Extraction and Identification of Clavine and Lysergic Acid Alkaloids from Morning Glories1

Total Page:16

File Type:pdf, Size:1020Kb

Extraction and Identification of Clavine and Lysergic Acid Alkaloids from Morning Glories1 EXTRACTION AND IDENTIFICATION OF CLAVINE AND LYSERGIC ACID ALKALOIDS FROM MORNING GLORIES1 WELDON L. WITTERS Department of Zoology and Microbiology, Ohio University, Athens, Ohio ^5701 WITTERS, WELDON L. Extraction and alkaloids. These substances are some- identification of clavine and lysergic acid times called ergoline compounds (Der alkaloids from morning glories. Ohio J. Marderosian, 1967). In 1938, Albert Sci. 75(4): 198, 1975. Hofmann of the Sandoz Company, syn- Seeds from three varieties of Ipomoea thesized LSD from ergoline compounds, grown in Ohio were examined for clavine and in 1960 he discovered lysergic acid and lysergic acid alkaloids. Three sys- and clavine alkaloids in morning glory tems of extraction of ergoline alkaloids seeds of Ipomoea violacea Sp. (Hofmann, were compared with the ammonium 1968). hydroxide-methanol-chloroform method A number of investigators, since Hof- proving superior to the others. Four mann, have identified ergoline compounds chromatographic systems were compared in Ipomoea Sp. (Genest, 1966; Niwaguchi for ability to resolve and identify ergoline and Inoue, 1969; Taber et al., 1963). alkaloids. Of the four systems, a thin- The literature records a wide range of layer system with ethyl acetate-ethanol- qualitative and quantitative data on dimethyl-formamide gave the best resolu- ergoline compounds in morning glories. tion of ergoline alkaloids. Ipomoea vio- These data are confused by the variety of lacea L. var. Pearly Gates had signifi- extraction and identification techniques cantly more total alkaloids and more and differences in preparation techniques. individual ergoline alkaloids. In trial runs in our laboratory, it was discovered that quantitative results varied from seed batch to seed batch, For many years, scientists have known and that time and technique of extrac- of a series of hallucinogenic alkaloids in tion and chromatographic separation was such unrelated plants as cactus, mush- very important. rooms and morning glories. There is evidence that some groups of Indians METHODS Seeds were collected from three types of have used various of these plants for morning glory Ipomoea violacea L. var. heav- ceremonial purposes for centuries (Mac- enly Blue, Ipomoea violacea L. var. Pearly Dougall, 1960; Schultes, 1941), although Gates, and Ipomoea violacea L. var. Blue Star there is no record of use by Indians of (based on the classification of Der Marderosian 1967) grown from seeds purchased from the Ohio. MacDougall believes that tribes George W. Park Seed Co., Greenwood, North of Indians used the morning glory in Carolina. religious ceremonies and as a type of Three methods of extraction of ergoline alka- narcotic or analgesic. In the early loids were compared using 5-g portions of each 1570's, the King of Spain's personal of the three varieties of seed, ground with clean quartz sand in a mortar. Total ergoline alka- physician, Hernandez, wrote that the loid content was estimated by colorimetric pro- Aztecs used morning glory seeds, called cedures developed by Genest (1966) and Vining Ololiuqi, to commune with their gods and Taber (1959). The methods for extraction (Hofmann, 1968). were: 1. Ground seeds were washed with 50 ml of In the 1930's, the Sandoz Pharmaceu- a 1:1 mixture of 10% sodium bicarbonate and tical Company of Basle, Switzerland, ex- ethyl acetate. The solvent fraction was re- tracted a number of pharmacologically moved from the seeds and dried. The residue was treated with 50 ml of a 1:1 mixture of active substances from the ergot fungus, dicthyl ether and 1% tartaric acid. The alka- Claviceps purpurea. These substances loids were present in the lower layer (Taber ct were lysergic acid derivatives and clavine al.. 1963). 2. The ground seeds were covered with a Manuscript received 3/11/71, and in revised 10% ammonium hydroxide in dicthyl ether mix- form 0/23/75 (#71-15). ture, the solvent was dried and the residue was No. 4 ERGOLINE ALKALOIDS IN MORNING GLORIES 199 dissolved in a 1:1 mixture of diethyl ether and of ethyl acetate-cthanol-dimethylformamide 1% tartaric acid (Taber et al., 1963). (Agurell and Ramstad, 1962). 3. The ground seeds were treated with 50 ml 4. Thin layer plates were covered with a of a 10:90:900 mixture of ammonium hydroxide, 0.25 mm layer of silica gel G and activated. methanol and chloroform. The slurry was The alkaloid mixture was spotted on the plates shaken for 5 minutes, and 50 ml of chloroform and the plates were developed in a 5:5:1 mix- and 2 ml of water was added. The slurry was ture of acetone-ethyl acetate-dimethyl- for- filtered through glass wool and the solvent col- mamide (Niwaguchi and Inoue, 1969). lected (Alexander and Banes, 1901). Ergoline standards (Aldrich Chemical Co.) Solutions from each of the three above pro- were added to each chromatogram to compare cedures were treated with chloroform after with the unknown spots. The location of the neutralizing each with excess sodium bicarbon- ergoline alkaloids was determined by noting the ate. The chloroform was removed under fluorescent zones that appeared under ultra- vacuum and the residue redissolved in 0.5 ml violet light and also by spraying the completed ethanol. chromatogram with van Urk's reagent (1 g 4- Isolation and identification of the extracted dimethylaminobenzaldehyde dissolved in a mix- ergoline alkaloids was done by four chromato- ture of 50 ml 25% hydrochloric acid and 50 ml graphic methods. Exactly 50 microliters of ethanol) (Waldi, 1962). each solution was placed as a single spot on paper strips or thin-layer plates. Procedures RESULTS AND DISCUSSION for identification and separation of the ergoline alkaloids were: Of the three varieties of Ipomoea in- 1. Whatman No. 3 MM paper was impreg- nated with a solution of 4% benzoic acid in a vestigated, Ipomoea violacea L. var. 3:1 mixture of methanol and formamide. After Pearly Gates had a significantly higher the paper was dry an aliquot of ergoline-con- yield of total alkaloids in all three sys- taining solvent was spotted on the paper and tems of extraction (table 1). The Pearly the chromatogram developed in a mixture of benzene-pyridine (6:1) for 3.5 hours (Agurell Gates variety yielded a mean value of andRamstad, 1962). 0.060% of fresh weight as compared to 2. Whatman No. 3 MM paper was impreg- mean values of 0.034 and 0.027% for nated with the solution of 4% benzoic acid in the Heavenly Blue and Blue Star varie- 3:1 methanol-formamide. The alkaloid-con- ties, respectively. The extraction system taining solution was spotted on the paper and developed in a mixture of chloroform-pyridine using ammonium hydroxide, methanol (6:1) for two hours (Agurell and Ramstad, and chloroform developed by Alexander 1962). and Banes (1961) gave the highest mean 3. Thin layer plates were covered with a yield of ergoline alkaloids by fresh weight 0.25 mm layer of silica gel G and activated. The alkaloid solution was spotted at the base- from the three varieties of morning glory, line and they were developed in a 13:1:1 mixture compared to the other two systems. The TABLE 1 Alkaloid content of Ipomoea seeds.1 % Fresh weight in 3 extraction systems2 Type of Ipomoea 1 2 3 Mean Heavenly Blue 0 .028 0 .036 0 .038 0.034 Pearly Gates 0 .040 0 .068 0 .072 0.060 Blue Star 0 .022 0 .026 0 .032 0.027 Mean: 0.030 0.043 0.047 xThe values are expressed as ergometrine equivalents using the van Urk reagent (Vining and Taber, 1959). Extraction method: 1. 10% sodium bicarbonate in ethyl acetate; the extract was dried and the residue taken up in a mixture of ether and 1% tartaric acid. Extraction method: 2. 10% ammonium hydroxide and ether. Extract was dried and residue taken up in ether and 1% tartaric acid. Extraction method: 3. 50 ml of a mixture of 10:90:900 ammonium hydroxide, methanol and chloroform to which a 50 ml aliquot of chloroform and 2 ml of water was added. 200 WELDON L. WITTERS Vol. 75 mean per cent fresh weight of alkaloids ethanol-dimethylformamide. In Pearly extracted by the ammonium hydroxide, Gates, ergometrine and agroclavine were methanol and chloroform mixture was not detectable in the paper chromato- 0.045, while the ammonium hydroxide in graphic system using benzene-pyridine diethyl ether solution yielded 0.43, and as the developing mixture, and penni- the sodium bicarbonate, ethyl acetate clavine was not found using the thin-layer solution yielded only 0.030 per cent of system using a 5:5:1 mixture of acetone, fresh weight for the ergoline alkaloids. ethyl acetate and dimethylformamide. The Pearly Gates variety had the most In the Heavenly Blue seeds, no chano- ergoline alkaloids in all three extraction clavine or pennicalvine was detected systems (table 1) with a per cent fresh using any of the four chromatographic weight of ergoline compounds of 0.060 methods. No agroclavine, penniclavine, compared to 0.034 and 0.027 for the or chanoclavine were found in Blue Star Heavenly Blue and the Blue Star varie- seeds. ties, respectively. All six of the alkaloids The thin-layer systems using the mix- listed in Table 2 were found in Pearly ture of ethyl acetate, ethanol and di- Gates with the paper chromatographic methylformamide gave the greatest clar- system in which the paper was impreg- ity of individual spots and had the further nated with 4% benzoic acid in a 3:1 mix- advantage of taking less than two hours, ture of methanol-formamide and develo- whereas the paper chromatographic sys- oped in chloroform-pyridine, and with the tems took nearly three hours. thin-layer chromatographic system that Ipomoea violacea L.
Recommended publications
  • 4/23/2015 1 •Psychedelics Or Hallucinogens
    4/23/2015 Hallucinogens •Psychedelics or This “classic” hallucinogen column The 2 groups below are quite different produce similar effects From the classic hallucinogens Hallucinogens Drugs Stimulating 5HT Receptors Drugs BLOCKING ACH Receptors • aka “psychotomimetics” LSD Nightshade(Datura) Psilocybin Mushrooms Jimsonweed Morning Glory Seeds Atropine Dimethyltryptamine Scopolamine What do the very mixed group of hallucinogens found around the world share in common? •Drugs Resembling NE Drugs BLOCKING Glutamate Receptors •Peyote cactus Phencyclidine (PCP) •Mescaline Ketamine All contain something that resembles a •Methylated amphetamines like MDMA High dose dextromethorphan •Nutmeg neurotransmitter •New synthetic variations (“bath salts”) •5HT-Like Hallucinogens •LSD History • Serotonin • created by Albert Hofmann for Sandoz Pharmaceuticals LSD • was studying vasoconstriction produced by ergot alkaloids LSD • initial exposure was accidental absorption thru skin • so potent ED is in millionths of a gram (25-250 micrograms) & must be delivered on something else (sugar cube, gelatin square, paper) Psilocybin Activate 5HT2 receptors , especially in prefrontal cortex and limbic areas, but is not readily metabolized •Characteristics of LSD & Other “Typical” •Common Effects Hallucinogens • Sensory distortions (color, size, shape, movement), • Autonomic (mostly sympathetic) changes occur first constantly changing (relatively mild) • Vivid closed eye imagery • Sensory/perceptual changes follow • Synesthesia (crossing of senses – e.g. hearing music
    [Show full text]
  • Appendix Color Plates of Solanales Species
    Appendix Color Plates of Solanales Species The first half of the color plates (Plates 1–8) shows a selection of phytochemically prominent solanaceous species, the second half (Plates 9–16) a selection of convol- vulaceous counterparts. The scientific name of the species in bold (for authorities see text and tables) may be followed (in brackets) by a frequently used though invalid synonym and/or a common name if existent. The next information refers to the habitus, origin/natural distribution, and – if applicable – cultivation. If more than one photograph is shown for a certain species there will be explanations for each of them. Finally, section numbers of the phytochemical Chapters 3–8 are given, where the respective species are discussed. The individually combined occurrence of sec- ondary metabolites from different structural classes characterizes every species. However, it has to be remembered that a small number of citations does not neces- sarily indicate a poorer secondary metabolism in a respective species compared with others; this may just be due to less studies being carried out. Solanaceae Plate 1a Anthocercis littorea (yellow tailflower): erect or rarely sprawling shrub (to 3 m); W- and SW-Australia; Sects. 3.1 / 3.4 Plate 1b, c Atropa belladonna (deadly nightshade): erect herbaceous perennial plant (to 1.5 m); Europe to central Asia (naturalized: N-USA; cultivated as a medicinal plant); b fruiting twig; c flowers, unripe (green) and ripe (black) berries; Sects. 3.1 / 3.3.2 / 3.4 / 3.5 / 6.5.2 / 7.5.1 / 7.7.2 / 7.7.4.3 Plate 1d Brugmansia versicolor (angel’s trumpet): shrub or small tree (to 5 m); tropical parts of Ecuador west of the Andes (cultivated as an ornamental in tropical and subtropical regions); Sect.
    [Show full text]
  • Birds of Jagdishpur Reservoir, Nepal Forktail 24: 115-119 (PDF, 70
    Forktail 24 (2008) SHORT NOTES 115 König, C., Weick, F. and Becking, J.-H. (1999) Owls: a guide to the owls Warburton, T. (2006) Wonderful Philippines news. World Owl Trust of the world. Robertsbridge, East Sussex, U.K.: Pica Press. Newsletter 32: 3–5. Marshall, J. T. (1978) Systematics of smaller Asian night birds based Warburton, T. (2007) The Philippine Eagle Owls do it again. World on voice. Orn. Monogr. 24. Owl Trust Newsletter 35: 22. Taylor, B. (1998) Rails: a guide to the rails, crakes, gallinules and coots of the world. Robertsbridge, UK: Pica Press. D. N. S. Allen, 97 Sussex Way, London N7 6RU, U.K. N. J. Collar, BirdLife International, Wellbrook Court, Girton Road, Cambridge CB3 0NA, U.K. Email: [email protected] Birds of Jagdishpur Reservoir, Nepal HEM SAGAR BARAL Jagdishpur Reservoir is the largest reservoir in Nepal (at sites in Nepal and the use of such information for the 2.25 km2) and is considered to be among the most conservation, management and wise use of wetlands important wetland sites in the country (Bhandari 1998, (HMGN/MFSC 2003). Ornithological surveys and HMGN/MFSC 2002). In 2003, Jagdishpur was conservation awareness programmes for local designated a Ramsar site. Despite it being listed as a key communities have been recommended as high priority wetland, not much is known about its birds or other fauna. for the conservation of Jagdishpur (Baral and Inskipp The reservoir and its surrounds are believed to provide 2005). Following these recommendations, I carried out important habitat for resident, wintering and passage surveys in 2005–2006 to gather baseline information on migrant wetland birds.
    [Show full text]
  • Pharmacognosy
    Pharmacognosy Third stage Dr. Enass Najem 2nd semester Lec:8 ERGOT, ERGOT ALKALOIDS, AND LSD When the parasitic fungus Claviceps purpurea lives on rye and other cereal crops, a poisonous alkaloid and called ergot is produced. Ergot was the subject of great fear previously, because people who ate rye products infected with this, fungus experienced a strange and debilitating, and frequently lethal, disease. Ergot contains alkaloids that contract the blood vessels of arms and legs, preventing circulation of the blood, and gangrene results. Thus, people suffering from ergot poisoning lost their hands and legs without bleeding (ergotism), after they became darkened. Although it was well known that ergot was very dangerous, midwives in Europe were also using it for promotion of the contraction of the womb post-parturition. Subsequently, studies of the active principle(s) of ergot responsible for the contractions were initiated. The first alkaloid isolated in crystalline form was ergotinine , but it did not possess the uterocontracting activity. Ergotoxine was the first biologically active alkaloid isolated, and was shown to be a mixture of ergocristine, ergocornine, and related alkaloids. Ergotamine was isolated later in a pure form. The common skeleton of these ergot alkaloids is known as lysergic acid, and ergotamine comprises a structure based on lysergic acid coupled with a peptide moiety. The universal skeleton of the ergot alkaloids is known as the ergoline nucleus. It was shown by using cultivated Claviceps that the ergoline skeleton was derived biosynthetically from tryptophan and a C5 unit of mevalonic acid origin. 1 Pharmacognosy Simple lysergic acid amides, such as ergine and lysergic acid hydroxyethylamide, are obtained from the ergot that lives on wild grass.
    [Show full text]
  • Chloroform Extracts of Ipomoea Alba and Ipomoea Tricolor Seeds Show Strong In-Vitro Antibacterial, Antifungal, and Cytotoxic Activity SIMS K
    Research Horizons Day & Research Week April 6-13, 2018 Chloroform Extracts of Ipomoea alba and Ipomoea tricolor Seeds Show Strong In-vitro Antibacterial, Antifungal, and Cytotoxic Activity SIMS K. LAWSON, MARY N. DAVIS, CAROLYN BRAZELL – Biology Department WILLIAM N. SETZER – Mentor – Chemistry Department Overview Antibiotic and antifungal resistance is a growing concern. Novel anti-tumor compounds are continuously sought after. If a novel phytochemical can be discovered with high specificity for certain types of cancer cells, then this could be an invaluable aid to oncological medicine. Plant-based drugs (phyto-pharmaceuticals) have always made up a considerable portion of our known medicines. The search for these plant medicines often begins with anthropological/ ethnobotanical research, as was the case here. Figure 2. - Ancient Olmec tribes mixed the sap of I. alba with sap from the rubber tree to make their rubber balls extra “bouncy”. Their ancient ball games were played since 1300 B.C.. Often, the losers were sacrificed, and sometimes the ball was made from a human Methods skull wrapped in rubber. Figure 1.- Morning glory (Ipomoea spp.) seeds have long been the subject of folklore, myth, and speculation. Some varieties (I. tricolor and I. Cold extractions of the ground seeds of each Ipomoea violacea) contain lysergic acid derivatives, which are known to be species were made with chloroform. Seven bacteria and hallucinogenic, and are closely related chemically to the famous LSD molecule. The Mayans are known to have used morning glory seeds during three fungi were obtained and cultured for multiple certain religious rituals. generations. Then, minimum inhibitory concentrations Table 1.- Antibacterial (MIC, μg/mL), antifungal (MIC, μg/mL), (MIC’s) of the extracts were determined against the and cytotoxic (IC50, μg/mL) activities of Ipomoea CHCl3 seed bacteria and fungi using broth microdilution (BM) extracts.
    [Show full text]
  • Status and Diversity of Wetland Birds of Basavanahalli Lake and Hiremagaluru Lake, Chikmagaluru, Karnataka, India
    International Journal of Science and Research (IJSR) ISSN (Online): 2319-7064 Index Copernicus Value (2016): 79.57 | Impact Factor (2015): 6.391 Status and Diversity of Wetland Birds of Basavanahalli Lake and Hiremagaluru Lake, Chikmagaluru, Karnataka, India Annpurneshwari .H1, Padmini .N2 Department of Zoology IDSG Government College, Chikkamagaluru -577102, Karnataka Abstract: Wetlands are the unique and most productive ecosystem of the world .They support a wide range of flora and fauna. The present study deals with the study of the Avifaunal diversity of wetlands and adjoining area of lake. In this survey two wetlands of Chikkamagaluru have been studied which include Basavanahalli Lake, and Hiremagaluru Lake . The survey was carried for the period of 14 months i.e. from October 2016 to November 2017. During the study period forty two species of birds, belonging to thirteen families were recorded .Which includes both local and migratory birds. Birds belonging to the family Ardeidae found to be dominated by the representation of 8 species, followed by Anatidae7 species, Scolopacidae 5 species, Phalacrocracidae, Threskiornithidae and Ralidae 3species each, Ciconiidae, Laridae, Jacanidae, Charadriidae and Alcedinidae 2 species each and Podicipedidae 1 species.The study also revealed that the study sites harbor many resident as well as migratory birds. Four species like Black headed ibis(Threskiornismelanocephalus),Black tailed God wit (Limosalimosa) , Painted Stork (Mycterialeucocephala) and River tern(Sterna aurantia ) were near threatened and have a protected status under the schedule IV of Indian Wild life Protection Act,1972. Keywords: Avifauna, Wetland birds, Chikkamagaluru, Diversity, Anthropogenic 1. Introduction in the mega diversity of its flora and fauna.
    [Show full text]
  • Diversity of Ipomoea (Convolvulaceae) in Some of the Regions of Maharashtra
    Int. J. of Life Sciences, Special Issue A3 | September, 2015 ISSN: 2320-7817 |eISSN: 2320-964X RESEARCH ARTICLE Diversity of Ipomoea (Convolvulaceae) in some of the regions of Maharashtra Undirwade DN1, BhadaneVV2 and Baviskar PS 1B.P. Arts, S.M.A. Science & K.K.C. Commerce. College, Chalisgaon, Dist.-Jalgaon, Maharshtra, India 2Pratap College, Amalner, Dist.-Jalgaon, Maharshtra, India * Corresponding author Email: [email protected] Manuscript details: ABSTRACT Available online on The present study deals with genus Ipomoea of family Convolvulaceaefrom http://www.ijlsci.in various regions of Maharashtra state. A total of 17 species of the genus have been collected from various localities of state Maharashtra on the collections ISSN: 2320-964X (Online) made between 2013 and 2015 from different parts. The present paper ISSN: 2320-7817 (Print) illustrates the diversity and morphology of the species of Ipomoea, which are separated from each other on the basis of their morphological characters. Editor: Dr. Arvind Chavhan Keywords: Diversity, Ipomoea, Convolvulaceae, Maharashtra. Cite this article as: Undirwade DN, Bhadane VV and Baviskar PS (2015) Diversity of Ipomoea (Convolvulaceae) in some of INTRODUCTION the regions of Maharashtra, International J. of Life Sciences, The family Convolvulaceae is known as morning glory family. About Special issue, A3: 136-139. 2000 species of 58 genera are distributed overall the world, mainly in the tropics and subtropics region (Staple and Yang, 1998). More than one third of Copyright: © Author, This is the species are included into major genera Ipomoea and Convolvulus an open access article under (Conquist, 1988). Genus Ipomoea represented by 650 species distributed the terms of the Creative worldwide (Mabberley, 1997).
    [Show full text]
  • Nematotoxicity of Neotyphodium Infected Tall Fescue Alkaloids and Other Secondary Metabolites on Pratylenchus Scribneri
    NEMATOTOXICITY OF NEOTYPHODIUM-INFECTED TALL FESCUE ALKALOIDS AND OTHER SECONDARY METABOLITES ON THE PLANT- PARASITIC NEMATODE PRATYLENCHUS SCRIBNERI by ADA ANTONIA BACETTY (Under the direction of Charles W. Bacon) ABSTRACT Tall fescue (Festuca arundinacea) is a perennial, cool-season turf and forage grass species in the United States that covers over 20 million hectares of pastureland. Neotyphodium coenophialum, an endophytic fungus associated with cool-season grasses, enhances host fitness and imparts pest resistance to the grass. Biologically active alkaloids and other secondary metabolites are produced in this association that not only cause adverse effects on livestock, fescue toxicosis, but may also play a role in the reduction of plant-parasitic nematode populations. Currently there is little information available on the effects of these biologically active compounds on nematodes associated with tall fescue. Therefore, this research examines the interaction of ergot and loline alkaloids, as well as polyphenolic compounds, from endophyte-infected tall fescue on toxicity to the lesion nematode, Pratylenchus scribneri. In vitro bioassays were performed to assess the effects of specifically identified compounds on P. scribneri motility, mortality, and chemoreception. While separate greenhouse studies evaluated the effects of endophyte- infected tall fescue on P. scribneri viability. Root extracts served as nematistatic agents to the nematodes in the chemical submersion assays and affected nematode behavior by acting as repellents in chemoreception studies. During individual tests, ergovaline and α-ergocryptine were nematicidal at 5µg/ml and 50µg/ml respectively. However, chemotaxis studies revealed α-ergocryptine as an attractant (1-20µg/ml) and repellent (50-200µg/ml). Ergovaline was an effective repellent (1-5µg/ml) and a nematicidal (10-200µg/ml).
    [Show full text]
  • Vacuolar Proton Pumping: More Than the Sum of Its Parts?
    Spotlight Vacuolar proton pumping: more than the sum of its parts? Cornelia Eisenach, Ulrike Baetz, and Enrico Martinoia Institute of Plant Biology, University of Zu¨ rich, Zollikerstrasse 107, CH-8008 Zu¨ rich, Switzerland Petunia flower colour is dependent on vacuolar pH and is vacuole of flower petal cells, and the colour of these antho- therefore used to study acidification mechanisms. Re- cyanins is dependent on–among other factors–vacuolar cently, it was shown that the concerted action of two pH. In petunia a shift in vacuolar pH causes a change in tonoplast-localised P3-ATPases is required to hyperaci- flower colour. Mutants that display a flower colour differ- dify vacuoles of petunia petal epidermis cells. Here we ent to the red-flowering wild type are a useful tool to discuss how steep cross-tonoplast pH gradients may be analyse gene function in vacuolar pH maintenance. Over- established in specific cells. all, seven pH-mutants defective in petunia flower colour and pH have been identified and termed ph1 to ph7 [5]. The acidity of plant vacuoles varies between plant species, Within the past decade the team led by Francesca Quat- organs, and cell types. In morning glory (Ipomoea tricolor), trocchio at Amsterdam University has been successful in when the slightly acidic vacuoles of flowers become neutral, identifying several genes that are affected in the respective a shift from a purple to the characteristic blue flower colour mutants, using transposon-tagging strategies. Some of the can be observed. By contrast, petal epidermis cells of genes such as PH3, PH4 and PH6 are transcriptional reg- petunia (Petunia hybrida) contain acidic vacuoles with a ulators.
    [Show full text]
  • Ce4less.Com Ce4less.Com Ce4less.Com Ce4less.Com Ce4less.Com Ce4less.Com Ce4less.Com
    Hallucinogens And Dissociative Drug Use And Addiction Introduction Hallucinogens are a diverse group of drugs that cause alterations in perception, thought, or mood. This heterogeneous group has compounds with different chemical structures, different mechanisms of action, and different adverse effects. Despite their description, most hallucinogens do not consistently cause hallucinations. The drugs are more likely to cause changes in mood or in thought than actual hallucinations. Hallucinogenic substances that form naturally have been used worldwide for millennia to induce altered states for religious or spiritual purposes. While these practices still exist, the more common use of hallucinogens today involves the recreational use of synthetic hallucinogens. Hallucinogen And Dissociative Drug Toxicity Hallucinogens comprise a collection of compounds that are used to induce hallucinations or alterations of consciousness. Hallucinogens are drugs that cause alteration of visual, auditory, or tactile perceptions; they are also referred to as a class of drugs that cause alteration of thought and emotion. Hallucinogens disrupt a person’s ability to think and communicate effectively. Hallucinations are defined as false sensations that have no basis in reality: The sensory experience is not actually there. The term “hallucinogen” is slightly misleading because hallucinogens do not consistently cause hallucinations. 1 ce4less.com ce4less.com ce4less.com ce4less.com ce4less.com ce4less.com ce4less.com How hallucinogens cause alterations in a person’s sensory experience is not entirely understood. Hallucinogens work, at least in part, by disrupting communication between neurotransmitter systems throughout the body including those that regulate sleep, hunger, sexual behavior and muscle control. Patients under the influence of hallucinogens may show a wide range of unusual and often sudden, volatile behaviors with the potential to rapidly fluctuate from a relaxed, euphoric state to one of extreme agitation and aggression.
    [Show full text]
  • Risk Assessment of Argyreia Nervosa
    Risk assessment of Argyreia nervosa RIVM letter report 2019-0210 W. Chen | L. de Wit-Bos Risk assessment of Argyreia nervosa RIVM letter report 2019-0210 W. Chen | L. de Wit-Bos RIVM letter report 2019-0210 Colophon © RIVM 2020 Parts of this publication may be reproduced, provided acknowledgement is given to the: National Institute for Public Health and the Environment, and the title and year of publication are cited. DOI 10.21945/RIVM-2019-0210 W. Chen (author), RIVM L. de Wit-Bos (author), RIVM Contact: Lianne de Wit Department of Food Safety (VVH) [email protected] This investigation was performed by order of NVWA, within the framework of 9.4.46 Published by: National Institute for Public Health and the Environment, RIVM P.O. Box1 | 3720 BA Bilthoven The Netherlands www.rivm.nl/en Page 2 of 42 RIVM letter report 2019-0210 Synopsis Risk assessment of Argyreia nervosa In the Netherlands, seeds from the plant Hawaiian Baby Woodrose (Argyreia nervosa) are being sold as a so-called ‘legal high’ in smart shops and by internet retailers. The use of these seeds is unsafe. They can cause hallucinogenic effects, nausea, vomiting, elevated heart rate, elevated blood pressure, (severe) fatigue and lethargy. These health effects can occur even when the seeds are consumed at the recommended dose. This is the conclusion of a risk assessment performed by RIVM. Hawaiian Baby Woodrose seeds are sold as raw seeds or in capsules. The raw seeds can be eaten as such, or after being crushed and dissolved in liquid (generally hot water).
    [Show full text]
  • Master Plant List 2017.Xlsx
    Master Plant List 2017 Availability, Pot Size and Prices are subject to change. Category Type Botanical Name Common Name Size Price Range N BREVER Azalea X 'Cascade' Cascade Azalea (Glenn Dale Hybrid) #3 49.99 N BREVER Azalea X 'Electric Lights' Electric Lights Double Pink Azalea #2 44.99 N BREVER Azalea X 'Karen' Karen Azalea #2, #3 39.99 - 49.99 N BREVER Azalea X 'Poukhanense Improved' Poukhanense Improved Azalea #3 49.99 N BREVER Azalea X 'Renee Michelle' Renee Michelle Pink Azalea #3 49.99 N BREVER Azalea X 'Stewartstonian' Stewartstonian Azalea #3 49.99 N BREVER Buxus Microphylla Japonica "Gregem' Baby Gem Boxwood #2 29.99 N BREVER Buxus Sempervirens 'Green Tower' Green Tower Boxwood #5 64.99 N BREVER Buxus Sempervirens 'Katerberg' North Star Dwarf Boxwood #2 44.99 N BREVER Buxus Sinica Var. Insularis 'Wee Willie' Wee Willie Dwarf Boxwood Little One, #1 13.99 - 21.99 N BREVER Buxus X 'Cranberry Creek' Cranberry Creek Boxwood #3 89.99 #1, #2, #5, #15 Topiary, #5 Cone, #5 Spiral, #10 Spiral, N BREVER Buxus X 'Green Mountain' Green Mountain Boxwood #5 Pyramid 14.99-299.99 N BREVER Buxus X 'Green Velvet' Green Velvet Boxwood #1, #2, #3, #5 17.99 - 59.99 N BREVER Buxus X 'Winter Gem' Winter Gem Boxwood #5, #7 59.99 - 99.99 N BREVER Daphne X Burkwoodii 'Carol Mackie' Carol Mackie Daphne #2 59.99 N BREVER Euonymus Fortunei 'Ivory Jade' Ivory Jade Euonymus #2 35.99 N BREVER Euonymus Fortunei 'Moonshadow' Moonshadow Euonymus #2 29.99 - 35.99 N BREVER Euonymus Fortunei 'Rosemrtwo' Gold Splash Euonymus #2 39.99 N BREVER Ilex Crenata 'Sky Pencil'
    [Show full text]