100-106. 1993. © 1993 by The University of Chicago. All rights reserved. 1058-5893/93/5401 -0010502.00 LEAF ANATOMY AND C02 RECYCLING DURING CRASSULACEAN ACID METABOLISM IN TWELVE EPIPHYTIC SPECIES OF TILLANDSIA (BROMELIACEAE) VALERIE S. LOESCHEN,* CRAIG E. MARTIN,' * MARIAN SMITH,t AND SUZANNE L. EDERf •Department of Botany, University of Kansas, Lawrence, Kansas 66045-2106; and t Department of Biological Sciences, Southern Illinois University, Edwardsville, Illinois 62026-1651 The relationship between leaf anatomy, specifically the percent of leaf volume occupied by water- storage parenchyma (hydrenchyma), and the contribution of respiratory C02 during Crassulacean acid metabolism (CAM) was investigated in 12 epiphytic species of Tillandsia. It has been postulated that the hydrenchyma, which contributes to C02 exchange through respiration only, may be causally related to the recently observed phenomenon of C02 recycling during CAM. Among the 12 species of Tillandsia, leaves of T. usneoides and T. bergeri exhibited 0% hydrenchyma, while the hydrenchyma in the other species ranged from 2.9% to 53% of leaf cross-sectional area. Diurnal malate fluctuation and nighttime atmospheric C02 uptake were measured in at least four individuals of each species. A significant excess of diurnal malate fluctuation as compared with atmospheric C02 absorbed overnight was observed only in T. schiedeana. This species had an intermediate proportion (30%) of hydrenchyma in its leaves. Results of this study do not support the hypothesis that C02 recycling during CAM may reflect respiratory contributions of C02 from the tissue hydrenchyma. Introduction tions continue through fixation of internally re• leased, respired C02 (Szarek et al.
    [Show full text]
  • ISB: Atlas of Florida Vascular Plants
    Longleaf Pine Preserve Plant List Acanthaceae Asteraceae Wild Petunia Ruellia caroliniensis White Aster Aster sp. Saltbush Baccharis halimifolia Adoxaceae Begger-ticks Bidens mitis Walter's Viburnum Viburnum obovatum Deer Tongue Carphephorus paniculatus Pineland Daisy Chaptalia tomentosa Alismataceae Goldenaster Chrysopsis gossypina Duck Potato Sagittaria latifolia Cow Thistle Cirsium horridulum Tickseed Coreopsis leavenworthii Altingiaceae Elephant's foot Elephantopus elatus Sweetgum Liquidambar styraciflua Oakleaf Fleabane Erigeron foliosus var. foliosus Fleabane Erigeron sp. Amaryllidaceae Prairie Fleabane Erigeron strigosus Simpson's rain lily Zephyranthes simpsonii Fleabane Erigeron vernus Dog Fennel Eupatorium capillifolium Anacardiaceae Dog Fennel Eupatorium compositifolium Winged Sumac Rhus copallinum Dog Fennel Eupatorium spp. Poison Ivy Toxicodendron radicans Slender Flattop Goldenrod Euthamia caroliniana Flat-topped goldenrod Euthamia minor Annonaceae Cudweed Gamochaeta antillana Flag Pawpaw Asimina obovata Sneezeweed Helenium pinnatifidum Dwarf Pawpaw Asimina pygmea Blazing Star Liatris sp. Pawpaw Asimina reticulata Roserush Lygodesmia aphylla Rugel's pawpaw Deeringothamnus rugelii Hempweed Mikania cordifolia White Topped Aster Oclemena reticulata Apiaceae Goldenaster Pityopsis graminifolia Button Rattlesnake Master Eryngium yuccifolium Rosy Camphorweed Pluchea rosea Dollarweed Hydrocotyle sp. Pluchea Pluchea spp. Mock Bishopweed Ptilimnium capillaceum Rabbit Tobacco Pseudognaphalium obtusifolium Blackroot Pterocaulon virgatum
    [Show full text]
  • Tillandsia Recurvata Is the Most Wide
    ZLATKO JANEBA Tillandsia recurvata illandsia recurvata is the most wide- even known to grow on roofs and power lines. spread bromeliad. It occurs in the T. recurvata is the type species of subgenus Dia- southern US, where it stretches phoranthema, which contains some 30 variable and from Florida all the way to Arizo- mostly miniature species that have small, incon- na, and as far south as as Argenti- spicuous flowers. Members of Diaphoranthema are na and Chile. It grows epiphytical- common and locally abundant in South Ameri- ly on trees, bushes, and cacti or as ca, with a distribution centered in Argentina and a petrophyte on rocky cliffs. It is Bolivia. Only two species reach North America: T. recurvata (aka Small Ballmoss) was found growing close to the ground on the side of the barrel cactus Echinocactus platyacanthus near La Ascención, Nuevo León, Mexico (right). More often, T. recurvata is spotted (right) clinging to the bark of pine trees (Pinus johannis and Pinus arizonica var stormiae), as seen here at a Tspot between Santa Lucia and El Pinito, Nuevo León. 2 CACTUS AND SUCCULENT JOURNAL T. recurvata, sometimes called Small Ballmoss, and Tillandsia species, such as T. capillaris, T. croca- T. usneoides, the well known Spanish Moss. ta, and T. mallemontii, which are found in simi- Polyploidy, the condition wherein a plant con- lar habitats but which have different flower char- tains more than one set of chromosomes in its acteristics. cells, is common in this subgenus. Normally we T. recurvata was described by Carl Linnaeus think of polyploidy resulting in larger-than-nor- as Renealmia recurvata in 1753, the same year mal plants, but these bromeliads tend to be quite that he erected the genus Tillandsia.
    [Show full text]
  • Spanish Moss, Ball Moss, and Lichens - Harmless Epiphytes 1 Joe Sewards and Sydney Park Brown2
    ENH1224 Spanish Moss, Ball Moss, and Lichens - Harmless Epiphytes 1 Joe Sewards and Sydney Park Brown2 Epiphytes are “air” plants that survive on moisture and Despite their common names, Spanish moss (Tillandsia nutrients in the atmosphere. Several epiphytic plants, like usneoides) and ball moss (Tillandsia recurvata) are not Spanish moss, ball moss, and lichen, are common to the mosses, but members of the Bromeliad family. Spanish Florida landscape and southeast United States. People moss (Figure 1) is easily recognizable by its pendant unfamiliar with epiphytes sometimes worry that they may strands. Ball moss (Figure 2) is a small, tufted, gray-green injure the plants they perch in. Epiphytes attach themselves plant. Both prefer high light and will therefore thrive on to plants, but they do not harm the plants, unlike mistletoe, weak or dead trees that have lost their leaves. Their pres- a plant parasite. Without soil as a source of nutrients, ence on dead or dying trees does not implicate them as the epiphytic plants have evolved the capacity to obtain miner- cause of the plant’s deterioration, however. Sick or dead als dissolved in water that flows across leaves and down host trees likely succumbed to soil compaction, altered branches. drainage, disease, or other problems that can compromise plant health. Spanish moss may speed the decline of failing While epiphytes may grow on wires, fences and other trees. This is because branches heavily laden with Spanish non-living structures, they are particularly well-adapted to moss may shade lower leaves, intercepting light needed well-lit, moist habitats commonly found near rivers, ponds for photosynthesis, and sometimes concealing structural and lakes.
    [Show full text]
  • How Prevalent Is Crassulacean Acid Metabolism Among Vascular Epiphytes?
    Oecologia (2004) 138: 184-192 DOI 10.1007/s00442-003-1418-x ECOPHYSIOLOGY Gerhard Zotz How prevalent is crassulacean acid metabolism among vascular epiphytes? Received: 24 March 2003 / Accepted: 1Í September 2003 / Published online: 31 October 2003 © Springer-Verlag 2003 Abstract The occurrence of crassulacean acid metabo- the majority of plant species using this water-preserving lism (CAM) in the epiphyte community of a lowland photosynthetic pathway live in trees as epiphytes. In a forest of the Atlantic slope of Panama was investigated. I recent review on the taxonomic occurrence of CAM, hypothesized that CAM is mostly found in orchids, of Winter and Smith (1996) pointed out that Orchidaceae which many species are relatively small and/or rare. Thus, present the greatest uncertainty concerning the number of the relative proportion of species with CAM should not be CAM plants. This family with >800 genera and at least a good indicator for the prevalence of this photosynthetic 20,000 species (Dressier 1981) is estimated to have 7,000, pathway in a community when expressed on an individual mostly epiphytic, CAM species (Winter and Smith 1996), or a biomass basis. In 0.4 ha of forest, 103 species of which alone would account for almost 50% of all CAM vascular epiphytes with 13,099 individuals were found. As plants. A number of studies, mostly using stable isotope judged from the C isotope ratios and the absence of Kranz techniques, documented a steady increase in the propor- anatomy, CAM was detected in 20 species (19.4% of the tion of CAM plants among local epiphyte floras from wet total), which were members of the families Orchidaceae, tropical rainforest and moist tropical forests to dry forests.
    [Show full text]
  • Plantas Del Parque Arqueológico Cochasqui 1
    Parroquia Cochasqui, cantón Tabacundo, Pichincha, Ecuador Plantas del Parque Arqueológico Cochasqui 1 Carlos Eduardo Cerón Martínez Herbario Alfredo Paredes (QAP), Universidad Central del Ecuador, Quito [[email protected]]. © Fotos de Carlos Eduardo Cerón Martínez [fieldguides.fieldmuseum.org] [1069] versión 1 10/2018 1 Entrada al parque 2 Maqueta de las pirámides 3 Pirámides 4 Pirámide de rosas 5 Museo 6 Jardín medicinal 7 Turismo 8 Selaginella microphylla 9 Equisetum bogotense 10 Asplenium gilliesi SELAGINELLAC. Alfombrilla EQUISETACEAE Caballo chupa ASPLENIACEAE Yana sampi 11 Asplenium monanthes 12 Cystopteris fragilis 13 Niphidium albopunctatissimum 14 Niphidium longifolium 15 Polypodium murorum ASPLENIACEAE Culantrillo CYSTOPTERID. Lali helecho POLYPODIACEAE Calawala POLYPODIACEAE Calawala POLYPOD. Helecho hembra 16 Adiantum poiretii 17 Cheilanthes myriophylla 18 Pellaea ternifolia 19 Cupressus aff. semperflorens 20 Pinus radiata PTERIDACEAE Culantrillo PTERIDACEAE Chujcho PTERIDACEAE Urpi chaki CUPRESSACEAE Ciprés PINACEAE Pino Parroquia Cochasqui, cantón Tabacundo, Pichincha, Ecuador Plantas del Parque Arqueológico Cochasqui 2 Carlos Eduardo Cerón Martínez Herbario Alfredo Paredes (QAP), Universidad Central del Ecuador, Quito [[email protected]]. © Fotos de Carlos Eduardo Cerón Martínez [fieldguides.fieldmuseum.org] [1069] versión 1 10/2018 21 Alternanthera porrigens 22 Amaranthus caudatus 23 Chenopodium album 24 Chenopodium ambrosioides 25 Arracia xanthorrhiza AMARANTHACEAE Moradilla AMARANTHACEAE Sangoracha AMARANTHACEAE
    [Show full text]
  • Ball Moss Tillandsia Recurvata
    Ball Moss Tillandsia recurvata Like Spanish moss, ball moss is an epiphyte and belongs to family Bromeliaceae. Ball moss [Tillandsia recurvata (L.) L], or an air plant, is not a true moss but rather is a small flowering plant. It is neither a pathogen nor a parasite. During the past couple of years, ball moss has increas- ingly been colonizing trees and shrubs, including oaks, pines, magnolias, crape myrtles, Bradford pears and others, on the Louisiana State University campus and surrounding areas in Baton Rouge. In addition to trees and shrubs, ball moss can attach itself to fences, electric poles and other physical structures with the help of pseudo-roots. Ball moss uses trees or plants as surfaces to grow on but does not derive any nutrients or water from them. Ball moss is a true plant and can prepare its own food by using water vapors and nutrient from the environment. Extending from Georgia to Arizona and Mexico, ball moss thrives in high humidity and low intensity sunlight environments. Unlike loose, fibrous Spanish moss, ball moss grows in a compact shape of a ball ranging in size from a Figure 1. Young ball moss plant. golf ball to a soccer ball. Ball moss leaves are narrow and grayish-green, with pointed tips that curve outward from the center of the ball. It gets its mosslike appearance from the trichomes present on the leaves. Blue to violet flowers emerge on long central stems during spring. Ball moss spreads to new locations both through wind-dispersed seeds and movement of small vegetative parts of the plant.
    [Show full text]
  • Lyonia Preserve Plant Checklist
    I -1 Lyonia Preserve Plant Checklist Volusia County, Florida I, I Aceraceae (Maple) Asteraceae (Aster) Red Maple Acer rubrum • Bitterweed Helenium amarum • Blackroot Pterocaulon virgatum Agavaceae (Yucca) Blazing Star Liatris sp. B Adam's Needle Yucca filamentosa Blazing Star Liatris tenuifolia BNolina Nolina brittoniana Camphorweed Heterotheca subaxillaris Spanish Bayonet Yucca aloifolia § Cudweed Gnaphalium falcatum • Dog Fennel Eupatorium capillifolium Amaranthaceae (Amaranth) Dwarf Horseweed Conyza candensis B Cottonweed Froelichia floridana False Dandelion Pyrrhopappus carolinianus • Fireweed Erechtites hieracifolia B Anacardiaceae (Cashew) Garberia Garberia heterophylla Winged Sumac Rhus copallina Goldenaster Pityopsis graminifolia • § Goldenrod Solidago chapmanii Annonaceae (Custard Apple) Goldenrod Solidago fistulosa Flag Paw paw Asimina obovata Goldenrod Solidago spp. B • Mohr's Throughwort Eupatorium mohrii Apiaceae (Celery) BRa gweed Ambrosia artemisiifolia • Dollarweed Hydrocotyle sp. Saltbush Baccharis halimifolia BSpanish Needles Bidens alba Apocynaceae (Dogbane) Wild Lettuce Lactuca graminifolia Periwinkle Catharathus roseus • • Brassicaceae (Mustard) Aquifoliaceae (Holly) Poorman's Pepper Lepidium virginicum Gallberry Ilex glabra • Sand Holly Ilex ambigua Bromeliaceae (Airplant) § Scrub Holly Ilex opaca var. arenicola Ball Moss Tillandsia recurvata • Spanish Moss Tillandsia usneoides Arecaceae (Palm) • Saw Palmetto Serenoa repens Cactaceae (Cactus) BScrub Palmetto Sabal etonia • Prickly Pear Opuntia humifusa Asclepiadaceae
    [Show full text]
  • Tillandsia (Bromeliaceae) of BELIZE 1
    Tillandsia (Bromeliaceae) of BELIZE 1 Bruce K. Holst1, David Amaya2, Ella Baron2, Marvin Paredes2, Elma Kay3 1Marie Selby Botanical Gardens, 2 Ian Anderson’s Caves Branch Botanical Garden, 3University of Belize © Marie Selby Botanical Gardens ([email protected]), Ian Anderson’s Caves Branch Botanical Garden ([email protected]). Photos by D. Amaya (DA), E. Baron (EB), W. Collier (WC), B. Holst (BH); J. Meerman (JM), L. Munsey (LM), M. Paredes (MP), P. Nelson (PN), D. Troxell (DT) Support from the Marie Selby Botanical Gardens, Ian Anderson’s Caves Branch Jungle Lodge, Environmental Resource Institute - University of Belize [fieldguides.fieldmuseum.org] [964] version 1 11/2017 The genus Tillandsia in Belize includes approximately 30 species, which can be found growing singly, or in large colonies, and can usually be identified by their non-spiny leaves, often flattened inflorescence branches, symmetrical sepals, free petals, and often colorful flower clusters which fade quickly after flowering. They are most always epiphytic growing on trees and shrubs to gain better access to sunlight; an occasional species is found on rocks or on the ground (e.g., T. dasyliriifolia). Many have gray/silvery, scaly leaves (e.g., T. pruinosa, T. streptophylla). The scales (or “trichomes”) help capture water and nutrients from the environment. Some spe- cies form water-holding tanks by means of their overlapping leaves. These tanks are rich with nutrients from the environment, provide sustenance for the plant, and create important habitat for animals in the forest canopy. The genus is found throughout Belize, but reaches its peak of species diversity on the high summits of the Maya Mountains.
    [Show full text]
  • Evolution Along the Crassulacean Acid Metabolism Continuum
    Review CSIRO PUBLISHING www.publish.csiro.au/journals/fpb Functional Plant Biology, 2010, 37, 995–1010 Evolution along the crassulacean acid metabolism continuum Katia SilveraA, Kurt M. Neubig B, W. Mark Whitten B, Norris H. Williams B, Klaus Winter C and John C. Cushman A,D ADepartment of Biochemistry and Molecular Biology, MS200, University of Nevada, Reno, NV 89557-0200, USA. BFlorida Museum of Natural History, University of Florida, Gainesville, FL 32611-7800, USA. CSmithsonian Tropical Research Institute, PO Box 0843-03092, Balboa, Ancón, Republic of Panama. DCorresponding author. Email: [email protected] This paper is part of an ongoing series: ‘The Evolution of Plant Functions’. Abstract. Crassulacean acid metabolism (CAM) is a specialised mode of photosynthesis that improves atmospheric CO2 assimilation in water-limited terrestrial and epiphytic habitats and in CO2-limited aquatic environments. In contrast with C3 and C4 plants, CAM plants take up CO2 from the atmosphere partially or predominantly at night. CAM is taxonomically widespread among vascular plants andis present inmanysucculent species that occupy semiarid regions, as well as intropical epiphytes and in some aquatic macrophytes. This water-conserving photosynthetic pathway has evolved multiple times and is found in close to 6% of vascular plant species from at least 35 families. Although many aspects of CAM molecular biology, biochemistry and ecophysiology are well understood, relatively little is known about the evolutionary origins of CAM. This review focuses on five main topics: (1) the permutations and plasticity of CAM, (2) the requirements for CAM evolution, (3) the drivers of CAM evolution, (4) the prevalence and taxonomic distribution of CAM among vascular plants with emphasis on the Orchidaceae and (5) the molecular underpinnings of CAM evolution including circadian clock regulation of gene expression.
    [Show full text]
  • Yellow Fever Creek Preserve Plant Species List
    Appendix 2: Plant Species List for Yellow Fever Creek Preserve Scientific Name Common Name Status EPPC FDA IRC FNAI Family: Azollaceae (mosquito fern) Woodwardia virginica Virginia chain fern native R Family: Blechnaceae (mid-sorus fern) Blechnum serrulatum swamp fern native Family: Dennstaedtiaceae (cuplet fern) Pteridium aquilinum var. caudatum lacy braken fern native Pteridium aquilinum var. pseudocaudatum tailed braken fern native R Family: Nephrolepidaceae (sword fern) Nephrolepis exaltata wild Boston fern native Nephrolepis multiflora Asian sword fern exotic I Family: Polypodiaceae (polypody) Phlebodium aureum golden polypody native Pleopeltis polypodioides var. michauxiana resurrection fern native Family: Pteridaceae (brake fern) Pteris vittata Chinese ladder brake exotic II Family: Schizaeaceae (curly-grass) Lygodium microphyllum small-leaf climbing fern exotic I Family: Thelypteridaceae (marsh fern) Thelypteris kunthii southern shield fern native Family: Vittariaceae (shoestring fern) Vittaria lineata shoestring fern native Family: Cupressaceae (cedar) Taxodium ascendens pond cypress native Taxodium distichum bald cypress native Family: Pinaceae (pine) Pinus elliottii var. densa south Florida slash pine native Family: Alismataceae (water plantain) Sagittaria graminea var. chapmanii Chapman's arrowhead native I Sagittaria lancifolia bulltongue arrowhead native Family: Amaryllidaceae (amaryllis) Hymenocallis palmeri alligatorlily native Family: Arecaceae (palm) Sabal palmetto cabbage palm native Serenoa repens saw palmetto native
    [Show full text]
  • BOTANY SECTION Compiled by Richard E. Weaver, Jr., Ph.D., and Patti J
    TRI-OLOGY, Vol. 47, No. 6 Patti J. Anderson, Ph.D., Managing Editor NOVEMBER - DECEMBER 2008 DACS-P-00124 Wayne N. Dixon, Ph.D., Editor Page 1 of 12 BOTANY SECTION Compiled by Richard E. Weaver, Jr., Ph.D., and Patti J. Anderson, Ph.D. For this period, 89 specimens were submitted to the Botany Section for identification, and 1,062 were received from other sections for identification/name verification for a total of 1,151. In addition, seven specimens were added to the herbarium. Some of the samples received for identification are discussed below: Acer buergerianum Miq. (a genus of ca. 110 species of highly ornamental trees, widely distributed in the North Temperate Zone with a marked concentration in eastern Asia). Aceraceae (or Sapindaceae). Trident maple. This slow-growing, small to medium-sized tree is native to eastern China, but has long been cultivated in Japan and is sometimes erroneously reported to be native there. It grows to 10 m tall, often branching low to the ground and forming a rounded crown. The bark on mature trunks is scaly and mottled with shades of pale gray and brown, the scales sloughing off to reveal tints of orange. The leaves are distinctive, described as resembling a duck’s feet. The blades are 4-6 cm long, glossy dark green above, three-nerved from the base and divided above the middle into three nearly equal, entire or unevenly serrulate, long- pointed lobes. The inconspicuous, greenish flowers appear with the leaves in the spring. The fruits are the “keys” typical of maples, with two samaras arranged end-to-end, each Acer buergerianum 2-3 cm long.
    [Show full text]