Solar Thermal Systems AND-Solar 2018

Total Page:16

File Type:pdf, Size:1020Kb

Solar Thermal Systems AND-Solar 2018 AND-solar SF Max THERMOSIPHONIC SYSTEMS ADVANTAGES OF AND-solar SF Max Thermosiphonic systems Collector SF Max 1. Model SFMAX is a flat plate collector encasing harp type absorber with very high efficiency level. The efficiency factor of FMAX is η0=0.83 (based on aperture area), making FMAX the most powerful certified collector of Greece and one among the best harp type collectors worldwide. This collector has been tested in NSCR DEMOKRITOS laboratory in Greece and is certified with SOLAR KEYMARK and soon with SRCC. 2. It is in TOP 5 of the collectors in Europe at a degree of efficiency (n0 = 0.83) according to EN12975 3.Insulation 40mm instead of 30mm 4. Maximum heat transfer between the absorber sheet and the copper water frame, thanks to optimized laser welding technology. New Boiler 1. Consists of hot rolled steel, 3mm thick (instead of 2 1/2mm) with double internal layer of enamel, processed at 860° c, according to DIN 4753 standard. 2. Thermal insulation: Ecological, incombustible and water-soluble high-density (>50kg/m³) expanded polyurethane surrounds the water storage tank and jacket for minimum heat loss, maintaining the hot water temperature, thickness 50mm. 3. All connections are side-by-side so is easy to be placed on tiles. 4.New model: 500lt /6m2 suitable for hotels AND-solar SF Max Thermosiphonic systems: general characteristics 1. Collectors FM Max certified according to SOLAR KEY MARK. 2. Compact system set up for easy transport and installation. 3. Close loop boiler with double enameled water storage tank. 4. Full selective PVD absorbing surface for high performance 5. Water frame made from copper tubes. 6. Low iron tempered glaze. 7. High quality, recyclable environment-safe raw materials with high endurance over time. 8. Maximum heat transfer from absorbing surface to water frame, thanks to laser welding technology. 9. High endurance support structures for installations on flat roofs, inclined tile roofs and in-roof installations. 10.Easy and safe installation thanks to high quality materials and hydraulic fittings-accessories. AND-solar SF Max Thermosiphonic systems Thermosiphonic systems AND-solar SF – Max are coming either 120lt or 160lt or 200lt or 300lt or 500lt certified according to Solar key mark. -The sealing materials are EPDM, silicone and polyurethane sealant for maximum resistance to extreme temperatures and absolute tightness of the collector. -The glass cover is prismatic tempered-security, low iron transparency glass 3,2mm -The frame of the collector is aluminum powder coated with special treatment for maximum resistance in coastal areas. Model Code AND-solar 120SFMax200 902.005.0005 AND-solar 160SFMax237 902.005.0010 AND-solar 160SFMax272 902.005.0015 AND-solar 200SFMax237 902.005.0020 AND-solar 200SFMax272 902.005.0025 AND-solar 200SFMax300 902.005.0030 AND-solar 300SFMax400 902.005.0035 AND-solar 500SFMax600 902.005.0040 Kit roof with 6 hooks 902.001.0010 AND-solar SF Max THERMOSIPHONIC SYSTEMS TECHNICAL SPRECIFICATIONS 120SFMax 160SFMax 160SFMax 200SFMax 200SFMax 200SFMax 300SFMax 500SFMax 200 237 272 237 272 300 474 600 Capacity 117lt 156lt 156lt 197lt 197lt 197lt 286lt 468lt # collectors 1 1 1 1 1 2 2 3 Area /collector m2 2,00 2,37 2,72 2,37 2,72 1,50 2,37 2,00 Total collectors area m2 2,00 2,37 2,72 2,37 2,72 3,00 4,74 6,00 Guarantee Collectors: 10 years/boiler:5 years COLLECTORS AND-solar SF Max TECHNICAL SPRECIFICATIONS 1,50m2 2,00m2 (V) 2,37m2 (V) 2,72m2 (V) Gross area m2 1,50m2 2,00 m2 2,37 m2 2,72 m2 Height x Width x Thickness mm 1480x1010x86 1980x1010x86 1930x1230x86 2160x1260x86 Weight empty Kg 27,8 36,2 43 48 Maximum operating pressure/ Stagnation temperature 10 bar /231,09°C Absorber area m2 1,38 1,86 2,23 2,57 Thermal liquid capacity lt 1,23 1,42 1,70 1,85 Absorbing surface material/ Absorber treatment Aluminum sheet of thickness 0,5mm / PVD High selective (α=95%, ε=5%) BOILER SF Max TECHNICAL SPRECIFICATIONS Type 120 160 200 300 500 Capacity 117lt 156lt 197lt 286lt 468lt Heat exchanger capacity/ Heat exchanger surface 8,6lt/0,62m2 12,9lt/0,91m2 18,3lt/1,28m2 25,8lt/1,79m2 30lt/2,1m2 Thermal insulation Polyurethane Weight empty 54,9Kg 66,8kg 81,8kg 114,5kg 159,5kg Max working temperature/Max operating pressure 99°C/10bar 1 AND-solar L-H THERMOSIPHONIC SYSTEMS (LOW HEIGHT) ADVANTAGES OF AND-solar L-H Thermosiphonic systems Collectors 1. Model SFMAX is a flat plate collector encasing harp type absorber with very high efficiency level. The efficiency factor of FMAX is η0=0.83 (based on aperture area), making FMAX the most powerful certified collector of Greece and one among the best harp type collectors worldwide. This collector has been tested in NSCR DEMOKRITOS laboratory in Greece and is certified with SOLAR KEYMARK and soon with SRCC. 2 Absorbing surface: Is made of Aluminum in 0,5mm thickness coated with high selective blue titanium treatment (α=95%, ε=5%). Selective treatment for the absorbers can be high selective Tinox Energy or Mirotherm Alanod. 3. Raw materials: High quality, guarantee long life service and high efficiency. Boiler 1. Water storage tank: Consists of hot rolled steel, 2.5mm thick with double internal layer of enamel, processed at 860° C, according to DIN 4753 standard Support structures 1. Low profile (maximum height of thermosiphonic system 80cm) 2. Easy, quick and safe placement, placement in flat surface AND-solar L-H Thermosiphonic systems This particular series is developed after serious study and intensive tests. The objective of the design optimization was to achieve two goals at the same time: To maximize its performance while maintaining its max height as low as possible. The obvious restrictions of such design were on the one hand the collector’s minimum inclination in order to keep performing satisfactorily and on the other hand not to prevent the natural circulation of the heating medium, which is generated according to the thermosiphon effect. The results of this R&D study was the ELIT series (extremely low inclination thermosiphonic), that is ideal for installations that are subjected to aesthetic restrictions such as in traditional countryside, tourist areas and islands (hotels, guesthouses). This thermosiphonic system remains almost invisible while especially during the summer and in Mediterranean areas. Type Code AND-solar 160 L-H 237 902.006.0005 AND-solar 160 L-H 272 902.006.0010 AND-solar 200 L-H 237 902.006.0015 AND-solar 200 L-H 272 902.006.0020 AND-solar 300 L-H 474 902.006.0025 AND-solar L-H THERMOSIPHONIC SYSTEMS TECHNICAL SPRECIFICATIONS 160 L-H 237 160 L-H 272 200 L-H 237 200 L-H 272 300 L-H 474 Capacity 156lt 156lt 197lt 197lt 286lt # collectors 1 1 1 1 2 Area /collector m2 2,37 2,72 2,37 2,72 2,37 Total collectors area m2 2,37 2,72 2,37 2,72 4,74 Guarantee collectors/ boiler 10 years/ 5 years COLLECTORS AND-solar L-H TECHNICAL SPRECIFICATIONS 1,50m2 2,00m2 (K) 2,37m2 (K) 2,72m2 (K) Gross area m2 1,50m2 2,00 m2 2,37 m2 2,72 m2 Height x Width x Thickness mm 1480x1010x86 1980x1010x86 1930x1230x86 2160x1260x86 Weight empty Kg 27,8 36,2 43 48 Maximum operating pressure bar / Stagnation temperature °C (ISO 12975) 10bar / 231,09°C Absorber area m2 1,38 1,86 2,23 2,57 Thermal liquid capacity lt 1,5 1,40 1,70 1,85 Absorbing surface material / Absorber treatment Aluminum sheet of thickness 0,5mm / PVD High selective (α=95%, ε=5%) BOILER L-H TECHNICAL SPRECIFICATIONS Type 120 160 200 300 Capacity 117lt 156lt 197lt 286lt Dimensions (mm) 580x916 580x1116 580x1356 696x2120 Heat exchanger capacity/ Heat exchanger surface 8,6lt/0,62m2 12,9lt/0,91m2 18,3lt/1,28m2 25,8 lt/1,79m2 Thermal insulation Polyurethane 50mm Weight empty 54,9Kg 66,8kg 81,8kg 114,5kg Max working temperature/Max operating pressure 99°C/10bar TOTAL DIMENSIONS OF THERMOSIPHONIC SYSTEMS AND-solar L-H MAXIMUM WIDTHS AND-solar L-H (with collectors/boiler) 160 L-H 237 160 L-H 272 200 L-H 237 200 L-H 272 1390mm 1420mm 1490mm 1490mm “W” AND-solar L-H 160 L-H 237 160 L-H 272 200 L-H 237 200 L-H 272 850mm 850mm 940mm 940mm “L” AND-solar L-H 160 L-H 237 160 L-H 272 200 L-H 237 200 L-H 272 2140mm 2230mm 2140mm 2230mm ***Delivery time:1-3 weeks 2 SPARE PARTS FOR AND-solar THERMOSIPHON BOILER Spare parts for AND-solar thermosiphon boilers Description Code Expansion vessel 1lt for close circuit 902.001.0005 Magnesium rod Ø22x500 with M8 male 902.001.0015 thread Expansion vessel (For boilers 120-150-200lt) Magnesium rod Ø22x600 with M8 male 902.001.0020 thread (For boilers 300lt) Safety valve 2bar for close loop circuit 902.001.0025 Safety non return valve 9bar for inlet of 902.001.0040 Safety valve city cold water Electric element 3500W,230V 902.001.0030 Silicon sealing gasket for side flange 902.001.0055 Ø140mm (8 holes) Double safety thermostat 902.001.0035 Stainless steel triple energy heat 902.001.0045 Safety not return valve exchanger with electric element 3500W 600mm length for boiler 120lt Stainless steel triple energy heat 902.001.0050 exchanger with electric element 3500W 850mm length for boiler 150lt-200lt Stainless steel triple energy heat 902.001.0060 exchanger with electric element 3500W 1000mm length for boiler 300lt Side flange cover for all sizes of 902.001.0065 thermosiphon boilers 3 AND-solar collectors Benefits of AND-solar collectors 1.
Recommended publications
  • Introduction to Hydronic Testing, Adjusting, & Balancing
    Commercial HVAC Education & Training Introduction to Hydronic Testing, Adjusting, & Balancing Add Hydronic TAB to your service offerings Have you always wanted to balance hydronic systems you install and/or service, but have not been able to find practical, hands-on, step-by-step training to do it right? Is your company already performing hydronic TAB, but you want to get more technicians trained? This is the right class for you! First-timers and seasoned professionals who attend this course will gain a firm understanding of the most current hydronic testing and balancing practices. This NCI-exclusive two-day course is also a perfect stepping stone for technicians working towards achieving National Balancing Council certification. “Introduction to Hydronic Testing, Adjusting and Balancing” is an intensive training program that begins with the very basics, then moves up to advanced testing and balancing procedures required for everyday applications. Training includes an even mix of classroom and hands-on experiences The course consists of 50% classroom training and 50% hands-on exercises where students use a variety of instruments on various systems, facing situations and problems they will encounter in the field. The course takes place in a low-pressure learning environment, as there is no certification exam. This allows the participants to simply focus on the material and hands-on learning. Who Should Attend? This class provides just the right training for testing and balancing personnel as well as field service technicians and technical
    [Show full text]
  • Balancing of Radiator Systems Hydronic Engineering Handbook Engineering GREAT Solutions
    Balancing of Radiator Systems Hydronic Engineering Handbook Engineering GREAT Solutions Thermostatic Control & Balancing 2 Balancing of Radiator Systems Contents Why balance? ......................................................................................................................... 5 1- Balancing of radiator systems ......................................................................................... 7 1.1- Overflows cause underflows .................................................................................... 7 1.2- Overflows in distribution ........................................................................................... 9 2 Radiator valves .................................................................................................................. 11 2.1- General .................................................................................................................... 11 2.1.1- When the inlet valve is used only to isolate 2.1.2- When the inlet valve is used to isolate and adjust the flow 2.2- What is a thermostatic valve? .................................................................................. 12 2.3- Thermostatic valves and the supply water temperature ........................................... 13 2.4- Is the thermostatic valve a proportional controller? ................................................. 14 2.5- Should a plant be hydraulically balanced with all thermostatic valves fully open? .... 17 2.6- Accuracy to be obtained on the flow .......................................................................
    [Show full text]
  • 230593 Testing Adjusting & Balancing (TAB)
    _______________________________________ ARCHITECTURE, ENGINEERING AND CONSTRUCTION ARCHITECTURE & ENGINEERING BuildingName 326 East Hoover, Mail Stop B The Description of the Project Ann Arbor, MI 48109-1002 Phone: 734-764-3414 P00000000 0000 Fax: 734-936-3334 DOCUMENTS SPECIFICATION DIVISION 23 NUMBER SECTION DESCRIPTION DIVISION 23 SECTION 230593 - TESTING, ADJUSTING AND BALANCING (TAB) END OF CONTENTS TABLE DIVISION 23 HEATING, VENTILATING AND AIR CONDITIONING (HVAC) SECTION 230593 - TESTING, ADJUSTING AND BALANCING (TAB) REVISIONS: 10-12-00: SUBSTANTIALLY REVISED, APPROVED AS NEW MASTER REVISED FOR HVAC MECH TECH TEAM BY D. KARLE, AUGUST 2008. ADDED GAS CABINET BALANCE INSTRUCTIONS TO ARTICLE 3.8 (WORDING DUPLICATES MMC) D. KARLE NOVEMBER 2010. ADDED (ARTICLE 3.8) THAT ALL ADJUSTMENTS TO LAB TERMINAL AIRFLOW UNITS ARE TO BE DONE BY THE LABORATORY CONTROLS CONTRACTOR, NOT THE TAB CONTRACTOR. D. KARLE, DECEMBER 2013. ADDED 230910 AND 230920 AS RELATED SECTIONS. ADDED IN ARTICLE 3.8 TO VERIFY LTAU AIR FLOWS AT DESIGN MIN. AND MAX CFM. D. KARLE FOR HVAC MTT JUNE 2015. AUGUST 2015: ADDED REQUIREMENT TO LABEL CHILLED BEAMS. ADDED REQUIREMENT TO VERIFY PURGE VOLUMES AND CROSS LEAKAGE OF AIR TO AIR HEAT EXCHANGERS. D. KARLE FOR HVAC MTT. AUGUST 2017: ADDED REQUIREMENT FOR I.D. LABELS ON CEILING NEAR VAV BOXES PER PLUMBING MTT DUE TO REQUEST BY HOSPITAL FPD. D. KARLE. PART 1 - GENERAL 1.1 RELATED DOCUMENTS INCLUDE PARAGRAPH 1.1.A AND B IN EVERY SPECIFICATION SECTION. EDIT RELATED SECTIONS 1.1.B TO MAKE IT PROJECT SPECIFIC. A. Drawings and general provisions of the Contract, Standard General and Supplementary General Conditions, Division 1 Specification Sections, and other applicable Specification Sections including the Related Sections listed below, apply to this Section.
    [Show full text]
  • Bledsoe Environmental Systems
    October, 2011 Smoke Control Systems Improved Energy Audits through Technical Retro-Commissioning The Importance of Duct Leakage Testing Take Control of your System with Differential Pressure Control Field Accuracy of Temperature Measurements in TAB Work FEATURE: BLEDSOE ENVIRONMENTAL SYSTEMS The official magazine of the National Environmental Balancing Bureau The NEBB Professional – October, 2011 i Rugged, Accurate and Reliable Manufacturer of Professional EBT Balomter® Capture Hood Ventilation Test Instruments • Removable meter can be used to measure static Since 1919 and differential pressures • Includes 18 inch pitot probe and downloading software • Additional hood sizes available • Optional accessories include temperature and relative humidity probes, airflow probe, and velocity matrix RVA801 Digital Rotating Vane Anemometer • Provides accurate and reliable readings of air velocity, temperature and volumetric flow measurements • Air cone kit accessories available • Reversible vane head allows visible display of supply and return readings PAN200 Duct Leakage Tester • Positive and Negative Duct Leakage Testing in one system • Generates a Pass/Fail result • High accuracy gives confidence in measurements • Pressurizes duct quickly, allowing testing to begin in minutes • Includes TSI VELOCICALC® Model 9565-P and DP-CALC™ 5825 Learn how TSI can provide solutions to your ventilation needs. Request a free Alnor HVAC handbook and other information today. Phone: 800 874 2811 E-mail: [email protected] Visit www.tsi.com/rugged ii Find us at TSIIncorporated: Letter from the NEBB President As I write this note, I’m reflecting on this year as the NEBB President. We’ve accomplished a lot in 2011. Our membership has grown and so has our industry eminence as the leading international association of certified firms for testing, balancing, commissioning of building systems and cleanroom certification.
    [Show full text]
  • Hydronic Balancing & Control Product Overview
    Hydronic Balancing & Control The solutions are here The choice is yours ... 1 114 products to support your business's water- based heating or cooling applications hbc.danfoss.com Well balanced and controlled solutions Hydronic Balancing & Control If you are dedicated to establish indoor climate solutions that provide optimal air quality, comfortable living and/or work conditions and maximum energy efficiency, then Danfoss is your ideal partner. You already know that the most efficient heating or cooling installations can only be realised by ensuring optimal hydronic balance and perfect temperature control. We have many years of experience and a complete range of products in this area. We supply high quality products for innovative, energy saving and easy to use solutions. Our expertise is to create more comfort for less money. And our expertise is everywhere. Everybody involved from R&D to after sales service are highly skilled professionals offering you knowledge, experience and deep customer and application understanding. In this brochure we present a basic overview of our many products for different applications. Each has its own special features and benefits to make your daily work easier, faster or better. Find the products you need for your projects and let us help you to become your customer’s preferred partner in realizing hydronic balancing solutions. 3 reasons for choosing Danfoss as your Hydronic Balancing & Control partner: Benefit from a complete product range Gain knowledge from our highly skilled professionals Feel confident about our products, support and service Learn more about our products at our website: hbc.danfoss.com Manual balancing valves Manual balancing valves provide a static, basic balancing solution for many applications.
    [Show full text]
  • AABC National Standards for Total System Balance, 7Th Edition: a Guided Tour Course Number: CXENERGY1624
    AABC Commissioning Group AIA Provider Number 50111116 AABC National Standards for Total System Balance, 7th Edition: A Guided Tour Course Number: CXENERGY1624 Gaylon Richardson, TBE, CxA Engineered Air Balance Co., Inc. April 12, 2016 Credit(s) earned on completion of CES for continuing professional this course will be reported to AIA education. As such, it does not CES for AIA members. Certificates of include content that may be Completion for both AIA members deemed or construed to be an and non-AIA members are available approval or endorsement by the upon request. AIA of any material of construction or any method or manner of handling, using, distributing, or dealing in any material or product. _______________________________________ ____ Questions related to specific materials, methods, and services will be addressed at the conclusion of this presentation. This course is registered with AIA Copyright Materials This presentation is protected by US and International Copyright laws. Reproduction, distribution, display and use of the presentation without written permission of the speaker is prohibited. © The name of your company 2012 Course Description Don’t miss this guide to the most important changes in AABC’s all-new, just-published National Standards, the organization’s first ANSI approved standard. The comprehensive rewrite includes new material on testing energy recovery systems and chilled beams, expanded material on hydronics, a chapter on TAB of healthcare facilities and much more. Learning Objectives At the end of the this course, participants will be able to: 1. Develop a better understanding of the scope of work required of the TAB agency in total system balancing of HVAC components and HVAC systems.
    [Show full text]
  • Steam Systems, Retrofit Measure Packages, Hydronic Systems
    Buildings Technologies Program Steam Systems, Retrofit Measure Packages, Hydronic Systems Russell Ruch Elevate Energy Peter Ludwig Elevate Energy Decker Homes July 16, 2014 Building America Webinar: Retrofitting Central Space Conditioning Strategies for Multifamily Buildings 1 | Building America Program www.buildingamerica.gov Contents • Retrofit Measure Packages for steam and hydronic MF buildings that save 25-30% • System Balancing • Steam • Hydronic 2 | Building America Program www.buildingamerica.gov Background • Over 50% of cold climate MF units are heated by central steam or hydronic systems • 80% of existing buildings will be in use in 2020 • In Chicago region, 2/3 of residential units were built before 1980; rarely designed for energy efficiency 3 | Building America Program www.buildingamerica.gov Retrofit Packages Study “Evaluation of CNT Energy Savers Research Agenda Retrofit Packages Implemented in Multifamily Buildings” • Which cost-effective Farley, J., Ruch, R. measure packages are appropriate for steam and hydronic MF buildings? • Select typical Chicago MF buildings and model savings in TREAT • Find retrofit packages with 25-30% source energy savings 4 | Building America Program www.buildingamerica.gov Retrofit Packages 19-Unit Hydronic Building, built 1920 23.9% Site Savings Annual MMBtu Annual MMBtu Annual $ Percent Site Payback Measure Cost Source Savings Site Savings Savings Savings Years Insulate heating hot water pipes 4,720 229.38 229.38 2,294 11.9% 2.1 Air seal and insulate basement windows 390 96.15 96.15 962 5.0%
    [Show full text]
  • Ab137886464511en-040401.Pdf
    Hydronic applications Hydronic Commercial Application guide Hydronic applications Hydronic How to design Residential balancing and control solutions for energy efficient hydronic applications in residential and commercial buildings Mixing loop AHU application AHU heating 44 applications with detailed descriptions about the investment, design, construction and control AHU application AHU cooling Chillers applications Boilers applications Hot water hbc.danfoss.com 1 Content structure in this guide 1. Hydronic applications 2. Mixing loop 7. Glossary and abbreviations 1.1 Commercial 3. AHU applications 8. Control and valve theory 1.1.1 Variable flow 3.1 AHU applications heating 1.1.2 Constant flow 9. Energy efficiency analyses 3.2 AHU applications cooling 1.2 Residential 10. Product overview 4. Chillers applications 1.2.1 Two-pipe system 1.2.2 One-pipe system 5. Boiler applications 1.2.3 Heating – special application 6. Hot water applications Typical page shows you: Recommendation Type of solution Chapter Schematic drawing Application General system description Danfoss products Performance indicators Application details 2 Introduction Notes Designing HVAC systems is not that simple. Many factors need to be considered before making the final decision about the heat- and/or cooling load, which terminal units to use, how to generate heating or cooling and a hundred other things. This application guide is developed to help you make some of these decisions by showing the consequences of certain choices. For example, it could be tempting to go for the lowest initial cost (CAPEX) but often there would be compromises on other factors, like the energy consumption or the Indoor Air Quality (IAQ).
    [Show full text]
  • Balancing of Distribution Systems Hydronic Engineering Handbook Engineering GREAT Solutions
    Balancing of Distribution Systems Hydronic Engineering Handbook Engineering GREAT Solutions Balancing & Control © 2020 IMI Hydronic Engineering SA, Eysins www.imi-hydronics.com 2 Balancing of Distribution Systems > Contents 1. Why balance? ..................................................................................................................... 5 2. Preparations ........................................................................................................................ 7 2.1 Plan the balancing at your desk ................................................................................. 7 Study the plant drawing carefully ............................................................................... 7 Select a suitable balancing method ........................................................................... 7 2.2 Divide the plant into modules ..................................................................................... 8 Theory and practice ................................................................................................... 8 The law of proportionality ........................................................................................... 8 A module can be a part of a larger module ............................................................... 10 What is optimum balancing? .....................................................................................11 Where balancing valves are needed ..........................................................................11 Accuracy to be
    [Show full text]
  • UFC 3-410-01 Heating, Ventilating, and Air Conditioning
    UFC 3-410-01 1 July 2013 Change 1, October 2014 UNIFIED FACILITIES CRITERIA (UFC) HEATING, VENTILATING, AND AIR CONDITIONING SYSTEMS CANCELLED APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED UFC 3-410-01 1 July 2013 Change 1, October 2014 UNIFIED FACILITIES CRITERIA (UFC) HEATING, VENTILATING, AND AIR CONDITIONING SYSTEMS Any copyrighted material included in this UFC is identified at its point of use. Use of the copyrighted material apart from this UFC must have the permission of the copyright holder. U.S. ARMY CORPS OF ENGINEERS NAVAL FACILITIES ENGINEERING COMMAND (Preparing Activity) AIR FORCE CIVIL ENGINEER CENTER Record of Changes (changes are indicated by \1\ ... /1/) Change No. Date Location 1 October 2014 Numerous clarifications, corrections, additions and deletions throughout the document in response to Criteria Change Requests (CCRs) and Tri-Service reviews; the addition of Appendices E, F and G. CANCELLED This UFC supersedes UFC 3-400-10N, dated July 2006; UFC 3-410-01FA, dated 15 May 2003; MIL-HDBK-1190, Chapter 10, dated 1 September 1987; and TI 800-01, Chapter 13, dated 20 July 1998. UFC 3-410-01 1 July 2013 Change 1, October 2014 FOREWORD The Unified Facilities Criteria (UFC) system is prescribed by MIL-STD 3007 and provides planning, design, construction, sustainment, restoration, and modernization criteria, and applies to the Military Departments, the Defense Agencies, and the DoD Field Activities in accordance with USD (AT&L) Memorandum dated 29 May 2002. UFC will be used for all DoD projects and work for other customers where appropriate. All construction outside of the United States is also governed by Status of Forces Agreements (SOFA), Host Nation Funded Construction Agreements (HNFA), and in some instances, Bilateral Infrastructure Agreements (BIA.) Therefore, the acquisition team must ensure compliance with the most stringent of the UFC, the SOFA, the HNFA, and the BIA, as applicable.
    [Show full text]
  • Gas Fired Boilers Pumps and Circulators Controls Specialties
    Products used in commercial and multi-family residential projects designed for central heating and plumbing equipment projects *For other residential designs see HSC Residential product offering *For All-Electric applications see Allelectrichomesolutions.com Commercial Mechanical and Plumbing Products Rev 9.2.21 Mechanical - Gas Fired Boilers Hydronic Boilers HTP Elite XL: Condensing Hydronic, 97% efficient, 399 MBH to 2,000 MBH capacities, 10:1 turndown, no minimum flow requirements. Indoor & outdoor applications. htproducts.com Skid packaged boiler systems, and double stack boiler systems, built locally. Alpine boiler series: Hydronic Only. From 80 MBTU to 800 MBTU. Configured to be the easiest boiler to install. Boiler comes with Double Stack clips to provide up to 1.6 MBTU capacity. Best replacement for the Munchkin. usboiler.net Aspen fire-tube series: Hydronic Only: 80 MBTU to 399 MBTU. usboiler.net Steam Boilers US Boilers (Burnham): SteamMax & Independence, gas fired steam boilers, cast iron heat exchanger. usboiler.net Combi Boilers Alta combi: 136/120 MBTU’s, The world’s FIRST & ONLY 10:1, gas-adaptive (self-tuning), combi boiler! usboiler.net Aspen fire-tube series: 155 MBTU combi boiler. usboiler.net K2 water tube: Has a 135 MBTU and a 180 MBTU combi. usboiler.net Pumps and Circulators Circulators AquaMotion: Super efficient, eco-friendly, pumps, circulators & recirculation systems. Very easy to install and maintain. aquamotionhvac.com Commercial Pumps Wilo: Commercial end suction base mounted, vertical inline pumps, ECM, VFD. Hydronic & DHW. wilo-usa.com Controls Controls HBX Control Systems: WiFi thermostats. Whole house control, boiler staging control, radiant floor and heat pump controls.
    [Show full text]
  • Hydronic System Performance with Pressure Independent Control Valves
    APPLICATION GUIDE How to Improve Hydronic System Performance with Pressure Independent Control Valves usa.siemens.com/hfo Achieve your design intent for hydronic flow optimization with Siemens Pressure Independent Control Valves (PICV). This guide reviews hydronic systems and the value of Siemens Pressure Independent Control Valves (PICV) over traditional control valves for their ease of sizing and selection and dynamic balancing. Choosing the right devices in a hydronic system up front can lead to greater energy efficiency and significant savings in first costs and lifecycle costs. Discover total system performance solutions to optimize delta-T through precise control. Make your building operations more efficient and bring balance to your bottom line. Commercial buildings consume about 40% According to the U.S. Energy of all energy Information Administration, worldwide. commercial buildings consume about 40 percent of all energy HVAC systems worldwide, and HVAC systems account for account for more than 40 percent more than of buildings’ energy usage. 40% of buildings’ Hydronic flow optimization is a energy usage. prime way to reduce HVAC energy consumption, while increasing overall building efficiency and operational performance Table of Contents: Hydronic System Valve Comparison Cost Overview Evolution 2 Hydronic system 1 evolution Evolving design Constant Volume Systems Variable Volume Systems • On/Off Pumps • Reduced Pump Energy with VFDs • 3-Way Control Valves • Complicated Valve Selection • Static balancing required • Static balancing required • Diverted flow of unused BTUs • Circuit Interactions Generation Generation Consumption (Primary Loop) Consumption Pump (Secondary Loop) w/VFD Chiller Chiller Chiller Chiller Chiller Chiller dP 3-Way 2-Way Control Valve Differential Valve Pressure Pump Sensor Balancing Pump Balancing Valve Valve Cold Cold Warm Warm Constant volume systems have been the default building Hydronic systems have evolved from constant flow to configuration for years.
    [Show full text]