TRIZ at Intel

Total Page:16

File Type:pdf, Size:1020Kb

TRIZ at Intel Agenda TRIZ Development at Intel Corporation Innovation at Intel TRIZ history at Intel TRIZ Role and Proliferation Japan TRIZ Symposium 2008 TRIZ as an Intel methodology Amir Roggel Principal Engineer Intel Israel (C) The Author & Japan TRIZ Society Slide 1 Japan TRIZ Symposium 2008 September 10, 2008 (C) The Author & Japan TRIZ Society Slide 2 Japan TRIZ Symposium 2008 September 10, 2008 The 20th Century Radical Innovation ~1900 ~2000 y Goes beyond competitive positioning y May lead to major paradigm shift y Usually an individual achievement; champion driven y Risky with high failure rate; rare in mature companies Courtesy Gene Meieran, Senior Intel Fellow Courtesy Gene Meieran, Senior Intel Fellow (C) The Author & Japan TRIZ Society Slide 3 Japan TRIZ Symposium 2008 September 10, 2008 (C) The Author & Japan TRIZ Society Slide 4 Japan TRIZ Symposium 2008 September 10, 2008 Radical Innovation Incremental Innovation 1920 y Address issues in non-traditional ways y Necessary to retain competitive position but does not 1/1,000,000 the cost 1/10,000,000 the size threaten status quo 1,000,000 X the reliability y Responsive to problems, opportunities or trends y Team driven; high expectation of success 1960 y Lots of recognition and reward for success 2000 Courtesy Gene Meieran, Senior Intel Fellow Courtesy Gene Meieran, Senior Intel Fellow (C) The Author & Japan TRIZ Society Slide 5 Japan TRIZ Symposium 2008 September 10, 2008 (C) The Author & Japan TRIZ Society Slide 6 Japan TRIZ Symposium 2008 September 10, 2008 The Future of Moore’s Law Incremental Innovation: Moore’s Law Communications No Relaxing! Design Info tech Architecture Networks Systems Automation Software Electronics Optics Mech. Eng. Photonics Design Operations Chem E. Solid state physics .09µ 0.065 106 Chemistry Physics Core2Duo® Pentium®4 Processor Core2Duo 2007 65nm 105 Materials science Pentium® II Processor ® 104 Pentium III Processor Pentium® Processor Pentium® Pro Processor 103 i486™ Processor Networking 102 i386™ Processor Manufacturing 80286 Design 10 8086 Architecture Processing 1 ’75 ’80 ’85 ’90 ’95 ’00 ’05 ’10 ’15 The Number of Transistors Per Chip The Number of Transistors Per Chip Source: Intel WillWill Double Double Every Every 18 18 Months. Months. Courtesy Gene Meieran, Senior Intel Fellow Courtesy Gene Meieran, Senior Intel Fellow (C) The Author & Japan TRIZ Society Slide 7 Japan TRIZ Symposium 2008 September 10, 2008 (C) The Author & Japan TRIZ Society Slide 8 Japan TRIZ Symposium 2008 September 10, 2008 CPU – the Brain of Evolving Computing Platforms 20th Century Top Science and Intuitive and Aware Technology Achievements * Computers 1. Electrification 11. Interstate highways Mobile 2. Automobile 12. Space flight 3. Airplane 13. Internet Networked Sensors 4. Water supply & distribution 14. Imaging +Inference 5. Electronics 15. Household appliances 6. Radio and television 16. Health technologies Mainframes Wireless 7. Agricultural mechanization 17. Petrochemical technology 8. Computers 18. Laser and fiber optics Will sensors and inference PC’s trigger a “Cambrian” explosion? 9. Telephone 19. Nuclear technologies 10. Air conditioning/refrigeration 20. High-performance materials * National Academy of Engineering; Providing ubiquitous power was ENIAC “A Century of Innovation” a key to success in the 20th century Courtesy Andrew Chien – VP and Director, Intel Research Courtesy Gene Meieran, Senior Intel Fellow (C) The Author & Japan TRIZ Society Slide 9 Japan TRIZ Symposium 2008 September 10, 2008 (C) The Author & Japan TRIZ Society Slide 10 Japan TRIZ Symposium 2008 September 10, 2008 The 20th Century All manufactured in 21st Century Top Science and high volume at Technology Achievements * televisionaffordable prices radio Cell phone Energy conservation Traffic/population logistics computers Electro Opto Resource protection Natural disaster control Food & water and supply AI, interfaces and robotics nuclear movies appliances laser Waste management Electronic environment Mecho Medicine and prolonging life Globalization electrification imaging Security & counter-terrorism Space exploration Education and learning Preservation of species Sciences: airplane New technology Entertainment Chemistry Depended on Genetics and cloning “Virtualization” and VR Physics energy Knowledge sharing Preservation of history Materials car mechanization distribution Global communication *Gene Meieran prediction; IFF votes Courtesy Gene Meieran, Senior Intel Fellow Courtesy Gene Meieran, Senior Intel Fellow (C) The Author & Japan TRIZ Society Slide 11 Japan TRIZ Symposium 2008 September 10, 2008 (C) The Author & Japan TRIZ Society Slide 12 Japan TRIZ Symposium 2008 September 10, 2008 The 21st Century TRIZ at Intel All to be manufactured in high volume at y History affordable prices BIO y Proliferation Waste BIO mgmtBiology Medical INFO y Problem solving and Medicine Information y Applications: Present and Future Energy Food prod Sensors & dist Communications NANO AI Sciences: Will depend on WeatherNano -scale Physics Knowledge Biology TechnologySecurity distribution Information “Chips” Internet (C) The Author & Japan TRIZ Society Slide 13 Japan TRIZ Symposium 2008 September 10, 2008 (C) The Author & Japan TRIZ Society Slide 14 Japan TRIZ Symposium 2008 September 10, 2008 TRIZ at Intel y 1996-2001 Exploration stage Intel’s Manufacturing Dalian - 1996, Santa Clara Technology Development - Began TRIZ Fab/Sort & Assembly/Test Sites Fab software pilot/training. Two very successful projects – “Sputnik” and “Bubbles” - 1998 Introduced to Assembly Technology Development and Flash Business 2008 1970 Washington Systems Ireland y 2002-2004 Early deployment and seeding in Mfg. Fab - 2002 First TRIZ class in Assembly/Test Mfg. – Cavite, Philippines Chengdu*Chengdu Shanghai - 2003 First class in Fab/Sort Mfg. – Kiryat Gat, Israel Oregon Israel Mass. Assembly/Test - 2004 Classes in more sites (Fab/Sort and Assembly/Test) Fab/Dvlpmt. Mass. Fab Assembly/Test Fab ● y 2005-2006 Adoption – Manufacturing world-wide California Philippines - 2005 First classes to Level-2 and Level-3 Fab/Dvlpmt. Assembly/Test 2006 All Level-1, Level-2 classes delivered internally Costa Rica - Arizona VietNam New Mexico Assembly/Test Fab Fab Assembly/Test y 2007-> into the future A/T Dvlpmt. Malaysia - Manufacturing expansion and beyond Assembly/Test (C) The Author & Japan TRIZ Society Slide 15 Japan TRIZ Symposium 2008 September 10, 2008 (C) The Author & Japan TRIZ Society Slide 16 Japan TRIZ Symposium 2008 September 10, 2008 Intel TRIZ Conference Mark Barkan – MA-TRIZ President Chandler, Arizona - Dec 2007 y Intel wide conference held in 2007. y Conference Theme: “Innovating the Future” y Over 150 attendees from around the world (40 non-US). y 6 papers, 28 posters showcasing work across multi-disciplines y Invited talks by Intel Fellows, industry experts, TRIZ masters (C) The Author & Japan TRIZ Society Slide 17 Japan TRIZ Symposium 2008 September 10, 2008 (C) The Author & Japan TRIZ Society Slide 18 Japan TRIZ Symposium 2008 September 10, 2008 Problem Solving Framework at Intel Why is it important for Intel to solve manufacturing problems quickly? Each new technology has a shorter life cycle and requires a faster ramp y Why problem solving is so rate than previous technologies. Problems incurred are much more costly per day of problem solving than they have ever been. critical in our current business model y Our current problem solving 90nm culture 130nm y Our manufacturing objectives 180nm y Types of problems we solve 300mm WSPW 250nm y How TRIZ fits in y Future vision of TRIZ at Intel 350nm 65nm (C) The Author & Japan TRIZ Society Slide 19 Japan TRIZ Symposium 2008 September 10, 2008 (C) The Author & Japan TRIZ Society Slide 20 Japan TRIZ Symposium 2008 September 10, 2008 Intel’s Manufacturing Mission Intel’s Problem Solving Culture and Methodology To be the best in the world at: Problem or Undesired event occurrence Ramping new products into high volume Yields Prevent Symptoms Fix Tool productivity Most Probable Cause(s) Cost and agility Root Cause In order to achieve our goals, problems must be quickly Problems are solved at different levels, with both contained, and with root cause understanding. time-to-solution and quality of solution in mind. (C) The Author & Japan TRIZ Society Slide 21 Japan TRIZ Symposium 2008 September 10, 2008 (C) The Author & Japan TRIZ Society Slide 22 Japan TRIZ Symposium 2008 September 10, 2008 Managing the Problem Solving Process Types of Problems We Solve Framework to manage the y Corrective: Problems where a problem solving process Step 1: standard previously achieved is Define Step 2: not being met Ex: excursion. the Problem Step 7: Document Determine Current Nexte Steps Situation y Improvement: The current system or process performance, as it was designed, is expected to be improved Ex: Yield improvement. Step 6: Communicate! Step 3: Standardize Create & Solutions Validate Model y Preventive: Problems are where the goal is to add robustness and Step 5: Step 4: prevent systems or processes from Implement Develop failure or falling below baseline. Solutions Solutions Ex: Integrated process window centering (C) The Author & Japan TRIZ Society Slide 23 Japan TRIZ Symposium 2008 September 10, 2008 (C) The Author & Japan TRIZ Society Slide 24 Japan TRIZ Symposium 2008 September 10, 2008 Analytic Tools for Problem Solving How the Problem Solving Model Fits Together y This is where TRIZ comes in… y Ramping new products into HVM Management tools Analytical
Recommended publications
  • Improving Innovation Using TRIZ
    University of Bath MPHIL Improving innovation using TRIZ Frobisher, Paul Award date: 2010 Awarding institution: University of Bath Link to publication Alternative formats If you require this document in an alternative format, please contact: [email protected] General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal ? Take down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Download date: 04. Oct. 2021 IMPROVING INNOVATION USING TRIZ VOLUME 1 OF 1 Paul Frobisher A THESIS SUBMITTED FOR THE DEGREE OF MASTER OF PHILOSOPHY University of Bath Department of Mechanical Engineering January 2010 COPYRIGHT Attention is drawn to the fact that copyright of this thesis rests with its author. This copy of the thesis has been supplied on condition that anyone who consults it is understood to recognise that its copyright rests with its author and that no quotation from the thesis and no information derived from it may be published without the prior written consent of the author.
    [Show full text]
  • PROTOTYPE INNOVATION USING TRIZ for 4Th INDUSTRIAL REVOLUTION
    PROTOTYPE INNOVATION USING TRIZ FOR 4th INDUSTRIAL REVOLUTION INTRODUCTION The 4th industrial revolution (IR4) combines various advanced technologies in the physical, digital and biological world, has dramatically reshaped the way people live, work and relate to one another, which drastically improves the efficiency of business and organizations. Institutions of higher learning around the world are equipping themselves to cope with the trend brought by the IR4 where the speed of technological breakthroughs has no historical precedent when compared with the previous industrial revolutions. However, lecturers and their students are struggling to incorporate these technologies into teaching and prototyping. Innovation is an important skill much needed during the IR4. As the IR4 is evolving at an exponential pace, the competition to achieve breakthrough in technology is becoming more intense. As a result, innovation is no longer a “nice-to-have” skill but a “must-have”. There is a way to learn innovation in a systematic approach. The approach is called TRIZ or Theory of Inventive Problem Solving. TRIZ is a tool which frequently applied in modern inventions to create smarter products and improve product families. TRIZ is recognized as one of the powerful methods for innovation. It is embraced by many corporations namely Siemens, Samsung, Intel, Whirlpool, LG, Christian Dior, Boeing, Procter & Gamble, L'Oreal, KIA, Hyundai, etc. COURSE OBJECTIVES At the end of the workshop, participants will be able to: 1. Understand the need for TRIZ 2. Understand the ecosystem of the prototype 3. Analyze the functioning of the prototype and its ecosystem 4. Uncover the users experience through 9-windows 5.
    [Show full text]
  • Case Study Application of Triz Tools – Strengths & Weaknesses
    CASE STUDY APPLICATION OF TRIZ TOOLS – STRENGTHS & WEAKNESSES Chia-Li Song, Teong-San Yeoh, Tay-Jin Yeoh, Intel Technology Sdn. Bhd. Penang, Malaysia [email protected] ABSTRACT TRIZ is essentially a toolbox with a multitude of tools to choose from. Although users prefer one tool versus another, it is important to note that each tool does have its strengths/weaknesses. We have conducted a series of Advanced TRIZ (Level 2) training classes to students across different Intel sites in Asia (Malaysia, China, Philippines). As a class exercise, we introduce a problem of two threaded joints which causes liquid leakage when screwed together. The challenge is to provide effective solutions using the various TRIZ tools which they have learnt from Basic (Level 1) TRIZ till Advanced TRIZ. One discovery was solutions generated by students were similar when they applied the same TRIZ tools irregardless of their educational background, culture, or years of working experience. This paper will discuss the details of the problem and solutions generated with different tools, along with pros and cons of the various TRIZ tools. INTRODUCTION TRIZ contains many tools for problem definition e.g. Functional Analysis, Flow Analysis, and Cause & Effect Chain (CEC); and innovative solution generation e.g. 40 Inventive Principles, 76 Standard Inventive Solutions. From Basic TRIZ to Advanced TRIZ (TRIZ Level 1 and 2), approximately 12 tools are studied. In basic class, we have Functional Analysis, CEC, Contradictions, Process Analysis; and in advanced class, we have ARIZ, Substance Field (Su-Field) Modeling Trends of Engineering System Evolution (TESE), 9 Windows. There can be some amount of confusion for people who are new to TRIZ in terms of what is right tool to use when solving a problem.
    [Show full text]
  • The Study of the Innovative Design Method TRIZ on 3G Products
    The Study of the Innovative Design Method TRIZ on 3G Products Liu Ge Liu Xin School of Economics & Management, Beijing University of Posts and Telecommunications, P.R.China, 100876 (E-mail: [email protected], [email protected]) Abstract A scientific design method is critical to the implementation of innovative product design. This article describes the definition of TRIZ, its basic principles and method, states basic definition, necessity, principles and procedure of 3G product development, performs analysis and study on the application of customer experience method from the TRIZ substance-field analysis theory in the process of 3G products design. It is expected that the TRIZ theory will be a very effective tool in the development of 3G products. Keywords 3G product development, TRIZ theory, substance-field analysis, customer experience 1 Introduction With the evolution of telecommunications technology from 2G to 3G, as for mobile communications carriers, the core competitiveness of an enterprise is innovative design capability of products. A long term study has been made on product innovation design, from the 1930s to 1980s, more than 300 types of innovation methods and more than 10 kinds of creation principles were emerged in the world. Through repeated practice and summarization, there are several common innovation methods as follows: the brain storm method, the SWZH method, the bionic association method, the listing category technique, the combination innovation method, the function design innovation method, the reverse design innovation method and so on. Although these innovative design methods have made a breakthrough in constraints on relevant factors that restrict innovation to a certain degree from their respective angles, they have not formed a set of comparatively complete theory system, which cannot implement the overall process of product innovation systematically.
    [Show full text]
  • Four Views on Triz
    FOUR VIEWS ON TRIZ Valeri Souchkov Published in The TRIZ Journal, March, 1999 First, this article should not be regarded as scientific. The only idea it discusses is how to view on TRIZ. I found this issue extremely important, because there is a lot of misunderstanding of what TRIZ is, in particular, by those who encounter with TRIZ for the first time. The questions I hear over and over again (even from those who took training in TRIZ) are ‘what is TRIZ? Is it a problem-solving method? Is it a science? Is it a methodology? Is it a toolbox? Is it something to help us with breaking our mental barriers and improve our creativity?’ And so on. So I decided to make a brief overview of what TRIZ really is, to shed some light on these questions. In my professional opinion, modern TRIZ comprises four distinct directions: 1. Theory of technology origins and evolution. 2. Techniques for overcoming mental inertia. 3. Techniques for analyzing, formulating and solving inventive problems. 4. Pointers, which organize mapping between technical functions and specific design solutions, technologies, and knowledge of natural science. In TRIZ, these directions did not evolve independently. However this could not be otherwise, as TRIZ originated from extensive studies of technical and patent information and has been developing since as a methodology for improving engineering creativity, and not as a science. TRIZ was born as a problem-solving tool based on a systemic view of the technological world. The primary idea behind TRIZ approach to solving problems is that information about a specific problem must be first generalized, a solution concept has to be generated, and then the concept should be specialized in terms of a feasible solution.
    [Show full text]
  • Systems Thinking Using SSM and TRIZ for Stakeholder Engagement in Infrastructure Megaprojects
    Article Systems Thinking Using SSM and TRIZ for Stakeholder Engagement in Infrastructure Megaprojects Johan Ninan 1,*, Ibukun Phillips 2, Shankar Sankaran 3 and Swaminathan Natarajan 4 1 Bartlett School of Construction and Project Management, University College London, London WC1E 6BT, UK 2 School of Industrial Engineering, Purdue University, West Lafayette 47907, IN, USA; [email protected] 3 School of Built Environment, University of Technology Sydney, Ultimo NSW 2007, Australia; [email protected] 4 Tata Consultancy Services (TCS), Chennai 600113, India; [email protected] * Correspondence: [email protected] Received: 29 June 2019; Accepted: 24 September 2019; Published: 26 September 2019 Abstract: Infrastructure megaprojects straddle multiple stakeholder boundaries who have an interest in the project and are affected by the project. Multiple papers in the literature stress the need for holistic approaches to stakeholder engagement, as existing approaches only address the concerns of the noisy stakeholders. This research proposes an innovative approach in which Soft Systems Methodology (SSM) is used for understanding stakeholder concerns, complemented by the use of Theory of Inventive Problem Solving (TRIZ) for identifying innovative solutions to address conflicting stakeholder goals. The researchers simulated the stakeholder engagement of the Coimbatore metro rail project, in India, through a workshop setting in a classroom to check the feasibility of this approach for stakeholder engagement. The 15 participants of the workshop were divided into four groups representing different stakeholders of the project. Data was collected through participant observations by the authors and oral feedback from the participants. The results show that while SSM helped to capture the concerns and goals of each stakeholder, TRIZ helped to identify and dissolve conflicts among these goals through innovative solutions.
    [Show full text]
  • Modelling the Conceptual Design Process with Hybridization of TRIZ Methodology and Systematic Design Approach
    Available online at www.sciencedirect.com ScienceDirect Procedia Engineering 131 ( 2015 ) 1064 – 1072 World Conference: TRIZ FUTURE, TF 2011-2014 Modelling the Conceptual Design Process with Hybridization of TRIZ Methodology and Systematic Design Approach a* a b Khairul Manami Kamarudin , Keith Ridgway , Mohd Roshdi Hassan ࢟Advanced Manufacturing Research Centre with Boeing, The University of Shef¿eld, Advanced Manufacturing Park, Wallis Way, Catcliffe, Rotherham, England S10 1GZ, UK ࢣDepartment of Mechanical and Manufacturing Engineering, Universiti Putra Malaysia, 43400 Serdang Selangor, Malaysia Abstract The Theory of Inventive Problem Solving (TRIZ) methodology is known to be very effective in complex problem solving. The method, however, needs enhancements in the safety considerations at the earlier stage of conceptual design. This paper presents a hybridized TRIZ methodology with the work of Pahl and Beitz, Systematic Design Approach (SDA) through an effective modelling. This modelling helps in critical problem solving in conceptual design of aircraft parts. The process is applied to a case study of selected aircraft components with a proposal of a systematic and creative methodology in the conceptual designing process. The implications of this study will help aircraft designers to optimize the aircraft parts design in an effective and creative way. © 20152015 The The Authors. Authors. Published Published by Elsevierby Elsevier Ltd. Ltd.This is an open access article under the CC BY-NC-ND license (Peer-reviewhttp://creativecommons.org/licenses/by-nc-nd/4.0/ under responsibility of the Scientific). Committee of TFC 2011, TFC 2012, TFC 2013 and TFC 2014 – GIC. Peer-review under responsibility of the Scientific Committee of TFC 2011, TFC 2012, TFC 2013 and TFC 2014 – GIC Keywords: Conceptual Design, TRIZ, SDA, TRIZ-SDA, Creative and Systematic.
    [Show full text]
  • Research on Application System of Integrating QFD and TRIZ
    Proceedings of the 7th International Conference on Innovation & Management ·499· Research on Application System of Integrating QFD and TRIZ Deng Chaoqun School of Management, Wuhan University of Technology, Wuhan, P.R.China, 430070 (E-mail: [email protected]) Abstract Customers are ultimate judges of products. In order to produce the world-ranking product, customer information must be embodied in the part of production and hierarchy of control. This paper firstly points out the deficiency of QFD and the superiority of TRIZ. And then it constructs the application system of integrating QFD and TRIZ based on the theoretical rationale of the integration. The main function modules of this system are also introduced in this paper. Finally it safely arrives at a conclusion as following: the integration of QFD and TRIZ can clarify the black-box process of converting the customer needs to design requirements. Key words QFD; TRIZ; Integration; Confliction matrix 1 Introduction QFD originated in Japan in 1960s.Two professors Mizuno and Yoji Akao compile and publish a book Quality Function Deployment, which introduces the main content of this method from the perspective of quality management. However, the deficiency of QFD in practical application arouses many scholars to add new analytical methods into QFD. Clausing and Pugh(1991)realized that the principle of innovation should be involved in the process of converting the customer needs to design requirements, and they put forward an Enhanced Quality Function Deployment (EQFD)[1]. Adiano and Roth (1994) supposed that traditional QFD can not resolve the dynamic feedback problems between customer needs and manufacturing process, thus they proposed Dynamic Quality Function Deployment (DQFD)[2].
    [Show full text]
  • Identifying an Innovative Su-Field Modeling Design Processes
    INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES Identifying an Innovative Su-Field Modeling Design Processes Chang-Tzuoh Wu synonym word, it means whether it is the methods of question Abstract—TRIZ is the Russian acronymic synonym of (Theory of to answer, Savransky (2000) think TRIZ method is that a Inventive Problem Solving). It is a systematic method for providing answer based on human knowledge invents the question valid suggestions to meet the requirements of inventive steps. Su-Field systems approach, Altshuller (the father of TRIZ)[3] have analytic method, deduced from TRIZ method, is one of the inventive explained the deduction course innovated and invented in problem solving tools that can be used to analyze and improve the efficacy of the technological system. By possessing a symbolic system detail. Hsiao (1999) point out that the engineers still adopt and transformation rules, the Su-Field analysis model can assist Brainstorming method to create new idea although lack of designers to diagnose and solve most design problems. This study systematic procedure, limitation of engineers’ knowledge base, proposes an innovative design and problem-solving process, based on engineer’s psychological obstacle and so on are the Su-Field modeling method integrated with extension of shortcomings of Brainstorming method. In the design process matter-element. of innovation, limitation of designer’s knowledge field, This research tries to integrating “extension of matter-element“ with the Su-Field modeling procedure to improve the efficiency and extent habitual thinking course, is the obstacle appeared in innovation of concept evolutions. We make use of extensibility of matter-element procedure, especially using the open thinking methods.
    [Show full text]
  • TRIZ-Based Patent Design Around for Enterprises: a Pencil Extender Device Innovative Redesign
    International Conference on Computer Science and Electronic Technology (CSET 2016) TRIZ-based Patent Design Around for Enterprises: A Pencil Extender Device Innovative Redesign Hai-yan Zhang1, Si-yuan Cheng1,2*, Xue-rong Yang1, Jing-ping Zhou1,2, Rui Wang1 1School of Electromechanical Engineering, Guangdong University of Technology, Guangzhou, CHINA 2Key Laboratory of Innovation Method and Decision Management System of Guangdong Province, Guangzhou, CHINA Abstract—Patent design around is crucial to the enterprise's experience. As the patented knowledge has the product design and technology innovation. The characteristics of advance and timeliness, it is the most patent-around innovative design method based on TRIZ is effective carrier of the technical information and has great proposed, using function analysis to analyze the existed realistic significance for enterprise’s innovation patent, providing the process and method for the [1].However, the enterprise often encounter patent barriers enterprise’s in-depth analysis of patent documents by when they take advantage of patents, so they should have standing in the patent-around perspective. Combining the the awareness of patent strategy. around strategies and TRIZ problem-solving tools, it finds Patent-around design is one of the most important out the relationship between them, thus provides guidance strategies of patent strategy. Initially, it is the America's for enterprises’ technical personnel and designers to utilize legitimate competitive behavior and only used as a passive suitable TRIZ problem-solving tools to solve the problem protective measure when their products are accused that arose after using the patent around strategies, to design infringement [2, 3]. But now patent design around is a kind a new product which is different to the existed patent.
    [Show full text]
  • Introduction to TRIZ by Lev Shulyak As Can Be Learned from His Biography, Genrich Some Basic TRIZ Tools
    Introduction to TRIZ by Lev Shulyak As can be learned from his biography, Genrich some basic TRIZ tools. It is here for two reasons: Altshuller analyzed thousands of worldwide patents First, it is important for new readers to first learn from the leading engineering fields. He then ana- TRIZ terminology and its meaning so that they may lyzed solutions that were, in his judgment, most ef- effectively utilize the 40 Principles to solve problems. fective. This work provided the first understanding Second, it is important for the reader to be familiar of the trends, or patterns, of evolution for technical with the philosophy underlying TRIZ tools and tech- systems. It also laid the foundation for the develop- niques in order to be able to fully apply them. ment of an analytical approach to solving inventive problems, later becoming the foundation for TRIZ, THE FOUNDATION OF TRIZ his theory of inventing problem solving, with its axiom: 1. Technical Systems: Everything that performs a function is a techni- The evolution of all technical systems is cal system. Examples of technical systems include cars, governed by objective laws. pens, books and knifes. Any technical system can con- sist of one or more subsystems. A car is composed of These laws reveal that, during the evolution of a the subsystems engine, steering mechanism, brakes technical system, improvement of any part of that and so on. Each of these is also a technical system system having already reached its pinnacle of func- unto itself (with its own series of subsystems) — and tional performance will lead to conflict with another each performs its own function.
    [Show full text]
  • The Effectiveness of TRIZ from the Perspective of Comprehensive Benefits of Technological Innovation
    Paper ID #29557 The effectiveness of TRIZ from the perspective of comprehensive benefits of technological innovation Prof. Wei YAO, School of Public Affairs, Zhejiang University Dr. Chu Zhaowei, ZheJiang University Chu Zhaowei, Ph.D candidate at Institute of China’s Science Technology and Education Policy, School of Public Affairs, Zhejiang University. He holds BS degree in Material Physics from Nanjing University of Information Science and Technology in 2015, and MS degree in Education from Zhejiang University in 2017. He is currently interested in engineering education, global competence and innovation management. Dr. hu shunshun, zhejiang university Hu Shunshun is a PhD student in the Institute of China’s Science, Technology and Education Policy at Zhejiang University in Hangzhou, Zhejiang. He received a BA in Marketing from the Nanjing Univer- sity of Chinese Medicine in 2015, and a MA in Educational Economic and Management from College of Public Administration, Nanjing agricultural University in 2018. He is currently interested in higher engineering education, engineering education policy, and emerging engineering education. Mr. Bifeng ZHANG, Zhejiang University Bifeng ZHANG is a PhD student at Zhejiang University in Hangzhou, Zhejiang, China. He received his BE degree from Beijing University of Posts and Telecommunications and MBA degree from Zhejiang University. His research focuses on engineering education and systematic innovation. c American Society for Engineering Education, 2020 The Effectiveness Assessment of TRIZ:From the Perspective of Comprehensive Benefits Abstract: TRIZ is a method that identifies contradictions in a given problem and then searches for solutions. There are still some controversies on the effectiveness of TRIZ. This study focuses on three questions: (1) What is the effectiveness of TRIZ? (2) Is there any difference in the effectiveness of different TRIZ tools? (3) What are the implications for engineers to apply TRIZ in R&D activities.
    [Show full text]