Four Hand Injuries Not to Miss: Avoiding Pitfalls in the Emergency Department Philip Yoonga, Catherine A
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Isolated Avulsion Fracture of the Lesser Tuberosity of The
(aspects of trauma) Isolated Avulsion Fracture of the Lesser Tuberosity of the Humerus in an Adult: Case Report and Literature Review Aman Dhawan, MD, Kevin Kirk, DO, Thomas Dowd, MD, and William Doukas, MD solated avulsion fractures of also describe our operative technique, comminuted 3-cm lesser tuberosity the lesser tuberosity of the including use of heavy, nonabsorb- fracture fragment retracted approxi- proximal humerus are rare. able suture. mately 2 cm from the donor site We report the case of a right- (Figures 1B–1D). No biceps tendon Ihand–dominant woman in her early ASE EPORT subluxation or injury and no intra- C R 30s who sustained such an injury, A right-hand–dominant woman in articular pathology were noted. with an intact subscapularis tendon her early 30s presented with right The lesser tuberosity fracture was attached to the lesser tuberosity frag- shoulder pain 1 day after a fall down surgically repaired less than 2 weeks ment. Treatment included surgery to a flight of stairs. During the acci- after injury. Through a deltopectoral restore tension to the subscapularis dent, as her feet slipped out from approach, the rotator interval and muscle and maintain the force couple underneath her and her torso fell the 3×2-cm fracture fragment were about the shoulder joint. One year after injury, the patient reported no pain, excellent range of motion, and “[To be diagnosed] this injury...requires... return to activities. This case demonstrates the diag- careful review of orthogonal radiographs nostic challenge of this injury, which requires a high index of suspicion and and advanced imaging.” careful review of orthogonal radio- graphs and advanced imaging. -
Distal Radius System 2.5
PRODUCT INFORMATION Distal Radius System 2.5 APTUS® Wrist 2 | Distal Radius System 2.5 Contents 3 A New Generation of Radius Plates 4 One System for Primary and Secondary Reconstruction 6 ADAPTIVE II Distal Radius Plates 8 FPL Plates 10 Hook Plates 11 Lunate Facet Plates 12 Rim Plates 13 Fracture Plates 14 Correction Plates 15 Volar Frame Plates 16 Extra-Articular Plates 17 Small Fragment Plates 18 Dorsal Frame Plates 19 XL Plates 20 Distal Ulna Plates 21 Fracture Treatment Concept 22 Technology, Biomechanics, Screw Features 24 Precisely Guided Screw Placement 25 Instrument for Reconstruction of the Volar Tilt 26 Storage 27 Overview Screw Trajectories 29 Ordering Information 47 Bibliography For further information regarding the APTUS product line visit: www.medartis.com Medartis, APTUS, MODUS, TriLock, HexaDrive and SpeedTip are registered trademarks of Medartis AG / Medartis Holding AG, 4057 Basel, Switzerland www.medartis.com Distal Radius System 2.5 | 3 A New Generation of Radius Plates Why is a new generation of radius plates needed? Distal radius fractures are the most common fractures of the stable plate systems have enabled open reduction and inter- upper extremities. The knowledge of these fractures has grown nal fixation to become an established treatment method for enormously over the last years. Treatment concepts have like- intra- and extra-articular distal radius fractures. These sys- wise been refined. It is now generally accepted that the best tems have enabled even severe extension fractures with dor- possible anatomical reconstruction of the radiocarpal joint sal defect zones to be precisely repositioned and treated with (RCJ) and distal radioulnar joint (DRUJ) to produce a func- osteosynthesis via volar access without the need for additional tional outcome is a requirement. -
6.3.3 Distal Radius and Wrist
6 Specific fractures 6.3 Forearm and hand 6.3.3 Distal radius and wrist 1 Assessment 657 1.1 Biomechanics 657 1.2 Pathomechanics and classification 657 1.3 Imaging 658 1.4 Associated lesions 659 1.5 Decision making 659 2 Surgical anatomy 660 2.1 Anatomy 660 2.2 Radiographic anatomy 660 2.3 Preoperative planning 661 2.4 Surgical approaches 662 2.4.1 Dorsal approach 2.4.2 Palmar approach 3 Management and surgical treatment 665 3.1 Type A—extraarticular fractures 665 3.2 Type B—partial articular fractures 667 3.3 Type C—complete articular fractures 668 3.4 Ulnar column lesions 672 3.4.1 Ulnar styloid fractures 3.4.2 Ulnar head, neck, and distal shaft fractures 3.5 Postoperative care 674 3.6 Complications 676 3.7 Results 676 4 Bibliography 677 5 Acknowledgment 677 656 PFxM2_Section_6_I.indb 656 9/19/11 2:45:49 PM Authors Daniel A Rikli, Doug A Campbell 6.3.3 Distal radius and wrist of this stable pivot. The TFCC allows independent flexion/ 1 Assessment extension, radial/ulnar deviation, and pronation/supination of the wrist. It therefore plays a crucial role in the stability of 1.1 Biomechanics the carpus and forearm. Significant forces are transmitted across the ulnar column, especially while making a tight fist. The three-column concept (Fig 6.3.3-1) [1] is a helpful bio- mechanical model for understanding the pathomechanics of 1.2 Pathomechanics and classification wrist fractures. The radial column includes the radial styloid and scaphoid fossa, the intermediate column consists of the Virtually all types of distal radial fractures, with the exception lunate fossa and sigmoid notch (distal radioulnar joint, DRUJ), of dorsal rim avulsion fractures, can be produced by hyper- and the ulnar column comprises the distal ulna (DRUJ) with extension forces [2]. -
Sustentaculum Lunatum: Appreciation of the Palmar Lunate Facet in Management of Complex Intra-Articular Fractures of the Distal Radius
A Review Paper Sustentaculum Lunatum: Appreciation of the Palmar Lunate Facet in Management of Complex Intra-Articular Fractures of the Distal Radius Ebrahim Paryavi, MD, MPH, Matthew W. Christian, MD, W. Andrew Eglseder, MD, and Raymond A. Pensy, MD key role in restoring the anatomy of the palmar distal radial Abstract metaphysis during internal fixation. This fragment in com- Fracture of the distal radius is the most common wrist minuted fractures was first ascribed special importance by injury. Treatment of complex intra-articular fractures of Melone5 in his description of common fracture patterns. In the distal radius requires an accurate diagnosis of the the present article, we describe the anatomical characteristics fracture pattern and a thoughtful approach to fixation. of the sustentaculum lunatum and the clinical relevance of We propose a new term, sustentaculum lunatum, for this fragment to management of fractures of the distal radius. the palmar lunate facet. The sustentaculum lunatum deserves specific attention because of its importance Classification in load transmission across the radiocarpal joint. It is A variety of classification systems have been proposed to char- acterize and guide treatment of fractures of the distal radius. also key to restoring the anatomy of the palmarAJO distal The earliest descriptions of fracture patterns were presented by radial metaphysis during internal fixation. We provide Castaing6 and Frykman7 in the 1960s. The Frykman classifica- a review of the structure and function of the susten- tion historically has been popular but is limited in accuracy in taculum lunatum and describe fixation techniques. This its characterization of fragments and their displacement and is article is intended to promote awareness of this frag- limited in its ability to guide treatment. -
Broken Bones: Common Pediatric Lower Extremity Fractures—Part III
10173-06_ON2506-Hart.qxd 11/9/06 3:51 PM Page 390 Broken Bones: Common Pediatric Lower Extremity Fractures—Part III Erin S. Hart ▼ Brenda Luther ▼ Brian E. Grottkau Lower extremity injuries and fractures occur frequently in young usually have pain with hamstring stretching and hip flex- children and adolescents. Nurses are often one of the first ion/abduction). Patients also frequently demonstrate an healthcare providers to assess a child with an injury or fracture. antalgic gait and have pain during their activity or sport. Although basic fracture care and principles can be applied, An anteroposterior radiograph of the pelvis usually reveals nurses caring for these young patients must have a good under- the avulsed fragment. Comparative views of the contralat- standing of normal bone growth and development as well as eral side are often helpful in confirming the diagnosis and avoiding further unnecessary advanced imaging studies. common mechanisms of injury and fracture patterns seen in This injury is usually treated symptomatically and often children. Similar to many of the injuries in the upper extremity, involves rest, application of ice, and relaxation of the in- fractures in the lower extremity in children often can be treated volved tendon (O’Kane, 1999). Conservative treatment of nonoperatively with closed reduction and casting. However, this pelvic avulsion fractures is usually successful. Crutches are article will also review several lower extremity fractures that often needed for several weeks to reduce symptoms and frequently require surgical intervention to obtain a precise rest the extremity involved. Complications following pelvic anatomical reduction. Common mechanisms of injury, fracture avulsion fractures in children are rare, and most patients patterns, and current management techniques will be discussed. -
5Th Metatarsal Fracture
FIFTH METATARSAL FRACTURES Todd Gothelf MD (USA), FRACS, FAAOS, Dip. ABOS Foot, Ankle, Shoulder Surgeon Orthopaedic You have been diagnosed with a fracture of the fifth metatarsal bone. Surgeons This tyPe of fracture usually occurs when the ankle suddenly rolls inward. When the ankle rolls, a tendon that is attached to the fifth metatarsal bone is J. Goldberg stretched. Because the bone is weaker than the tendon, the bone cracks first. A. Turnbull R. Pattinson A. Loefler All bones heal in a different way when they break. This is esPecially true J. Negrine of the fifth metatarsal bone. In addition, the blood suPPly varies to different I. PoPoff areas, making it a lot harder for some fractures to heal without helP. Below are D. Sher descriPtions of the main Patterns of fractures of the fifth metatarsal fractures T. Gothelf and treatments for each. Sports Physicians FIFTH METATARSAL AVULSION FRACTURE J. Best This fracture Pattern occurs at the tiP of the bone (figure 1). These M. Cusi fractures have a very high rate of healing and require little Protection. Weight P. Annett on the foot is allowed as soon as the Patient is comfortable. While crutches may helP initially, walking without them is allowed. I Prefer to Place Patients in a walking boot, as it allows for more comfortable walking and Protects the foot from further injury. RICE treatment is initiated. Pain should be exPected to diminish over the first four weeks, but may not comPletely go away for several months. Follow-uP radiographs are not necessary if the Pain resolves as exPected. -
Palmar Plating of Distal Radius Fractures – Pearls and Pitfalls
Palmar Plating of Distal Radius Fractures – Pearls and Pitfalls Michael S. Bednar, M.D. Chief, Hand Surgery Professor, Dept. of Ortho Surgery & Rehab Loyola University – Chicago Disclosure n Consultant – Biomet/Zimmer Evolution in Treatment of Distal Radius Fractures 1 External Fixation and Percutaneous Pinning External Fixation and Percutaneous Pinning External Fixation 2 Percutaneous Pinning Percutaneous Pinning Old ORIF concept: n Dorsally displaced = Dorsal plate n Palmarly displaced = Palmar plate 3 Goals of Treatment n ORIF n Indications n Displaced palmar intra and extra- articular fractures ORIF n Palmar Barton and Smith Fractures n ORIF is accepted form of treatment n Palmar plate is well tolerated n Exposure radial to FCR has low morbidity 4 Cohort Studies Volar Fixed Angle n Orbay, J. L., Fernandez, D.L. (2002). 31 partients n Kamano, M., Y. Honda, et al. (2002). 33 patients Follows the contour of the subchondral bone Pegs and screw locked into plate support articular surface when placed directed under the subchondral bone. 5 Distally angled pegs neutralize dorsal forces Joint Reaction Force §.Volar buttress neutralizes volar forces Volar locking plating indications • Dorsal or palmar angulation • Intra-articular fractures • Comminuted fractures • Osteopenia Volar locking plating indications • Dorsal or palmar angulation • Intra-articular fractures • Comminuted fractures • Osteopenia 6 3 Months Post OP Wrist Fractures = ORIF 7 ORIF 8 No metal over radial styloid, causes tendon ruputure Complications – Wrong Fracture Type n -
Upper Extremity Fractures
Department of Rehabilitation Services Physical Therapy Standard of Care: Distal Upper Extremity Fractures Case Type / Diagnosis: This standard applies to patients who have sustained upper extremity fractures that require stabilization either surgically or non-surgically. This includes, but is not limited to: Distal Humeral Fracture 812.4 Supracondylar Humeral Fracture 812.41 Elbow Fracture 813.83 Proximal Radius/Ulna Fracture 813.0 Radial Head Fractures 813.05 Olecranon Fracture 813.01 Radial/Ulnar shaft fractures 813.1 Distal Radius Fracture 813.42 Distal Ulna Fracture 813.82 Carpal Fracture 814.01 Metacarpal Fracture 815.0 Phalanx Fractures 816.0 Forearm/Wrist Fractures Radius fractures: • Radial head (may require a prosthesis) • Midshaft radius • Distal radius (most common) Residual deformities following radius fractures include: • Loss of radial tilt (Normal non fracture average is 22-23 degrees of radial tilt.) • Dorsal angulation (normal non fracture average palmar tilt 11-12 degrees.) • Radial shortening • Distal radioulnar (DRUJ) joint involvement • Intra-articular involvement with step-offs. Step-off of as little as 1-2 mm may increase the risk of post-traumatic arthritis. 1 Standard of Care: Distal Upper Extremity Fractures Copyright © 2007 The Brigham and Women's Hospital, Inc. Department of Rehabilitation Services. All rights reserved. Types of distal radius fracture include: • Colle’s (Dinner Fork Deformity) -- Mechanism: fall on an outstretched hand (FOOSH) with radial shortening, dorsal tilt of the distal fragment. The ulnar styloid may or may not be fractured. • Smith’s (Garden Spade Deformity) -- Mechanism: fall backward on a supinated, dorsiflexed wrist, the distal fragment displaces volarly. • Barton’s -- Mechanism: direct blow to the carpus or wrist. -
Combined Avulsion Fracture of the Tibial Tubercle and Patellar Tendon Rupture in Adolescents: a Case Report
European Journal of Orthopaedic Surgery & Traumatology (2019) 29:1359–1363 https://doi.org/10.1007/s00590-019-02441-3 UP-TO DATE REVIEW AND CASE REPORT • KNEE - PAEDIATRIC Combined avulsion fracture of the tibial tubercle and patellar tendon rupture in adolescents: a case report Víctor Manuel Bárcena Tricio1 · Rodrigo Hidalgo Bilbao1 Received: 4 December 2018 / Accepted: 12 April 2019 / Published online: 19 April 2019 © Springer-Verlag France SAS, part of Springer Nature 2019 Abstract Simultaneous occurrence of tibial tubercle fracture and patellar tendon avulsion is an extremely rare condition. However, they have become more frequent due to increased participation in sports at a younger age. Diagnosis is not always straightforward, and treatment consists of open reduction and internal fxation. Only a few case reports of such injuries were reported in the literature with limited information according to diagnoses, treatment, and outcome in adolescents. Keywords Knee injuries · Tibial tubercle fracture · Patellar tendon avulsion Introduction and a repair technique and try to increase the awareness of this combined injury. Avulsion fractures of the tibial tubercle are rare injuries in adolescents and represent less than 1% of all physeal frac- tures [1–3], while patellar tendon ruptures are also uncom- Case report mon with no clearly reported incidence. Only a few cases have been reported in the literature with the combination of The patient is a 14-year-old boy who felt severe pain in his a tibial tubercle fracture and patellar tendon rupture [1–13]. left knee while jumping during a soccer match. The patient’s It occurs from violent eccentric contraction of the quadri- height and weight were 1.85 m and 70 kg (BMI 20.45), cep muscle. -
Locking Versus Nonlocking Palmar Plate Fixation of Distal Radius Fractures
n Feature Article SPOTLIGHT ON upper extremity Locking Versus Nonlocking Palmar Plate Fixation of Distal Radius Fractures MICHAEL OSTI, MD; CHRISTOPH MITTLER, MD; RICHARD ZINNECKER, MD; CHRISTOPH WESTREICHER, MD; CLEMENS ALLHOFF, MD; KARL PETER BENEDETTO, MD abstract Full article available online at Healio.com/Orthopedics. Search: 20121023-18 This study compared functional and radiological outcomes after treatment of extension- type distal radius fractures with conventional titanium nonlocking T-plates or titanium 1.5-mm locking plates. A total of 60 patients were included and followed for 4 to 7 years after receiving nonlocking T-plates (group A; n530) or locking plates (group B; n530) with and without dorsal bone grafting. Bone grafting was significantly more of- ten performed in the nonlocking group to increase dorsal fracture fixation and stability (P,.003). Pre- and postoperative and follow-up values for palmar tilt, radial inclination, radial shortening, and ulnar variance were recorded. Age, sex, and fracture type were similarly distributed between the 2 groups. Postoperative and follow-up evaluation re- vealed equal allocation of intra-articular step formation and osteoarthritic changes to both groups. The overall complication rate was 25%. Compared with the nonlocking system, patients undergoing locking plate fixation presented with statistically signifi- cantly better values for postoperative palmar tilt (5.53° vs 8.15°; P,.02) and radial incli- nation (22.13° vs 25.03°; P,.02). However, forearm pronation was significantly better in group A (P,.005). At follow-up, radial inclination tended to approach a statistically significant difference in favor of group B. All clinical assessment, including Mayo wrist score, Disabilities of the Arm, Shoulder, and Hand score, Green and O’Brien score, Gartland and Werley score, visual analog scale score, and grip strength, yielded no statistically significant difference between the 2 groups. -
Avulsion Fracture to Your Midfoot
You have an Avulsion Fracture to your Midfoot This is a small flake fracture that is treated like a sprain Healing: It normally takes 6 weeks for this fracture to heal. Smoking will slow down your healing. We would advise that you stop smoking while your fracture heals. Talk to your GP or go to www.smokefree.nhs.uk for more information. Pain and swelling: You may have foot pain and swelling for 3-6 months after your injury. Swelling is often worse at the end of the day. Taking pain medication, elevating your foot and using ice or cold packs will help. More information is on the next page. Walking and your boot: The boot protects your foot and will make you more comfortable. Wear the boot when you are standing and walking. You can take it off at night and at rest. You need to wear the boot for 2 weeks after your injury. Please inform us if you are diabetic; you may require a specialist boot. You are allowed to put weight through your foot. You may find it easier to use crutches in the early stages. Exercises: It is important to start exercises as soon as possible. Instructions are on the next page. Follow up: A follow up appointment is not normally needed for this injury. If you still have significant pain and swelling after 3 months, then please contact the Virtual Fracture Clinic team. Any questions: If you are concerned about your symptoms, are unable to follow this rehabilitation plan or have pain other than at the site of your injury please contact the Virtual Fracture Clinic team. -
Palmar and Dorsal Fixed-Angle Plates in AO C-Type
Jakubietz et al. Journal of Orthopaedic Surgery and Research 2012, 7:8 http://www.josr-online.com/content/7/1/8 RESEARCH ARTICLE Open Access Palmar and dorsal fixed-angle plates in AO C-type fractures of the distal radius: is there an advantage of palmar plates in the long term? Michael G Jakubietz1*, Joerg G Gruenert2 and Rafael G Jakubietz1 Abstract Background: Current surgical approaches to the distal radius include dorsal and palmar plate fixation. While palmar plates have gained widespread popularity, few reports have provided data on long term clinical outcomes in comparison. This paper reports the result of a randomised clinical study comparing dorsal Pi plates and palmar, angle-stable plates for treatment of comminuted, intraarticular fractures of the distal radius over the course of twelve months. Methods: 42 patients with unilateral, intraarticular fractures of the distal radius were included and randomised to 2 groups, 22 were treated with a palmar plate, 20 received a dorsal Pi-plate. Results were evaluated after 6 weeks, 3, 6 and 12 months postoperatively focussing on functional recovery as well as radiological results. Results: The palmar plate group demonstrated significantly better results regarding range of motion and grip strength over the course of 12 months. While a comparable increase in function was observed in both groups, the better results from the early postoperative period in the palmar plate group prevailed over the whole course. Radiological results showed a significantly increased palmar tilt and carpal sag in dorsal plates, with other radiological parameters being comparable. Pain levels were decreased in dorsal plates after hardware removal and failed to show significant differences after 12 months.