Viscous Dynamics of Lyme Disease and Syphilis Spirochetes Reveal Flagellar Torque and Drag
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Melioidosis in Birds and Burkholderia Pseudomallei Dispersal, Australia
LETTERS 5. Mätz-Rensing K, Jentsch KD, Rensing S, Melioidosis in Birds However, these are mostly birds Langenhuynsen S, Verschoor E, Niphuis in captivity and often exotic to the H, et al. Fatal herpes simplex infection in and Burkholderia a group of common marmosets (Callithrix location, suggesting potential reduced jacchus). Vet Pathol. 2003;40:405–11. pseudomallei immunity. Little is known about doi:10.1354/vp.40-4-405 Dispersal, Australia melioidosis in wild birds. In Sabah, 6. Bruno SF, Liebhold M, Mätz-Rensing K, Malaysia, only 1 of 440 wild birds Romão MA, Didier A, Brandes A, et al. Herpesvirus infection in free-living black- To the Editor: Melioidosis is an admitted to a research center over 9 tufted-ear marmoset (Callithrix penicil- emerging infectious disease of humans years was found to have melioidosis lata E. Geoffroyi 1812) at the state park of and animals caused by the gram- (6). Serra da Tiririca, Niterói, Rio de Janeiro, negative bacterium Burkholderia Although birds are endotherms, Brazil. Berl Munch Tierarztl Wochenschr. 1997;110:427–30. pseudomallei, which inhabits soil and with high metabolic rates and body 7. Kalter SS, Heberling RL. Comparative surface water in the disease-endemic temperature (40°C–43°C) protecting virology of primates. Bacteriol Rev. regions of Southeast Asia and northern them from many diseases, some birds 1971;35:310–64. Australia (1). The aim of this study appear more susceptible to melioidosis. 8. Mansfi eld K. Emerging and re-emerging infectious diseases of nonhuman primates. was to assess the potential for birds Indeed, high body temperature would Proceedings of the American College to spread B. -
Anaplasmosis: an Emerging Tick-Borne Disease of Importance in Canada
IDCases 14 (2018) xxx–xxx Contents lists available at ScienceDirect IDCases journal homepage: www.elsevier.com/locate/idcr Case report Anaplasmosis: An emerging tick-borne disease of importance in Canada a, b,c d,e e,f Kelsey Uminski *, Kamran Kadkhoda , Brett L. Houston , Alison Lopez , g,h i c c Lauren J. MacKenzie , Robbin Lindsay , Andrew Walkty , John Embil , d,e Ryan Zarychanski a Rady Faculty of Health Sciences, Max Rady College of Medicine, Department of Internal Medicine, University of Manitoba, Winnipeg, MB, Canada b Cadham Provincial Laboratory, Government of Manitoba, Winnipeg, MB, Canada c Rady Faculty of Health Sciences, Max Rady College of Medicine, Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB, Canada d Rady Faculty of Health Sciences, Max Rady College of Medicine, Department of Internal Medicine, Section of Medical Oncology and Hematology, University of Manitoba, Winnipeg, MB, Canada e CancerCare Manitoba, Department of Medical Oncology and Hematology, Winnipeg, MB, Canada f Rady Faculty of Health Sciences, Max Rady College of Medicine, Department of Pediatrics and Child Health, Section of Infectious Diseases, Winnipeg, MB, Canada g Rady Faculty of Health Sciences, Max Rady College of Medicine, Department of Internal Medicine, Section of Infectious Diseases, University of Manitoba, Winnipeg, MB, Canada h Rady Faculty of Health Sciences, Max Rady College of Medicine, Department of Community Health Sciences, University of Manitoba, Winnipeg, MB, Canada i Public Health Agency of Canada, National Microbiology Laboratory, Zoonotic Diseases and Special Pathogens, Winnipeg, MB, Canada A R T I C L E I N F O A B S T R A C T Article history: Human Granulocytic Anaplasmosis (HGA) is an infection caused by the intracellular bacterium Received 11 September 2018 Anaplasma phagocytophilum. -
Information to Users
INFORMATION TO USERS This manuscript bas been reproJuced from the microfilm master. UMI films the text directly ftom the original or copy submitted. Thus, sorne thesis and dissertation copies are in typewriter face, while others may be itom any type ofcomputer printer. The quality oftbis reproduction is depeDdeDt apoD the quality of the copy sablDitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthlough, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will he noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion. Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, beginning at the upper left-hand corner and continuing trom left to right in equal sections with sma1l overlaps. Each original is a1so photographed in one exposure and is included in reduced fonn at the back orthe book. Photographs ineluded in the original manuscript have been reproduced xerographically in this copy. Higher quality 6" x 9" black and white photographie prints are available for any photographs or illustrations appearing in this copy for an additional charge. Contact UMI directly to order. UMI A Bell & Howell Information Company 300 North Zeeb Raad, ADn AJbor MI 48106-1346 USA 313n61-4700 8OO1S21~ NOTE TO USERS The original manuscript received by UMI contains pages with slanted print. Pages were microfilmed as received. This reproduction is the best copy available UMI Oral spirochetes: contribution to oral malodor and formation ofspherical bodies by Angela De Ciccio A thesis submitted to the Faculty ofGraduate Studies and Research, McGill University, in partial fulfillment ofthe requirements for the degree ofMaster ofScience. -
Reportable Disease Surveillance in Virginia, 2013
Reportable Disease Surveillance in Virginia, 2013 Marissa J. Levine, MD, MPH State Health Commissioner Report Production Team: Division of Surveillance and Investigation, Division of Disease Prevention, Division of Environmental Epidemiology, and Division of Immunization Virginia Department of Health Post Office Box 2448 Richmond, Virginia 23218 www.vdh.virginia.gov ACKNOWLEDGEMENT In addition to the employees of the work units listed below, the Office of Epidemiology would like to acknowledge the contributions of all those engaged in disease surveillance and control activities across the state throughout the year. We appreciate the commitment to public health of all epidemiology staff in local and district health departments and the Regional and Central Offices, as well as the conscientious work of nurses, environmental health specialists, infection preventionists, physicians, laboratory staff, and administrators. These persons report or manage disease surveillance data on an ongoing basis and diligently strive to control morbidity in Virginia. This report would not be possible without the efforts of all those who collect and follow up on morbidity reports. Divisions in the Virginia Department of Health Office of Epidemiology Disease Prevention Telephone: 804-864-7964 Environmental Epidemiology Telephone: 804-864-8182 Immunization Telephone: 804-864-8055 Surveillance and Investigation Telephone: 804-864-8141 TABLE OF CONTENTS INTRODUCTION Introduction ......................................................................................................................................1 -
Leptospirosis Associated Equine Recurrent Uveitis Answers to Your Important Questions What Is Leptospirosis Associated Equine Recurrent Uveitis (LAERU)?
Lisa Dauten, DVM Tri-State Veterinary Services LLC " Leptospirosis Associated Equine Recurrent Uveitis Answers to your Important Questions! What is Leptospirosis Associated Equine Recurrent Uveitis (LAERU)? Let’s start by breaking down some terminology.! Uveitis- inflammation of the uvea. Resulting in cloudiness of the eye, pain, and potential blindness. Also know as “Moon Blindness”. Caused by trauma, infection, or corneal disease.! Uvea- part of the eye containing the iris, ciliary body, and choroid. It keeps the lens of the eye in place, maintains fluid in the eye, and keeps things in the blood from entering the inside of the eye (blood-ocular barrier). ! Recurrent Uveitis- inflammation of the uvea that sporadically reoccurs through out a horses life time. Each time there is a reoccurring episode, the damage to the eye is made worse, eventually leading to permanent damage and potential blindness. ! Leptospirosis- bacteria found in the environment shed in the urine of wildlife and livestock. Horses usually are exposed when grazing pastures or drinking from natural water sources.! LAERU- Recurrent Uveitis in horses caused by Leptospirosis.! What are the clinical signs of Uveitis? Uveitis can come on very suddenly. A lot of times horses present with severe pain in the eye, tearing, squinting, and rubbing face. The eye itself is cloudy, white or blue in color. Sometimes the signs are not as dramatic. The color change of the eye may progress slowly. In these cases, horse owners may mistake the changes for cataracts.! What do I do if I think my horse has Uveitis? Call your veterinarian to request an appointment. -
Tick-Borne Diseases in Maine a Physician’S Reference Manual Deer Tick Dog Tick Lonestar Tick (CDC Photo)
tick-borne diseases in Maine A Physician’s Reference Manual Deer Tick Dog Tick Lonestar Tick (CDC PHOTO) Nymph Nymph Nymph Adult Male Adult Male Adult Male Adult Female Adult Female Adult Female images not to scale know your ticks Ticks are generally found in brushy or wooded areas, near the DEER TICK DOG TICK LONESTAR TICK Ixodes scapularis Dermacentor variabilis Amblyomma americanum ground; they cannot jump or fly. Ticks are attracted to a variety (also called blacklegged tick) (also called wood tick) of host factors including body heat and carbon dioxide. They will Diseases Diseases Diseases transfer to a potential host when one brushes directly against Lyme disease, Rocky Mountain spotted Ehrlichiosis anaplasmosis, babesiosis fever and tularemia them and then seek a site for attachment. What bites What bites What bites Nymph and adult females Nymph and adult females Adult females When When When April through September in Anytime temperatures are April through August New England, year-round in above freezing, greatest Southern U.S. Coloring risk is spring through fall Adult females have a dark Coloring Coloring brown body with whitish Adult females have a brown Adult females have a markings on its hood body with a white spot on reddish-brown tear shaped the hood Size: body with dark brown hood Unfed Adults: Size: Size: Watermelon seed Nymphs: Poppy seed Nymphs: Poppy seed Unfed Adults: Sesame seed Unfed Adults: Sesame seed suMMer fever algorithM ALGORITHM FOR DIFFERENTIATING TICK-BORNE DISEASES IN MAINE Patient resides, works, or recreates in an area likely to have ticks and is exhibiting fever, This algorithm is intended for use as a general guide when pursuing a diagnosis. -
Taxonomy JN869023
Species that differentiate periods of high vs. low species richness in unattached communities Species Taxonomy JN869023 Bacteria; Actinobacteria; Actinobacteria; Actinomycetales; ACK-M1 JN674641 Bacteria; Bacteroidetes; [Saprospirae]; [Saprospirales]; Chitinophagaceae; Sediminibacterium JN869030 Bacteria; Actinobacteria; Actinobacteria; Actinomycetales; ACK-M1 U51104 Bacteria; Proteobacteria; Betaproteobacteria; Burkholderiales; Comamonadaceae; Limnohabitans JN868812 Bacteria; Proteobacteria; Betaproteobacteria; Burkholderiales; Comamonadaceae JN391888 Bacteria; Planctomycetes; Planctomycetia; Planctomycetales; Planctomycetaceae; Planctomyces HM856408 Bacteria; Planctomycetes; Phycisphaerae; Phycisphaerales GQ347385 Bacteria; Verrucomicrobia; [Methylacidiphilae]; Methylacidiphilales; LD19 GU305856 Bacteria; Proteobacteria; Alphaproteobacteria; Rickettsiales; Pelagibacteraceae GQ340302 Bacteria; Actinobacteria; Actinobacteria; Actinomycetales JN869125 Bacteria; Proteobacteria; Betaproteobacteria; Burkholderiales; Comamonadaceae New.ReferenceOTU470 Bacteria; Cyanobacteria; ML635J-21 JN679119 Bacteria; Proteobacteria; Betaproteobacteria; Burkholderiales; Comamonadaceae HM141858 Bacteria; Acidobacteria; Holophagae; Holophagales; Holophagaceae; Geothrix FQ659340 Bacteria; Verrucomicrobia; [Pedosphaerae]; [Pedosphaerales]; auto67_4W AY133074 Bacteria; Elusimicrobia; Elusimicrobia; Elusimicrobiales FJ800541 Bacteria; Verrucomicrobia; [Pedosphaerae]; [Pedosphaerales]; R4-41B JQ346769 Bacteria; Acidobacteria; [Chloracidobacteria]; RB41; Ellin6075 -
Treponema Borrelia Family: Leptospiraceae Genus: Leptospira Gr
Bacteriology lecture no.12 Spirochetes 3rd class -The spirochetes: are a large ,heterogeneous group of spiral ,motile bacteria. Although, • there are at least eight genera in this family ,only the genera Treponema,Borrelia,and Leptospira which contain organism pathogenic for humans . -There are some reports of intestinal spirochetes ,that have been isolated from biopsy material ,these are Brachyspira pilosicoli,and Brachyspira aalborgi. *Objectives* Taxonomy Order: Spirochaetales Family: Spirochaetaceae Genus: Treponema Borrelia Family: Leptospiraceae Genus: Leptospira -Gram-negative spirochetes -Spirochete from Greek for “coiled hair "they are : *1*Extremely thin and can be very long *2* Motile by periplasmic flagella (axial fibrils or endoflagella) *3*Outer sheath encloses axial fibrils *4*Axial fibrils originate from insertion pores at both poles of cell 1 Bacteriology lecture no.12 Spirochetes 3rd class Spirochaetales Associated Human Diseases Treponema Main Treponema are: - T. pallidum subspecies pallidum - Syphilis: Venereal (sexual) disease 2 Bacteriology lecture no.12 Spirochetes 3rd class - T. pertenue - Yaws Non venereal - T. carateum - Pinta skin disease All three species are morphologically identical Characteristics of T.pallidum 1-They are long ,slender ,helically coiled ,spiral or cork –screw shaped bacilli. 2-T.pallidum has an outer sheath or glycosaminoglycan contain peptidoglycan and maintain the structural integrity of the organisms. 3-Endoflagella (axial filament ) are the flagella-like organelles in the periplasmic space encased by the outer membranes . 4-The endoflagella begin at each end of the organism and wind around it ,extending to and overlapping at the midpoint. 5- Inside the endoflagella is the inner membrane (cytoplasmic membrane)that provide osmotic stability and cover the protoplasmic cylinders . -
Phylogenetic Foundation of Spirochetes
J. Mol. Microbiol. Biotechnol. (2000) 2(4): 341-344. JMMBSpirochete Symposium Phylogeny on341 Spirochete Physiology Phylogenetic Foundation of Spirochetes Bruce J. Paster* and Floyd E. Dewhirst Spirochaetales that is divided into three families; namely the Spirochaetaceae, the Brachyspiraceae, and the Department of Molecular Genetics, The Forsyth Institute, Leptospiraceae. The phylogenetic relationships of 140 Fenway, Boston, Massachusetts 02115, USA representatives of each genus are shown in Figure 1. The Spirochaetaceae are separated into 6 genera— Borrelia, Brevinema, Cristispira, Spirochaeta, “Spironema”, Abstract and Treponema. New genera of termite spirochetes, such as Clevelandina, Diplocalyx, and Hollandina, have been The spirochetes are free-living or host-associated, described on the basis of differences in ultrastructural traits helical bacteria, some of which are pathogenic to man (Breznak, 1984). It has been suggested that they also and animal. Comparisons of 16S rRNA sequences belong in the family Spirochaetaceae, but no sequence demonstrate that the spirochetes represent a information is presently available to determine their monophyletic phylum within the bacteria. The phylogenetic position within the spirochetes. spirochetes are presently classified in the Class The Brachyspiraceae contain the genus Brachyspira Spirochaetes in the order Spirochetales and are (Serpulina). Due to the close phylogenetic relationship of divided into three major phylogenetic groupings, or B. aarlborgi to species characterized as Serpulina, it has families. The first family Spirochaetaceae contains been recommended that a single genus be justified. Thus, species of the genera Borrelia, Brevinema, Cristispira, Brachyspira takes precedence over Serpulina since the Spirochaeta, Spironema, and Treponema. The second former genus was listed first as a valid name (Hovind- family Brachyspiraceae contains the genus Hougen et al., 1983). -
Tick-Borne Disease Working Group 2020 Report to Congress
2nd Report Supported by the U.S. Department of Health and Human Services • Office of the Assistant Secretary for Health Tick-Borne Disease Working Group 2020 Report to Congress Information and opinions in this report do not necessarily reflect the opinions of each member of the Working Group, the U.S. Department of Health and Human Services, or any other component of the Federal government. Table of Contents Executive Summary . .1 Chapter 4: Clinical Manifestations, Appendices . 114 Diagnosis, and Diagnostics . 28 Chapter 1: Background . 4 Appendix A. Tick-Borne Disease Congressional Action ................. 8 Chapter 5: Causes, Pathogenesis, Working Group .....................114 and Pathophysiology . 44 The Tick-Borne Disease Working Group . 8 Appendix B. Tick-Borne Disease Working Chapter 6: Treatment . 51 Group Subcommittees ...............117 Second Report: Focus and Structure . 8 Chapter 7: Clinician and Public Appendix C. Acronyms and Abbreviations 126 Chapter 2: Methods of the Education, Patient Access Working Group . .10 to Care . 59 Appendix D. 21st Century Cures Act ...128 Topic Development Briefs ............ 10 Chapter 8: Epidemiology and Appendix E. Working Group Charter. .131 Surveillance . 84 Subcommittees ..................... 10 Chapter 9: Federal Inventory . 93 Appendix F. Federal Inventory Survey . 136 Federal Inventory ....................11 Chapter 10: Public Input . 98 Appendix G. References .............149 Minority Responses ................. 13 Chapter 11: Looking Forward . .103 Chapter 3: Tick Biology, Conclusion . 112 Ecology, and Control . .14 Contributions U.S. Department of Health and Human Services James J. Berger, MS, MT(ASCP), SBB B. Kaye Hayes, MPA Working Group Members David Hughes Walker, MD (Co-Chair) Adalbeto Pérez de León, DVM, MS, PhD Leigh Ann Soltysiak, MS (Co-Chair) Kevin R. -
Leptospira Noguchii and Human and Animal Leptospirosis, Southern Brazil
LETTERS Leptospira noguchii previously isolated from animals such titer of 25 against saprophytic sero- as armadillo, toad, spiny rat, opossum, var Andamana by MAT. Both patients and Human and nutria, the least weasel (Mustela niva- were from the rural area of Pelotas. Animal Leptospirosis, lis), cattle, and the oriental fi re-bellied Unfortunately, convalescent-phase se- Southern Brazil toad (Bombina orientalis) in Argen- rum samples were not obtained from tina, Peru, Panama, Barbados, Ni- these patients. To the Editor: Pathogenic lep- caragua, and the United States (1,6). A third isolate (Hook strain) was tospires, the causative agents of lep- Human leptospirosis associated with obtained from a male stray dog with tospirosis, exhibit wide phenotypic L. noguchii has been reported only in anorexia, lethargy, weight loss, disori- and genotypic variations. They are the United States, Peru, and Panama, entation, diarrhea, and vomiting. The currently classifi ed into 17 species and with the isolation of strains Autum- animal died as a consequence of the >200 serovars (1,2). Most reported nalis Fort Bragg, Tarassovi Bac 1376, disease. The isolate was obtained from cases of leptospirosis in Brazil are of and Undesignated 2050, respectively a kidney tissue culture. No temporal urban origin and caused by Leptospira (1,6). The Fort Bragg strain was iso- or spatial relationship was found be- interrogans (3). Brazil underwent a lated during an outbreak among troops tween the 3 cases. dramatic demographic transformation at Fort Bragg, North Carolina. It was Serogrouping was performed by due to uncontrolled growth of urban identifi ed as the causative agent of an using a panel of rabbit antisera. -
LEPTOSPIRA: Morphology, Classification and Pathogenesis
iolog ter y & c P a a B r f a o s Mohammed i l Journal of Bacteriology and t et al. J Bacteriol Parasitol 2011, 2:6 o a l n o r DOI: 10.4172/2155-9597.1000120 g u y o J Parasitology ISSN: 2155-9597 Research Article Open Access LEPTOSPIRA: Morphology, Classification and Pathogenesis Haraji Mohammed1*, Cohen Nozha2, Karib Hakim3, Fassouane Abdelaziz4 and Belahsen Rekia1 1Laboratoire de Biotechnologie, Biochimie et Nutrition, Faculté des sciences d’El Jadida, Maroc. 2Laboratoire de Microbiologie et d’Hygiène des Aliments et de l’Environnement Institut Pasteur Maroc, Casablanca, Maroc 3Unité HIDAOA, Département de Pathologie et de santé publique vétérinaire, Institut Agronomique et Vétérinaire Hassan II, Rabat; Maroc. 4Ecole Nationale de Commerce et de Gestion d’El Jadida ; Maroc Abstract Leptospirosis, caused by the pathogenic leptospires, is one of the most widespread zoonotic diseases known. Leptospirosis cases can occur either sporadically or in epidemics, Humans are susceptible to infection by a variety of serovars. These bacteria are antigenically diverse. Changes in the antigenic composition of lipopolysaccharide (LPS) are thought to account for this antigenic diversity. The presence of more than 200 recognized antigenic types (termed serovars) of pathogenic leptospires have complicated our understanding of this genus. Definitive diagnosis is suggested by isolation of the organism by culture or a positive result on the microscopic agglutination test (MAT). Only specialized laboratories perform serologic tests; hence, the decision to treat should not be delayed while waiting for the test results. Keywords: Leptospirosis; Leptospira; Serovar; Morphology; Patho- Morphology of Leptospira genesis Leptospires are corkscrew-shaped bacteria, which differ from other Introduction spirochaetes by the presence of end hooks.