Exploring QED Vacuum with Ultra Intense Lasers

Total Page:16

File Type:pdf, Size:1020Kb

Exploring QED Vacuum with Ultra Intense Lasers Exploring QED vacuum with ultra intense lasers J.T.Mendon¸ca CFP and CFIF, Instituto Superior T´ecnico, 1049-001 Lisboa, Portugal Abstract We consider the possible use of ultra-intense laser fields to probe the nonlinear properties of the electromagnetic quantum vacuum. Several new processes asso- ciated with the nonlinear optical properties of vacuum, as predicted by quantum electrodynamics are described here. First, we consider the presence of a static and a rotating magnetic field. A second type of processes is photon acceleration in vacuum, and corresponds to an adiabatic frequency shift of a probe photon beam, moving in vacuum in the presence of an ultra-intense burst of radiation. Finally, quantum time refraction is considered inside an empty optical cavity, and can be linked with a dynamical Casimir process. The possible observation of these nonlinear vacuum processes with the existing Peta-Watt laser systems is discussed. 1 Introduction Vacuum is one of the most fascinating physical concepts. Several aspects of nonlinear vacuum have been studied in recent years, in the frame of quantum electrodynamics or QED. It is well known from QED that photon-photon interactions in vacuum are possible, due to the existence of virtual electron-positron pairs [1, 2]. This leads to nonlinear corrections of the photon dispersion relation in vacuum, and vacuum becomes a nonlinear optical medium. However, such QED corrections are extremely small, and only recently, with the advent of very intense laser systems, in the Peta-watt regime, the prospect for experimental observation of such nonlinearities started to be seriously considered. 1 2 A large variety of different effects has been discussed, including photon splitting [3, 4], harmonic generation [6], self-focusing [5], nonlinear wave [7] or sideband generation by rotating magnetic fields. Also, attention has been paid to collective photon phenomena [8], such as the electromagnetic wave collapse [9, 10] as well as the formation of photon bullets [11] and light wedges [12]. Recently, we have explored another process associated with the collective photon interactions, related to possible frequency shift of test photons immersed in a modulated radiation background [13]. This new process could be called photon acceleration in vacuum, because of its obvious analogies with the well known photon acceleration processes that can occur in a plasma or in an optical medium [14]. Another kind of nonlinear optical QED effects is associated with magnetized vacuum. Or recent work [15] considers a rotating magnetic field. In this case birrefringence is inhibited, but optical sidebands are excited, providing a possible signature to the vacuum nonlinearity. Finally, we consider vacuum detuning of an optical cavity, produced by an intense laser pulse. We assume that this intense laser beam crosses the empty cavity in the perpendicular direction.The optical length of the cavity is then slightly changed, due to the nonlinear QED perturbation of vacuum, and the cavity modes are frequency shifted (or frequency modulated) and detuned. This sudden change of the refractive index of a cavity can be seen as a time refraction process [16], or alternatively as a dynamical Casimir effect [17]. What is new and relevant here is that such processes are not taking place in a variable optical medium, or in a variable cavity, but in pure vacuum. The basic principles behinds the proposed optical configuration rely on the phase shift amplification associated with resonant optical cavities. 2 QED in vacuum The nonlinear QED effects associated with the creation of virtual electron-positron pairs in vacuum can be described by the Heisenberg–Euler Lagrangian density, which can be written as a nonlinear quantum correction δL to the usual classical electromagnetic La- 3 2 2 grangian density L0, in the form [18]: L = L0 + δL = 0F + ζ(4F + 7G ), where the 1 2 2 2 ~ ~ quantities F and G are determined from F ≡ L0/0 = 2 (E − c B ) and G = c(E · B). Here E~ and B~ are the electric and magnetic fields, respectively. The nonlinear parameter 2 2 3 4 5 2 appearing in δL is ζ = 2α 0h¯ /45mec , where α = e /20hc ≈ 1/137 is the fine structure constant. If we consider a given photon state in this modified vacuum, with the frequency ω and the wavevector ~k, we can derive the following nonlinear dispersion relation [3, 7] 1 ω = kc 1 − λ f(~k,~k0)|E(~k0)|2 , (1) 2 0 ± where E~ (~k0) is the electric field of the background radiation, f(~k,~k0) is a geometric factor, and λ+ = 14ζ or λ− = 8ζ, according to the polarization state. The resulting vacuum refractive index n = kc/ω is 2¯hλ Z d~k0 n(ω,~k, t) = 1 + ± f(~k,~k0)k0N(~r,~k0, t) , (2) c (2π)3 where we have introduced the photon occupation number, or number of photons per field ~ 0 0 ~ 0 2 mode, N(k ) = (0c/4¯hk ) |E(k )| . 3 Birefringence ~ ~ Let us start with a static magnetic field Be ≡ B0 in vacuum. In this case, the dispersion relation for a photon state with frequency ω and wave vector ~k also depends on the direc- tion of its unit polarization vectore ˆ = E/~ |E|. For polarization parallel and perpendicular to the static magnetic field, the photon refractive index will be 4 2 4 2 2 nk = 1 + 7µ0c ζB0 , n⊥ = 1 + 4µ0c ζB0 sin α (3) ~ where α is de angle between the static field B0 and the direction of propagation, defined by ~k. This is the well known vacuum birefringence [3, 4]. We notice here that, for propagation along the static field we are reduced to nk = n⊥ = 1, which means that Faraday rotation is forbidden. The situation suffers an important qualitative change if we consider a rotation mag- ~ netic field. Let us then assume the case of a static but rotating magnetic field Be(t) = 4 ˆ ˆ B0 b0(t) with a constant amplitude B0, where the unit vector b0(t) rotates with a very ~ small angular frequency ω0 ω in the plane perpendicular to the photon wavevector k. In other words, it rotates in the plane of wave polarization. In this case the dispersion relation for non-interacting photon modes is given by 2 ! 2 2 ω ω 2 k − 2 = 11 ζ|B0| (4) c 0 which corresponds to a modified refractive index in the magnetized vacuum of 11 n = 1 + µ c4ζ|B2| (5) 2 0 0 Comparing with equations (??) we see that rotation of the magnetic field inhibits bir- refringence. But, on the other hand, this result is in complete agreement with those for a static field, because in a rotating field the polarization states change with time and are mixed together. Therefore, if we replace B0 by Be(t) in equations (3), and average over a rotation period 2π/ω0, we will get equation (5). 4 Sidebands We now consider another effect that originates from the second order nonlinear terms ~ with respect to the rotating magnetic field Be(t). These terms will couple photon modes with frequencies ωn = ω + 2nω0, and will generate a cascade of sidebands. The different mode amplitudes are determined by d E = iw E ei2φ + E e−i2φ (6) dτ n n n−1 n+1 where the phase mismatch is determined by φ = −ω0z/c, and the coupling constants are 2 3 c 2 wn = ζωn|B0| (7) 4 0 For small interacting distances, z λ(2ω0/ω), we can neglect the phase mismatch and obtain simple analytical solutions for the electric field amplitudes En. Solutions compat- ible with initial conditions such that E(ω, τ = 0) ≡ E0 and no sidebands initially exist 5 0.6 0.5 0.4 0.3 0.2 0.1 0 -2 -1 0 1 2 Figure 1: (a) Laser sidebands generated in vacuum: relative intensity versus sideband frequency, for the extreme case wτ = 1. En(τ = 0) = 0, are then given by inπ/2 En(τ) = E0 Jn(wτ)e (8) where Jn are the Bessel functions of the first kind. Using the asymptotic expressions for the Bessel functions will small arguments we get for the first sideband amplitude 2 E1 3 α B0 ∆z = (9) E0 8 45 Bcrit λ 2 2 where ∆z is the optical path, α is the fine structure constant, and Bcrit = m c /eh¯ the critical field. This could be applied to the PVLAS configuration [19], where an harmonic sideband E1 is observed. However, the observed amplitude lies a few orders above the expected QED signal and is due to some spurious signal or to a new physical effect, eventually associated to a pseudo-scalar particle like an axion. With an improved accuracy, the observation of the second sideband E2 would eventually help to clarify the observations. 6 5 Photon acceleration in vacuum In the geometric optics approximation, the dynamics of photons can be described by the ray equations, which can be stated in the following canonical form d~r ∂ω d~k ∂ω = , = − , (10) dt ∂~k dt ∂~r where the Hamiltonian ω is determined by Eq. (1). Let us consider the important particular case where the background radiation is dominated by a single photon beam ~ 0 0 propagating in a direction Oz. This means that we can make k = k ~ez. If the probe photon described by these equations of motion propagates at a given angle θ with respect to the z-axis, we have (~n · ~n0) = cos θ and (~n · ~e0) = sin θ cos ψ, where ψ is the second angle necessary to define the direction of ~n with respect to the background electric field. In this case, the geometric factor is f(~k,~k0) ≡ f(θ) = [2(1 − cos θ) − sin2 θ].
Recommended publications
  • Glossary Physics (I-Introduction)
    1 Glossary Physics (I-introduction) - Efficiency: The percent of the work put into a machine that is converted into useful work output; = work done / energy used [-]. = eta In machines: The work output of any machine cannot exceed the work input (<=100%); in an ideal machine, where no energy is transformed into heat: work(input) = work(output), =100%. Energy: The property of a system that enables it to do work. Conservation o. E.: Energy cannot be created or destroyed; it may be transformed from one form into another, but the total amount of energy never changes. Equilibrium: The state of an object when not acted upon by a net force or net torque; an object in equilibrium may be at rest or moving at uniform velocity - not accelerating. Mechanical E.: The state of an object or system of objects for which any impressed forces cancels to zero and no acceleration occurs. Dynamic E.: Object is moving without experiencing acceleration. Static E.: Object is at rest.F Force: The influence that can cause an object to be accelerated or retarded; is always in the direction of the net force, hence a vector quantity; the four elementary forces are: Electromagnetic F.: Is an attraction or repulsion G, gravit. const.6.672E-11[Nm2/kg2] between electric charges: d, distance [m] 2 2 2 2 F = 1/(40) (q1q2/d ) [(CC/m )(Nm /C )] = [N] m,M, mass [kg] Gravitational F.: Is a mutual attraction between all masses: q, charge [As] [C] 2 2 2 2 F = GmM/d [Nm /kg kg 1/m ] = [N] 0, dielectric constant Strong F.: (nuclear force) Acts within the nuclei of atoms: 8.854E-12 [C2/Nm2] [F/m] 2 2 2 2 2 F = 1/(40) (e /d ) [(CC/m )(Nm /C )] = [N] , 3.14 [-] Weak F.: Manifests itself in special reactions among elementary e, 1.60210 E-19 [As] [C] particles, such as the reaction that occur in radioactive decay.
    [Show full text]
  • 1 the History of Vacuum Science and Vacuum Technology
    1 1 The History of Vacuum Science and Vacuum Technology The Greek philosopher Democritus (circa 460 to 375 B.C.), Fig. 1.1, assumed that the world would be made up of many small and undividable particles that he called atoms (atomos, Greek: undividable). In between the atoms, Democritus presumed empty space (a kind of micro-vacuum) through which the atoms moved according to the general laws of mechanics. Variations in shape, orientation, and arrangement of the atoms would cause variations of macroscopic objects. Acknowledging this philosophy, Democritus,together with his teacher Leucippus, may be considered as the inventors of the concept of vacuum. For them, the empty space was the precondition for the variety of our world, since it allowed the atoms to move about and arrange themselves freely. Our modern view of physics corresponds very closely to this idea of Democritus. However, his philosophy did not dominate the way of thinking until the 16th century. It was Aristotle’s (384 to 322 B.C.) philosophy, which prevailed throughout theMiddleAgesanduntilthebeginning of modern times. In his book Physica [1], around 330 B.C., Aristotle denied the existence of an empty space. Where there is nothing, space could not be defined. For this reason no vacuum (Latin: empty space, emptiness) could exist in nature. According to his philosophy, nature consisted of water, earth, air, and fire. The lightest of these four elements, fire, is directed upwards, the heaviest, earth, downwards. Additionally, nature would forbid vacuum since neither up nor down could be defined within it. Around 1300, the medieval scholastics began to speak of a horror vacui, meaning nature’s fear of vacuum.
    [Show full text]
  • String-Inspired Running Vacuum—The ``Vacuumon''—And the Swampland Criteria
    universe Article String-Inspired Running Vacuum—The “Vacuumon”—And the Swampland Criteria Nick E. Mavromatos 1 , Joan Solà Peracaula 2,* and Spyros Basilakos 3,4 1 Theoretical Particle Physics and Cosmology Group, Physics Department, King’s College London, Strand, London WC2R 2LS, UK; [email protected] 2 Departament de Física Quàntica i Astrofísica, and Institute of Cosmos Sciences (ICCUB), Universitat de Barcelona, Av. Diagonal 647, E-08028 Barcelona, Catalonia, Spain 3 Academy of Athens, Research Center for Astronomy and Applied Mathematics, Soranou Efessiou 4, 11527 Athens, Greece; [email protected] 4 National Observatory of Athens, Lofos Nymfon, 11852 Athens, Greece * Correspondence: [email protected] Received: 15 October 2020; Accepted: 17 November 2020; Published: 20 November 2020 Abstract: We elaborate further on the compatibility of the “vacuumon potential” that characterises the inflationary phase of the running vacuum model (RVM) with the swampland criteria. The work is motivated by the fact that, as demonstrated recently by the authors, the RVM framework can be derived as an effective gravitational field theory stemming from underlying microscopic (critical) string theory models with gravitational anomalies, involving condensation of primordial gravitational waves. Although believed to be a classical scalar field description, not representing a fully fledged quantum field, we show here that the vacuumon potential satisfies certain swampland criteria for the relevant regime of parameters and field range. We link the criteria to the Gibbons–Hawking entropy that has been argued to characterise the RVM during the de Sitter phase. These results imply that the vacuumon may, after all, admit under certain conditions, a rôle as a quantum field during the inflationary (almost de Sitter) phase of the running vacuum.
    [Show full text]
  • Riccar Radiance
    Description of the vacuum R40 & R40P Owner’s Manual CONTENTS Getting Started Important Safety Instructions .................................................................................................... 2 Polarization Instructions ............................................................................................................. 3 State of California Proposition 65 Warnings ...................................................................... 3 Description of the Vacuum ........................................................................................................ 4 Assembling the Vacuum Attaching the Handle to the Vacuum ..................................................................................... 6 Unwinding the Power Cord ...................................................................................................... 6 Operation Reclining the Handle .................................................................................................................. 7 Vacuuming Carpet ....................................................................................................................... 7 Bare Floor Cleaning .................................................................................................................... 7 Brushroll Auto Shutoff Feature ................................................................................................. 7 Dirt Sensing Display ..................................................................................................................
    [Show full text]
  • The Massless Two-Loop Two-Point Function and Zeta Functions in Counterterms of Feynman Diagrams
    The Massless Two-loop Two-point Function and Zeta Functions in Counterterms of Feynman Diagrams Dissertation zur Erlangung des Grades \Doktor der Naturwissenschaften" am Fachbereich Physik der Johannes-Gutenberg-Universit¨at in Mainz Isabella Bierenbaum geboren in Landau/Pfalz Mainz, Februar 2005 Datum der mundlic¨ hen Prufung:¨ 6. Juni 2005 D77 (Diss. Universit¨at Mainz) Contents 1 Introduction 1 2 Renormalization 3 2.1 General introduction . 3 2.2 Feynman diagrams and power counting . 5 2.3 Dimensional regularization . 9 2.4 Counterterms . 10 2.4.1 One-loop diagrams . 10 2.4.2 Multi-loop diagrams . 11 3 Hopf and Lie algebra 15 3.1 The Hopf algebras HR and HF G . 15 3.1.1 The Hopf algebra of rooted trees HR . 16 3.1.2 The Hopf algebra of Feynman graphs HF G . 20 3.1.3 Correspondence between HR, HF G, and ZFF . 20 3.2 Lie algebras . 24 4 The massless two-loop two-point function | an overview 27 4.1 General remarks . 27 4.2 Integer exponents νi | the triangle relation . 29 4.3 Non-integer exponents νi . 32 5 Nested sums 37 5.1 Nested sums . 38 5.1.1 From polylogarithms to multiple polylogarithms . 38 5.1.2 Algebraic relations: shuffle and quasi-shuffle . 41 5.2 nestedsums | the theory and some of its functions . 45 5.2.1 nestedsums | the general idea . 46 5.2.2 nestedsums | the four classes of functions . 48 6 The massless two-loop two-point function 53 6.1 The expansion of I^(2;5) . 53 6.1.1 Decomposition of I^(2;5) .
    [Show full text]
  • The Use of a Lunar Vacuum Deposition Paver/Rover To
    Developing a New Space Economy (2019) 5014.pdf The Use of a Lunar Vacuum Deposition Paver/Rover to Eliminate Hazardous Dust Plumes on the Lunar Sur- face Alex Ignatiev and Elliot Carol, Lunar Resources, Inc., Houston, TX ([email protected], elliot@lunarre- sources.space) References: [1] A. Cohen “Report of the 90-Day Study on Hu- man Exploration of the Moon and Mars”, NASA, Nov. 1989 [2] A. Freunlich, T. Kubricht, and A. Ignatiev: “Lu- nar Regolith Thin Films: Vacuum Evaporation and Properties,” AP Conf. Proc., Vol 420, (1998) p. 660 [3] Sadoway, D.R.: “Electrolytic Production of Met- als Using Consumable Anodes,” US Patent No. © 2018 Lunar Resources, Inc. 5,185,068, February 9, 1993 [4] Duke, M.B.: Blair, B.: and J. Diaz: “Lunar Re- source Utilization,” Advanced Space Research, Vol. 31(2002) p.2413. Figure 1, Lunar Resources Solar Cell Paver concept [5] A. Ignatiev, A. Freundlich.: “The Use of Lunar surface vehicle Resources for Energy Generation on the Moon,” Introduction: The indigenous resources of the Moon and its natural vacuum can be used to prepare and construct various assets for future Outposts and Bases on the Moon. Based on available lunar resources and the Moon’s ultra-strong vacuum, a vacuum deposition paver/rover can be used to melt regolith into glass to eliminate dust plumes during landing operations and surface activities on the Moon. This can be accom- plished by the deployment of a moderately-sized (~200kg) crawler/rover on the surface of the Moon with the capabilities of preparing and then melting of the lu- nar regolith into a glass on the Lunar surface.
    [Show full text]
  • Introduction to the Principles of Vacuum Physics
    1 INTRODUCTION TO THE PRINCIPLES OF VACUUM PHYSICS Niels Marquardt Institute for Accelerator Physics and Synchrotron Radiation, University of Dortmund, 44221 Dortmund, Germany Abstract Vacuum physics is the necessary condition for scientific research and modern high technology. In this introduction to the physics and technology of vacuum the basic concepts of a gas composed of atoms and molecules are presented. These gas particles are contained in a partially empty volume forming the vacuum. The fundamentals of vacuum, molecular density, pressure, velocity distribution, mean free path, particle velocity, conductivity, temperature and gas flow are discussed. 1. INTRODUCTION — DEFINITION, HISTORY AND APPLICATIONS OF VACUUM The word "vacuum" comes from the Latin "vacua", which means "empty". However, there does not exist a totally empty space in nature, there is no "ideal vacuum". Vacuum is only a partially empty space, where some of the air and other gases have been removed from a gas containing volume ("gas" comes from the Greek word "chaos" = infinite, empty space). In other words, vacuum means any volume containing less gas particles, atoms and molecules (a lower particle density and gas pressure), than there are in the surrounding outside atmosphere. Accordingly, vacuum is the gaseous environment at pressures below atmosphere. Since the times of the famous Greek philosophers, Demokritos (460-370 B.C.) and his teacher Leukippos (5th century B.C.), one is discussing the concept of vacuum and is speculating whether there might exist an absolutely empty space, in contrast to the matter of countless numbers of indivisible atoms forming the universe. It was Aristotle (384-322 B.C.), who claimed that nature is afraid of total emptiness and that there is an insurmountable "horror vacui".
    [Show full text]
  • Arxiv:1202.1557V1
    The Heisenberg-Euler Effective Action: 75 years on ∗ Gerald V. Dunne Physics Department, University of Connecticut, Storrs, CT 06269-3046, USA On this 75th anniversary of the publication of the Heisenberg-Euler paper on the full non- perturbative one-loop effective action for quantum electrodynamics I review their paper and discuss some of the impact it has had on quantum field theory. I. HISTORICAL CONTEXT After the 1928 publication of Dirac’s work on his relativistic theory of the electron [1], Heisenberg immediately appreciated the significance of the new ”hole theory” picture of the quantum vacuum of quantum electrodynamics (QED). Following some confusion, in 1931 Dirac associated the holes with positively charged electrons [2]: A hole, if there were one, would be a new kind of particle, unknown to experimental physics, having the same mass and opposite charge to an electron. With the discovery of the positron in 1932, soon thereafter [but, interestingly, not immediately [3]], Dirac proposed at the 1933 Solvay Conference that the negative energy solutions [holes] should be identified with the positron [4]: Any state of negative energy which is not occupied represents a lack of uniformity and this must be shown by observation as a kind of hole. It is possible to assume that the positrons are these holes. Positron theory and QED was born, and Heisenberg began investigating positron theory in earnest, publishing two fundamental papers in 1934, formalizing the treatment of the quantum fluctuations inherent in this Dirac sea picture of the QED vacuum [5, 6]. It was soon realized that these quantum fluctuations would lead to quantum nonlinearities [6]: Halpern and Debye have already independently drawn attention to the fact that the Dirac theory of the positron leads to the scattering of light by light, even when the energy of the photons is not sufficient to create pairs.
    [Show full text]
  • Zero-Point Energy and Interstellar Travel by Josh Williams
    ;;;;;;;;;;;;;;;;;;;;;; itself comes from the conversion of electromagnetic Zero-Point Energy and radiation energy into electrical energy, or more speciÞcally, the conversion of an extremely high Interstellar Travel frequency bandwidth of the electromagnetic spectrum (beyond Gamma rays) now known as the zero-point by Josh Williams spectrum. ÒEre many generations pass, our machinery will be driven by power obtainable at any point in the universeÉ it is a mere question of time when men will succeed in attaching their machinery to the very wheel work of nature.Ó ÐNikola Tesla, 1892 Some call it the ultimate free lunch. Others call it absolutely useless. But as our world civilization is quickly coming upon a terrifying energy crisis with As you can see, the wavelengths from this part of little hope at the moment, radical new ideas of usable the spectrum are incredibly small, literally atomic and energy will be coming to the forefront and zero-point sub-atomic in size. And since the wavelength is so energy is one that is currently on its way. small, it follows that the frequency is quite high. The importance of this is that the intensity of the energy So, what the hell is it? derived for zero-point energy has been reported to be Zero-point energy is a type of energy that equal to the cube (the third power) of the frequency. exists in molecules and atoms even at near absolute So obviously, since weÕre already talking about zero temperatures (-273¡C or 0 K) in a vacuum. some pretty high frequencies with this portion of At even fractions of a Kelvin above absolute zero, the electromagnetic spectrum, weÕre talking about helium still remains a liquid, and this is said to be some really high energy intensities.
    [Show full text]
  • Vacuum Energy
    Vacuum Energy Mark D. Roberts, 117 Queen’s Road, Wimbledon, London SW19 8NS, Email:[email protected] http://cosmology.mth.uct.ac.za/ roberts ∼ February 1, 2008 Eprint: hep-th/0012062 Comments: A comprehensive review of Vacuum Energy, which is an extended version of a poster presented at L¨uderitz (2000). This is not a review of the cosmolog- ical constant per se, but rather vacuum energy in general, my approach to the cosmological constant is not standard. Lots of very small changes and several additions for the second and third versions: constructive feedback still welcome, but the next version will be sometime in coming due to my sporadiac internet access. First Version 153 pages, 368 references. Second Version 161 pages, 399 references. arXiv:hep-th/0012062v3 22 Jul 2001 Third Version 167 pages, 412 references. The 1999 PACS Physics and Astronomy Classification Scheme: http://publish.aps.org/eprint/gateway/pacslist 11.10.+x, 04.62.+v, 98.80.-k, 03.70.+k; The 2000 Mathematical Classification Scheme: http://www.ams.org/msc 81T20, 83E99, 81Q99, 83F05. 3 KEYPHRASES: Vacuum Energy, Inertial Mass, Principle of Equivalence. 1 Abstract There appears to be three, perhaps related, ways of approaching the nature of vacuum energy. The first is to say that it is just the lowest energy state of a given, usually quantum, system. The second is to equate vacuum energy with the Casimir energy. The third is to note that an energy difference from a complete vacuum might have some long range effect, typically this energy difference is interpreted as the cosmological constant.
    [Show full text]
  • Basic Vacuum Theory
    MIDWEST TUNGSTEN Tips SERVICE BASIC VACUUM THEORY Published, now and again by MIDWEST TUNGSTEN SERVICE Vacuum means “emptiness” in Latin. It is defi ned as a space from which all air and other gases have been removed. This is an ideal condition. The perfect vacuum does not exist so far as we know. Even in the depths of outer space there is roughly one particle (atom or molecule) per cubic centimeter of space. Vacuum can be used in many different ways. It can be used as a force to hold things in place - suction cups. It can be used to move things, as vacuum cleaners, drinking straws, and siphons do. At one time, part of the train system of England was run using vacuum technology. The term “vacuum” is also used to describe pressures that are subatmospheric. These subatmospheric pressures range over 19 orders of magnitude. Vacuum Ranges Ultra high vacuum Very high High Medium Low _________________________|_________|_____________|__________________|____________ _ 10-16 10-14 10-12 10-10 10-8 10-6 10-4 10-3 10-2 10-1 1 10 102 103 (pressure in torr) There is air pressure, or atmospheric pressure, all around and within us. We use a barometer to measure this pressure. Torricelli built the fi rst mercury barometer in 1644. He chose the pressure exerted by one millimeter of mercury at 0ºC in the tube of the barometer to be his unit of measure. For many years millimeters of mercury (mmHg) have been used as a standard unit of pressure. One millimeter of mercury is known as one Torr in honor of Torricelli.
    [Show full text]
  • The Concept of the Photon—Revisited
    The concept of the photon—revisited Ashok Muthukrishnan,1 Marlan O. Scully,1,2 and M. Suhail Zubairy1,3 1Institute for Quantum Studies and Department of Physics, Texas A&M University, College Station, TX 77843 2Departments of Chemistry and Aerospace and Mechanical Engineering, Princeton University, Princeton, NJ 08544 3Department of Electronics, Quaid-i-Azam University, Islamabad, Pakistan The photon concept is one of the most debated issues in the history of physical science. Some thirty years ago, we published an article in Physics Today entitled “The Concept of the Photon,”1 in which we described the “photon” as a classical electromagnetic field plus the fluctuations associated with the vacuum. However, subsequent developments required us to envision the photon as an intrinsically quantum mechanical entity, whose basic physics is much deeper than can be explained by the simple ‘classical wave plus vacuum fluctuations’ picture. These ideas and the extensions of our conceptual understanding are discussed in detail in our recent quantum optics book.2 In this article we revisit the photon concept based on examples from these sources and more. © 2003 Optical Society of America OCIS codes: 270.0270, 260.0260. he “photon” is a quintessentially twentieth-century con- on are vacuum fluctuations (as in our earlier article1), and as- Tcept, intimately tied to the birth of quantum mechanics pects of many-particle correlations (as in our recent book2). and quantum electrodynamics. However, the root of the idea Examples of the first are spontaneous emission, Lamb shift, may be said to be much older, as old as the historical debate and the scattering of atoms off the vacuum field at the en- on the nature of light itself – whether it is a wave or a particle trance to a micromaser.
    [Show full text]