Systém a Evoluce Obratlovců VI. Craniata Vs. Vertebrata

Total Page:16

File Type:pdf, Size:1020Kb

Systém a Evoluce Obratlovců VI. Craniata Vs. Vertebrata Systém a evoluce obratlovců VI. Craniata vs. Vertebrata Tradiční třídění obratlovců (Vertebrata) Kritérium: ekologické Pisces Tetrapoda (ploutvovci) (čtyřnožci) embryologické Anamnia Amniota (bezblanní) (blanatí) anatomické Agnatha Gnathostomata (bezčelistnatci) (čelistnatci) standardní systém 1: podkmen: Vertebrata - obratlovci (= Craniata - lebečnatci) nadtřída: Agnatha – bezčelistnatci (parafyletický taxon) třída: Ostracodermi † - štítnatci (parafyletický taxon) Cyclostomata – kruhoústí (polyfyletický taxon?) nadtřída: Gnathostomata - čelistnatci třída: Placodermi † - pancířnatci Acanthodii † - trnoploutví Chondrichthyes - paryby Osteichthyes (Pisces) - ryby (parafyletický taxon) Amphibia - obojživelníci Reptilia - plazi (parafyletický taxon?) Aves - ptáci Mammalia - savci standardní systém 2: Craniata Myxinoidea - sliznatky „Vertebrata“ - obratlovci Agnatha - bezčelistnatci podle: Cephalospidomorphi - štítohlaví (hlavoštítí) Moy-Thomas Pteraspidomorphi - štítoploutví (ploutvoštítí) &Milles(1975) Gnathostomata - čelistnatci Placodermi - pancířnatci Chondrichthyes - paryby Acanthodii - trnoploutví Osteichthyes (Pisces) - ryby Actinopterygii - paprskoploutví Sarcopterygii - násadcoploutví Amphibia - obojživelníci Amniota - blanatí (Reptilia, Aves, Mammalia) Myxinoidea - sliznatky CRANIATA „Ostracodermi“ † Conodonta - konodonti - štítnatci †Arandaspida „Agnatha – bez † Heterostraci „Pteraspidomorphi“ †Thelodonti štítoploutví Cyclostomata + č -kruhoústí Petromyzontida - mihule Vertebrata - obratlovci elistnatci“ †Anaspida-birkenie †Galeaspida „Cephalaspidomorphi“ † Osteostraci hlavoštítí Gnathostomata †Placodermi-pancířnatci „Elasmobranchiomorphi“ Chondrichthyes - paryby † Acanthodii - trnoploutví Osteognatho- Teleostomi stomata - Actinopterygii - paprskoploutví č elistnatci Sarcopterygii VERTEBRATA Myllokungmingia † Myxinoidea CYCLOSTOMATA Petromyzontida Conodonta † „Agnatha“ Arandaspida †, Astraspida † Heterostraci † Anaspida † Galeaspida † Thelodonti † Osteostraci † GNATHOSTOMATA „Agnatha“ - vymřelé skupiny 1 5-30 cm † Conodonta - konodonti †Arandaspida † Conodonta †Arandaspida kambrium - Anglie, J-Afrika 50 x1,5mm Anatolepis - kambrium Wyoming, ordovik Kost, myotomy, velké oči - encefalizace Špicberky †Arandaspida Sacabambaspis Hlavová část těla kryta dorzální a ventrální deskou z kostěných štítků Sacabambaspis ordovik - Bolívie „Agnatha“ - vymřelé skupiny 2 †Arandaspida † Heterostraci † Heterostraci - štítoploutví Pteraspis devon – Anglie, párové nozdry, 1 pár žab. štěrb. prsní přívěsky hypocerkní ploutev Hlavová část těla kryta dorzální a ventrální deskou z kostěných štítků „Agnatha“ - vymřelé skupiny 3 † Heterostraci †Anaspida-birkenie †Galeaspida bez hlavového štítu †Anaspida- birkenie Pharyngolepis Pterolepis někdy sesterská skupina k mihulím nebo čelistnatcům, párové přívěsky, hypocerkní ploutev, skupiny drobných štítků, za hlavou párová linie 10 žaberních otvorů †Galeaspida -devon Čína, Vietnam, perichondriální kost (někdy k Osteostraci) „Agnatha“ - vymřelé skupiny 4 †Galeaspida †Thelodonti bez hlavového štítu † Osteostraci † Gnathostomata †Thelodonti párové prsní přívěsky, drobné štítky na těle, hypocerkní ploutev, skupina žaberních otvorů, Někdy považováni za příbuzné k Anaspida a Cyclostomata Phlebolepis „Agnatha“ - vymřelé skupiny 5 †Thelodonti † Osteostraci † Osteostraci - štítohlaví † Gnathostomata - silur-devon, sladkovodní, široký hlavový štít a destičky na trupu z dentinu pokrytého látkou podobnou sklovině, perichondriální osifikace, celulární kost - remodulace, preadaptace ke zvětšování těla, heterocerkní ploutev, benticky - zespodu ploší, očínahoře, shora na hlavě 3 políčka ze štítků chránicích kanálky (hlavové nervy, postranní čára, elektrorecepce?), na dně hltanu destičky – pohyblivost, drcení potravy Cephalaspis Ateleaspis Hemicyclaspis Morf. (paleont.) Morf. (jen rec.) Gen (rec.) Myxinoidea Myxinoidea Myxinoidea Myxinoidea Petromyzontida Petromyzontida Petromyzontida Petromyzontida Gnathostomata Gnathostomata Gnathostomata Vertebrata Craniata „Cyclostomata“ versus Cyclostomata • velké mezery ve fosilním záznamu (chybí kostní tkáň) •3 přežívající linie obratlovců (sliznatky, mihule, čelistnatci) se oddělily během pouhých 40 mil. let ►málo času na nahromadění diagnostických synapomorfií •evolučně velmi staré linie – kambrium (před 500 mil. lety) ► hodně času na nahromadění autapomorfií (přemazání fylogenetického signálu) • málo sdílených odvozených znaků (na úrovni 3 kladů) Paleontologická data: „Cyclostomata“ – parafyletický taxon Anatomická a molekulární data: Cyclostomata – monofyletický taxon Myxinoidea (Hyperotreti) - sliznatky Myxinoidea Petromyzontida •primárně mořské (chladná moře) - tělní tekutiny s vysokým obsahem solí; isotonické s mořskou vodou (OSMOKONFORMITA) • metamerní žlázy, sliz - ochrana •hvězdicovitá ústa s 3 páry hmatových tentakulí a odontoidy, redukované oči • nepárová nozdra, voda nasávána nasohypofyzární chodbou • periodický hermafroditismus, vnější oplození, opakovaná reprodukce • hltan s trávicí i dýchací funkcí • jen levá Cuvierova chodba •43 druhů 6 rodů, Myxine, Bdellostoma Myxinoidea - sliznatky Dýchací aparát žaberní váčky uvnitř koše z chrupavčitých žaberních prstenců, ústí samostatně na povrch, nebo do společného kanálku, hltan nerozdělen na trávicí a dýchací část Myxinoidea - sliznatky Příjem potravy Bdellostoma (80 cm) Potrava: mrtvé nebo poraněné ryby, červi, měkkýši, členovci odontoidy jen na dvojlaločném jazyku - funguje jako čelisti; prolezou skřelemi ryb, nebo se provrtávají přes tělní stěnu a vyžírají vnitřnosti Myxinoidea - sliznatky Rozmnožování Myxine (50 cm) Gonáda - dlouhý pás podél střeva, vpředu: mesovarium ♀♂ , vzadu mesorchium Petromyzontida (Petromyzontes, Petromyzones, Hyperartia) - mihule Myxinoidea Petromyzontida druhotně bez exoskeletu a párovitých přívěsků (karbon Mayomyzon), jen chrupavčitý endoskelet, arcualia, přísavný kruhový ústní terč s odontoidy, pololebka, 9(7) párů žaberních oblouků a 7 párů žaberních otvůrků za hlavou, nepárový čichový ústroj, dorzální a ventrální kořeny se nespojují v míšní nervy - alternují, 1. duplikace Hox genů; 41 druh (z toho 9 potamotokních a 32 sladkovodních). Petromyzontida - mihule Mozek pětidílný (u minoh 3-dílný- telencephalon, diencephalon a tegmentum), velký diencephalon (hypothalamus) Žilné srdce - sinus venosus, atrium, ventriculus, conus a bulbus arteriosus, jen pravý ductus Cuvieri X Petromyzontida - mihule U mihulí je dýchací část hltanu se 7 páry vnitřních žaberních skulin oddělena od trávicí části, u minoh jsou trávicí i dýchací cesty v hltanu společné (viz sliznatky), žaludek chybí, ve střevě spirální řasa trávicí část hltanu dýchací část hltanu Stavba žaber podobnější parybám nežli sliznatkám žaberní váček Petromyzontida - mihule rozmnožování a ontogeneze: minoha metamorfóza minoha dospělá mihule oplození vnější, po tření hynou, nepřímý vývoj - larva minoha příjem potravy: Petromyzontida - mihule minoha - filtrace detritu, dospělci - zvláštní typ predace - přisávají se na ryby, ozubeným ústním terčem a jazykem narušují kůži ryb a nasávají kašovitou svalovinu s krví, nebo potravu vůbec nepříjímají (některé sladkovodní druhy). Myxinoidea-sliznatky Petromyzontida-mihule Gnathostomata-čelistnatci •jen chorda • jen základy neurálních •obratle oblouků obratlů (arcualia) • metamerní slizové žlázy •jen slizovébuňky •slizovébuňky (vodní), kožní žlázy (suchozemští) • 1 polokružná chodba (sek) • 2 polokružné chodby • 3 polokružné chodby • nasohypofyzární chodba • nasohypofyzární vak • bez spojení s hypofýzou •dorz.a ventrálníkořeny •kořeny míšních nervů se •dorz.a ventrálníkořeny se spojují v míšní nerv nespojují, alternují se spojují v míšní nerv • jen levý ductus Cuvieri • jen pravý ductus Cuvieri • oba ducti Cuvieri • osmokonformita • osmoregulace • osmoregulace • jen chrupavka • chrupavka+celulární kost • 9(7) párů žaberních oblouků • čelisti • jen nepárový ploutevní lem (u vymřelých • párové končetiny prsní ploutve) • nepárová nozdra • párové nozdry (5-15) • žábry ve váčcích (7) • žábry na přepážkách nebo na obloucích, plíce ♀ ^ ♂ • nepárová gonáda bez vývodů ♀ v ♂ • párové gonády • rohovité odontoidy v savých ústech • složitý jazykový aparát Co sliznatky dále nemají (vymizení znaků = apomorfie?) •hřbetní ploutev • inervaci srdce (jen autonomie) • čočku, okohybné svaly a jejich nervy •slezinu • neuromasty •svaly v ocasníploutvi • elektrorecepci • žaberní oblouky (jen prstence) • chuťové pohárky Čím dále se sliznatky odlišují ? •oběhový systém má přídatná venózní „srdce“ (plesiomorfie) • perikardiální dutina a célom propojené (uzavřené u mihulí a čelistnatců) • část lebky z vláknité tkáně • jediný typ leukocytů (chybí lymfocyty) • difúzní adenohypofýza •tentakule •velum Nejsou známy: struktura a charakter působení nervové lišty!.
Recommended publications
  • Biostratigraphic Precision of the Cruziana Rugosa Group: a Study from the Ordovician Succession of Southern and Central Bolivia
    Geol. Mag. 144 (2), 2007, pp. 289–303. c 2007 Cambridge University Press 289 doi:10.1017/S0016756807003093 First published online 9 February 2007 Printed in the United Kingdom Biostratigraphic precision of the Cruziana rugosa group: a study from the Ordovician succession of southern and central Bolivia SVEN O. EGENHOFF∗, BERND WEBER†, OLIVER LEHNERT‡ &JORG¨ MALETZ§ ∗Colorado State University, Department of Geosciences, 322 Natural Resources Building, Fort Collins, CO 80523-1482, USA †Freie Universitat¨ Berlin, Institut fur¨ Geologische Wissenschaften, Fachrichtung Geologie, Malteserstrasse 74-100, D-12249 Berlin, Germany ‡University of Erlangen, Institute of Geology and Mineralogie, Schlossgarten 5, D-91054 Erlangen, Germany §Department of Geology, State University of New York at Buffalo, 772 Natural Sciences and Mathematics Complex, Buffalo, New York 14260-3050, USA (Received 10 October 2005; revised version received 1 May 2006; accepted 22 May 2006) Abstract – Cruziana ichnospecies have been repeatedly reported to have biostratigraphic significance. This study presents a re-evaluation of the arthropod ichnotaxa of the Cruziana rugosa Group from bio- and/or lithostratigraphically well-defined Lower to Upper Ordovician siliciclastic sections of southern and central Bolivia. With the exception of Cruziana rouaulti, the ichnofaunas contain all the members of the Cruziana rugosa Group throughout the Ordovician (Arenig to Caradoc) successions in Bolivia. The Bolivian material therefore indicates that these arthropod ichnofossil assemblages are suitable for recognizing Ordovician strata in Bolivia. These findings cast doubt on their use as reliable indicators for a global intra-Ordovician (Arenig to Caradoc) biozonation of Peri-Gondwanan sedimentary successions. Keywords: Cruziana, biostratigraphy, Bolivia, Ordovician. 1. Introduction to the present study.
    [Show full text]
  • 001-012 Primeras Páginas
    PUBLICACIONES DEL INSTITUTO GEOLÓGICO Y MINERO DE ESPAÑA Serie: CUADERNOS DEL MUSEO GEOMINERO. Nº 9 ADVANCES IN TRILOBITE RESEARCH ADVANCES IN TRILOBITE RESEARCH IN ADVANCES ADVANCES IN TRILOBITE RESEARCH IN ADVANCES planeta tierra Editors: I. Rábano, R. Gozalo and Ciencias de la Tierra para la Sociedad D. García-Bellido 9 788478 407590 MINISTERIO MINISTERIO DE CIENCIA DE CIENCIA E INNOVACIÓN E INNOVACIÓN ADVANCES IN TRILOBITE RESEARCH Editors: I. Rábano, R. Gozalo and D. García-Bellido Instituto Geológico y Minero de España Madrid, 2008 Serie: CUADERNOS DEL MUSEO GEOMINERO, Nº 9 INTERNATIONAL TRILOBITE CONFERENCE (4. 2008. Toledo) Advances in trilobite research: Fourth International Trilobite Conference, Toledo, June,16-24, 2008 / I. Rábano, R. Gozalo and D. García-Bellido, eds.- Madrid: Instituto Geológico y Minero de España, 2008. 448 pgs; ils; 24 cm .- (Cuadernos del Museo Geominero; 9) ISBN 978-84-7840-759-0 1. Fauna trilobites. 2. Congreso. I. Instituto Geológico y Minero de España, ed. II. Rábano,I., ed. III Gozalo, R., ed. IV. García-Bellido, D., ed. 562 All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopy, recording, or any information storage and retrieval system now known or to be invented, without permission in writing from the publisher. References to this volume: It is suggested that either of the following alternatives should be used for future bibliographic references to the whole or part of this volume: Rábano, I., Gozalo, R. and García-Bellido, D. (eds.) 2008. Advances in trilobite research. Cuadernos del Museo Geominero, 9.
    [Show full text]
  • ORDOVICIAN FISH from the ARABIAN PENINSULA by IVAN J
    [Palaeontology, Vol. 52, Part 2, 2009, pp. 337–342] ORDOVICIAN FISH FROM THE ARABIAN PENINSULA by IVAN J. SANSOM*, C. GILES MILLER , ALAN HEWARDà,–, NEIL S. DAVIES*,**, GRAHAM A. BOOTHà, RICHARD A. FORTEY and FLORENTIN PARIS§ *Earth Sciences, University of Birmingham, Birmingham B15 2TT, UK; e-mail: [email protected] Department of Palaeontology, The Natural History Museum, London SW7 5BD, UK; e-mails: [email protected] and [email protected] àPetroleum Development Oman, Muscat, Oman; e-mail: [email protected] §Ge´osciences, Universite´ de Rennes, 35042 Rennes, France; e-mail: fl[email protected] –Present address: Petrogas E&P, Muscat, Oman; e-mail: [email protected] **Present address: Earth Sciences, Dalhousie University, Halifax, Nova Scotia B3H 3J5, Canada; e-mail: [email protected] Typescript received 25 February 2008; accepted in revised form 19 May 2008 Abstract: Over the past three decades Ordovician pteras- morphs from the Arabian margin of Gondwana. These are pidomorphs (armoured jawless fish) have been recorded among the oldest arandaspids known, and greatly extend from the fringes of the Gondwana palaeocontinent, in par- the palaeogeographical distribution of the clade around the ticular Australia and South America. These occurrences are periGondwanan margin. Their occurrence within a very dominated by arandaspid agnathans, the oldest known narrow, nearshore ecological niche suggests that similar group of vertebrates with extensive biomineralisation of Middle Ordovician palaeoenvironmental settings should be the dermoskeleton. Here we describe specimens of arandas- targeted for further sampling. pid agnathans, referable to the genus Sacabambaspis Gagnier, Blieck and Rodrigo, from the Ordovician of Key words: Ordovician, pteraspidomorphs, Gondwana pal- Oman, which represent the earliest record of pteraspido- aeocontinent, Sacabambaspis, Oman.
    [Show full text]
  • Using Information in Taxonomists' Heads to Resolve Hagfish And
    This article was downloaded by: [Max Planck Inst fuer Evolutionsbiologie] On: 03 September 2013, At: 07:01 Publisher: Taylor & Francis Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK Historical Biology: An International Journal of Paleobiology Publication details, including instructions for authors and subscription information: http://www.tandfonline.com/loi/ghbi20 Using information in taxonomists’ heads to resolve hagfish and lamprey relationships and recapitulate craniate–vertebrate phylogenetic history Maria Abou Chakra a , Brian Keith Hall b & Johnny Ricky Stone a b c d a Department of Biology , McMaster University , Hamilton , Canada b Department of Biology , Dalhousie University , Halifax , Canada c Origins Institute, McMaster University , Hamilton , Canada d SHARCNet, McMaster University , Hamilton , Canada Published online: 02 Sep 2013. To cite this article: Historical Biology (2013): Using information in taxonomists’ heads to resolve hagfish and lamprey relationships and recapitulate craniate–vertebrate phylogenetic history, Historical Biology: An International Journal of Paleobiology To link to this article: http://dx.doi.org/10.1080/08912963.2013.825792 PLEASE SCROLL DOWN FOR ARTICLE Taylor & Francis makes every effort to ensure the accuracy of all the information (the “Content”) contained in the publications on our platform. However, Taylor & Francis, our agents, and our licensors make no representations or warranties whatsoever as to the accuracy, completeness, or suitability for any purpose of the Content. Any opinions and views expressed in this publication are the opinions and views of the authors, and are not the views of or endorsed by Taylor & Francis. The accuracy of the Content should not be relied upon and should be independently verified with primary sources of information.
    [Show full text]
  • The Need for Sedimentary Geology in Paleontology
    The Sedimentary Record The Habitat of Primitive Vertebrates: The Need for Sedimentary Geology in Paleontology Steven M. Holland Department of Geology, The University of Georgia, Athens, GA 30602-2501 Jessica Allen Department of Geology and Geophysics, The University of Utah, Salt Lake City, UT 84112-0111 ABSTRACT That these were fish fossils was immediately controversial, with paleontological giants E.D. Cope and E.W. Claypole voicing The habitat in which early fish originated and diversified has doubts. long been controversial, with arguments spanning everything The controversy over habitat soon followed. By 1935, a fresh- from marine to fresh-water. A recent sequence stratigraphic water or possibly estuarine environment for early fish was generally analysis of the Ordovician Harding Formation of central preferred, but essentially in disregard for the sedimentology of the Colorado demonstrates that the primitive fish first described by Harding (Romer and Grove, 1935). Devonian fish were abundant Charles Walcott did indeed live in a shallow marine in fresh-water strata and the lack of fish in demonstrably marine environment, as he argued.This study underscores the need for Ordovician strata supported a fresh-water origin. The abrasion of analyses of the depositional environment and sequence dermal plates in the Harding was considered proof that the fish architecture of fossiliferous deposits to guide paleobiological and were transported from a fresh-water habitat to their burial in a biostratigraphic inferences. littoral environment. The fresh-water interpretation quickly led to paleobiological inference, as armored heads were thought to be a defense against eurypterids living in fresh-water habitats. Paleobiological inference also drove the fresh-water interpretation, INTRODUCTION with biologists arguing that the physiology of kidneys necessitated a For many years, the habitat of primitive vertebrates has been fresh-water origin for fish.
    [Show full text]
  • Fossils Provide Better Estimates of Ancestral Body Size Than Do Extant
    Acta Zoologica (Stockholm) 90 (Suppl. 1): 357–384 (January 2009) doi: 10.1111/j.1463-6395.2008.00364.x FossilsBlackwell Publishing Ltd provide better estimates of ancestral body size than do extant taxa in fishes James S. Albert,1 Derek M. Johnson1 and Jason H. Knouft2 Abstract 1Department of Biology, University of Albert, J.S., Johnson, D.M. and Knouft, J.H. 2009. Fossils provide better Louisiana at Lafayette, Lafayette, LA estimates of ancestral body size than do extant taxa in fishes. — Acta Zoologica 2 70504-2451, USA; Department of (Stockholm) 90 (Suppl. 1): 357–384 Biology, Saint Louis University, St. Louis, MO, USA The use of fossils in studies of character evolution is an active area of research. Characters from fossils have been viewed as less informative or more subjective Keywords: than comparable information from extant taxa. However, fossils are often the continuous trait evolution, character state only known representatives of many higher taxa, including some of the earliest optimization, morphological diversification, forms, and have been important in determining character polarity and filling vertebrate taphonomy morphological gaps. Here we evaluate the influence of fossils on the interpretation of character evolution by comparing estimates of ancestral body Accepted for publication: 22 July 2008 size in fishes (non-tetrapod craniates) from two large and previously unpublished datasets; a palaeontological dataset representing all principal clades from throughout the Phanerozoic, and a macroecological dataset for all 515 families of living (Recent) fishes. Ancestral size was estimated from phylogenetically based (i.e. parsimony) optimization methods. Ancestral size estimates obtained from analysis of extant fish families are five to eight times larger than estimates using fossil members of the same higher taxa.
    [Show full text]
  • Durham E-Theses
    Durham E-Theses The palaeobiology of the panderodontacea and selected other euconodonts Sansom, Ivan James How to cite: Sansom, Ivan James (1992) The palaeobiology of the panderodontacea and selected other euconodonts, Durham theses, Durham University. Available at Durham E-Theses Online: http://etheses.dur.ac.uk/5743/ Use policy The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or charge, for personal research or study, educational, or not-for-prot purposes provided that: • a full bibliographic reference is made to the original source • a link is made to the metadata record in Durham E-Theses • the full-text is not changed in any way The full-text must not be sold in any format or medium without the formal permission of the copyright holders. Please consult the full Durham E-Theses policy for further details. Academic Support Oce, Durham University, University Oce, Old Elvet, Durham DH1 3HP e-mail: [email protected] Tel: +44 0191 334 6107 http://etheses.dur.ac.uk The copyright of this thesis rests with the author. No quotation from it should be pubHshed without his prior written consent and information derived from it should be acknowledged. THE PALAEOBIOLOGY OF THE PANDERODONTACEA AND SELECTED OTHER EUCONODONTS Ivan James Sansom, B.Sc. (Graduate Society) A thesis presented for the degree of Doctor of Philosophy in the University of Durham Department of Geological Sciences, July 1992 University of Durham. 2 DEC 1992 Contents CONTENTS CONTENTS p. i ACKNOWLEDGMENTS p. viii DECLARATION AND COPYRIGHT p.
    [Show full text]
  • The Largest Silurian Vertebrate and Its Palaeoecological Implications
    OPEN The largest Silurian vertebrate and its SUBJECT AREAS: palaeoecological implications PALAEONTOLOGY Brian Choo1,2, Min Zhu1, Wenjin Zhao1, Liaotao Jia1 & You’an Zhu1 PALAEOCLIMATE 1Key Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of Sciences, Institute of Vertebrate Paleontology 2 Received and Paleoanthropology, Chinese Academy of Sciences, PO Box 643, Beijing 100044, China, School of Biological Sciences, 10 January 2014 Flinders University, GPO Box 2100, Adelaide 5001, South Australia. Accepted 23 May 2014 An apparent absence of Silurian fishes more than half-a-metre in length has been viewed as evidence that gnathostomes were restricted in size and diversity prior to the Devonian. Here we describe the largest Published pre-Devonian vertebrate (Megamastax amblyodus gen. et sp. nov.), a predatory marine osteichthyan from 12 June 2014 the Silurian Kuanti Formation (late Ludlow, ,423 million years ago) of Yunnan, China, with an estimated length of about 1 meter. The unusual dentition of the new form suggests a durophagous diet which, combined with its large size, indicates a considerable degree of trophic specialisation among early osteichthyans. The lack of large Silurian vertebrates has recently been used as constraint in Correspondence and palaeoatmospheric modelling, with purported lower oxygen levels imposing a physiological size limit. requests for materials Regardless of the exact causal relationship between oxygen availability and evolutionary success, this finding should be addressed to refutes the assumption that pre-Emsian vertebrates were restricted to small body sizes. M.Z. (zhumin@ivpp. ac.cn) he Devonian Period has been considered to mark a major transition in the size and diversity of early gnathostomes (jawed vertebrates), including the earliest appearance of large vertebrate predators1.
    [Show full text]
  • LECTURE 5 - OUTLINE Evolution & Classification - Part I
    LECTURE 5 - OUTLINE Evolution & Classification - Part I Evolution & Classification 1. Overview - vertebrate origins 2. Overview - extant fishes Agnatha 3. Phylogenetic relationships 4. Conodonta 5. Pteraspidomorphi BIOL 4340 – Lecture 5 - 1 Overview : origin of vertebrates Gnathostome(s)Sacabambaspis - raptorial feeders - pharyngeal expansion rapid & strong - rapid mouth closure & strong bite Agnathan(s) - exploited expanded pharyngeal pump - deposit feeders, mud grubbers etc. - transitional raptorial feeders 1. expansion of pharyngeal pump 2. definitive mouth closure Prevertebrate(s) - suspension feeders - feeding based on ciliary “pumps” - developed muscular pharyngeal pump 1. encircling band of muscles - pharynx 2. cartilage replaced collagen - pharyngeal bar BIOL 4340 – Lecture 5 - 2 1 MBP (millions of years before present) - each column, first known fossil trace - widths, estimates of abundance and diversity - traditional broad groups across top - conodonts missing BIOL 4340 – Lecture 5 - 3 Overview : extant fishes Phylum Chordata Subphylum Vertebrata (Craniata) Superclass Agnatha Superclass Gnathostomata (jawless vertebrates) (jawed vertebrates) Class Myxini Class Chondrichthyes (hagfishes) Subclass Holocephali Class Cephalaspidomorphi (ratfish) (lampreys) Subclass Elasmobranchii (sharks/skates/rays) BIOL 4340 – Lecture 5 - 4 2 Overview : extant fishes Phylum Chordata Subphylum Vertebrata (Craniata) Superclass Gnathostomata (jawed vertebrates) Class Sarcopterygii Subclass Coelocanthimorpha (coelocanths) Subclass Dipnoi (lungfish)
    [Show full text]
  • Taxonoiny Blooded by Cladistic Wars
    585 _N_A_T_u _R_E_v_o_L_. _33_s_1_3_o_c_T_o_s_E_R_1_98_x_______ NEWS ANO VI EWS------------------- Taxonoiny blooded by cladistic wars Palaeontologists have buried the hatchet of cladism, to the general enlightenment. But the siege mentality at a meeting last month argues for the preservation of comparative anatomy. AFTFR decades of study of long-dead been much soul-searching among the clad­ Vietnam (Philippe Janvier, Paris) and animals, vertebrate palaeontology in ists, but the whole of systematics has a Bolivia (Pierre Gagnier, Paris). The Britain itself now faces extinction, and the surer foundation as a result. Ordovician ostracoderm Sacabambaspis situation elsewhere in Europe is not much There is room for numerical taxonomy janvieri may hold the clues to the nostril better. It is ironical that the lives of pre­ in the new liberalism, as when Garth structure of heterostracan ostracoderms historic animals arc avidly followed in the Underwood (formerly at the City of (a long-standing mystay) and also illumi­ public prints, but that the academic disci­ London Polytechnic) used compatibility nate early vertebrate radiation. plines from which the scripts of these soap analysis to reveal parallelism in the tooth Inevitably. the periodic mass-extinction operas spring are being starved. Worse structure of snakes. The view that venom­ hypothesis of David Raup and Jack still, comparative anatomy, without which injecting fangs are the 'crowning glory' of Sepkoski is grist to the mill of the new vertebrate palaeontologists would be snake evolution seems to be more reveal­ taxonomy. Colin Patterson and Andrew hardly better equipped to trace the history ing of people's fear of snakes than of Smith (BMNH) continue to complain that of life than stamp collectors, may be drag­ sound taxonomic judgment.
    [Show full text]
  • Geodiv 2010 32 (4) Livre.Indb
    False teeth: conodont-vertebrate phylogenetic relationships revisited Susan TURNER Monash University Geosciences, Box 28E, Victoria 3800, and Queensland Museum, Geosciences Annex, 122 Gerler Road, Hendra, Queensland 4011 (Australia) [email protected] Carole J. BURROW Queensland Museum, Geosciences Annex, 122 Gerler Road, Hendra, Queensland 4011 (Australia) [email protected] Hans-Peter SCHULTZE Natural History Museum, The University of Kansas, 1345 Jayhawk Blvd., Lawrence, Kansas 66046-7561 (USA) [email protected] Alain BLIECK Université de Lille 1, Sciences de la Terre, FRE 3298 du CNRS Géosystèmes, F-59655 Villeneuve d’Ascq cedex (France) [email protected] Wolf-Ernst REIF† Eberhard-Karls-Universität, Institut für Geowissenschaften, Sigwartstraße 10, D-72076 Tübingen (Germany) Carl B. REXROAD Indiana Geological Survey, 611 North Walnut Grove, Bloomington, Indiana 47405-2208 (USA) Pierre BULTYNCK Department of Paleontology, Royal Belgian Institute of Natural Sciences, Vautier street 29, B-1000 Brussels (Belgium) Godfrey S. NOWLAN Geological Survey of Canada, 3303 – 33rd Street NW, Calgary, Alberta, T2L 2A7 (Canada) Turner S., Burrow C. J., Schultze H.-P., Blieck A., Reif W.-E.†, Rexroad C. B., Bultynck P. & Nowlan G. S. 2010. — False teeth: conodont-vertebrate phylogenetic relationships revisited. Geodiversitas 32 (4): 545-594. GEODIVERSITAS • 2010 • 32 (4) © Publications Scientifi ques du Muséum national d’Histoire naturelle, Paris. www.geodiversitas.com 545 Turner S. et al. ABSTRACT An evidence-based reassessment of the phylogenetic relationships of cono- donts shows that they are not “stem” gnathostomes, nor vertebrates, and not even craniates. A signifi cant group of conodont workers have proposed or accepted a craniate designation for the conodont animal, an interpretation that is increasingly becoming established as accepted “fact”.
    [Show full text]
  • Histology of the Heterostracan Dermal Skeleton: Insight Into the Origin of the Vertebrate Mineralised Skeleton
    JOURNAL OF MORPHOLOGY 276:657–680 (2015) Histology of the Heterostracan Dermal Skeleton: Insight Into the Origin of the Vertebrate Mineralised Skeleton Joseph N. Keating,* Chloe L. Marquart, and Philip C. J. Donoghue* School of Earth Sciences, University of Bristol, Life Science Building, 24 Tyndall Avenue, Bristol BS8 1TQ, UK ABSTRACT Living vertebrates are divided into those understood because living vertebrates either lack that possess a fully formed and fully mineralised skele- or possess all of the component mineralised skele- ton (gnathostomes) versus those that possess only tal systems in their entirety. The living jawless unmineralised cartilaginous rudiments (cyclostomes). vertebrates, the cyclostomes (hagfishes and lamp- As such, extinct phylogenetic intermediates of these reys), possess only unmineralised cartilaginous fin living lineages afford unique insights into the evolu- tionary assembly of the vertebrate mineralised skeleton radials, a braincase and rudiments of the verte- and its canonical tissue types. Extinct jawless and brae. In contrast, living jawed vertebrates possess jawed fishes assigned to the gnathostome stem evi- mineralised axial, appendicular and dermal skele- dence the piecemeal assembly of skeletal systems, tons, a neurocranium and a splanchnocranium. revealing that the dermal skeleton is the earliest mani- Thus, there is a lack of experimental models rep- festation of a homologous mineralised skeleton. Yet the resentative of distinct grades in the evolutionary nature of the primitive dermal skeleton, itself, is poorly assembly of the vertebrate skeleton. However, understood. This is principally because previous histo- there is a rich fossil record of jawless and jawed logical studies of early vertebrates lacked a phyloge- vertebrates, characterised as the ‘ostracoderms’, netic framework required to derive evolutionary that record this episode (Donoghue and Purnell, hypotheses.
    [Show full text]