The Effectiveness of TRIZ from the Perspective of Comprehensive Benefits of Technological Innovation

Total Page:16

File Type:pdf, Size:1020Kb

The Effectiveness of TRIZ from the Perspective of Comprehensive Benefits of Technological Innovation Paper ID #29557 The effectiveness of TRIZ from the perspective of comprehensive benefits of technological innovation Prof. Wei YAO, School of Public Affairs, Zhejiang University Dr. Chu Zhaowei, ZheJiang University Chu Zhaowei, Ph.D candidate at Institute of China’s Science Technology and Education Policy, School of Public Affairs, Zhejiang University. He holds BS degree in Material Physics from Nanjing University of Information Science and Technology in 2015, and MS degree in Education from Zhejiang University in 2017. He is currently interested in engineering education, global competence and innovation management. Dr. hu shunshun, zhejiang university Hu Shunshun is a PhD student in the Institute of China’s Science, Technology and Education Policy at Zhejiang University in Hangzhou, Zhejiang. He received a BA in Marketing from the Nanjing Univer- sity of Chinese Medicine in 2015, and a MA in Educational Economic and Management from College of Public Administration, Nanjing agricultural University in 2018. He is currently interested in higher engineering education, engineering education policy, and emerging engineering education. Mr. Bifeng ZHANG, Zhejiang University Bifeng ZHANG is a PhD student at Zhejiang University in Hangzhou, Zhejiang, China. He received his BE degree from Beijing University of Posts and Telecommunications and MBA degree from Zhejiang University. His research focuses on engineering education and systematic innovation. c American Society for Engineering Education, 2020 The Effectiveness Assessment of TRIZ:From the Perspective of Comprehensive Benefits Abstract: TRIZ is a method that identifies contradictions in a given problem and then searches for solutions. There are still some controversies on the effectiveness of TRIZ. This study focuses on three questions: (1) What is the effectiveness of TRIZ? (2) Is there any difference in the effectiveness of different TRIZ tools? (3) What are the implications for engineers to apply TRIZ in R&D activities. These questions provide an opportunity to enhance the effectiveness of TRIZ, and even improvements on the method itself. According to the questionnaire survey on more than 300 engineers and assessment on comprehensive benefits, regression analysis was performed, to find out the contribution of TRIZ to comprehensive benefits. Through the research above, we can draw following conclusions: (1) There are sharp differences in the effectiveness of different TRIZ tools. (2) Applying of TRIZ has more significant economic and intellectual benefits and relatively poor social benefits. (3) Engineers should attach importance to the comprehensive benefits, giving priority to effective TRIZ tools, and select TRIZ tools according to the type of problem. 1. Introduction TRIZ is the acronym of the phrase "Theory of Inventive Problem Solving" in Russian. Researches on TRIZ began from G. Altshuller, when he found that innovation is not a random process relying solely on uncontrolled flash of insight. He found that engineering breakthroughs depend on the objective trends or principles which can be learned and repeated [1]. G. Altshuller and engineers around him believe once these principles can be identified and codified. Engineers could make the process of invention more predictable and quicker. According to the survey by European TRIZ Association in 2009, TRIZ had been used in R&D, product design, patent solutions, and engineering management over more than 39 countries nowadays [2]. Existing literatures indicate that TRIZ contributes in three aspects: (1) TRIZ can help engineers improve novelty and diversity of solutions [3], and also help them to find out root cause of technical problems [4]. (2) TRIZ can improve engineers’ creativity, and steadily promote their ability to solve engineering problems [5]-[7]. (3) TRIZ has significant psychological value, such as increasing engineers’ confidence when they are solving engineering problems [8], and also place engineers into real engineering environment [9]. With the extensive applying of TRIZ, scholars still want to verify the effectiveness of TRIZ, because TRIZ is not a scientific theory through peer review: Firstly, what is the effectiveness of TRIZ? Some surveys show that the overall efficiency of TRIZ is relatively low [10], and the existing TRIZ literature "exaggerate the value of TRIZ without exception" [11]. Current researches on the effectiveness of TRIZ mainly focus on its impact on individual’s creativity, which cannot explain the macro benefits. However, macro impacts on economic and social benefits are the key to dispel these doubts. Secondly, are there any differences about in the effectiveness of different TRIZ tools? Research shows that benefits from applying TRIZ depends on personal talents and cannot produce systematic solutions [12]. The problem-solving process cannot be repeated, and results will vary from person to person [1]. In summary, this research focuses on three questions: (1) What is the effectiveness of TRIZ? (2) Is there any difference in the effectiveness of TRIZ tools? (3) what is the implication for engineers to apply TRIZ in R&D activities. In order to answer these questions, we collected relevant data through questionnaire. Based on factor analysis and regression analysis, comprehensive benefits of TRIZ and the effectiveness of TRIZ will be evaluated, and suggestions on applying of TRIZ will be given for engineers. 2. Background 2.1 TRIZ tools and procedures to solve problems TRIZ provides a large number of tools or methods helping engineers to solve inventive problems. As showed in Figure 1, the process of problem-solving by TRIZ is mainly divided into four steps: problem describing; problem analyzing; problem solving and scheme forming. Tools provided by TRIZ are mainly used in second and third step. Figure 1 The process of problem-solving by TRIZ 2.2 The logic of TRIZ to solve problems Although there are many TRIZ tools with each own usage, the logic behind these tools strictly follows the problem-solving model, as shown in Figure 2. The traditional problem solving is to directly find out Specific Solutions for Specific Problems, while TRIZ converts a Specific Problem into Typical Problems first, then find out Typical Solutions for these Typical Problems, through these Typical Solutions, and finally obtains many Specific Solutions. Wang provided a typical TRIZ tool (Technical Contradiction and 40 Invention Principles) as an example to explain how TRIZ could help engineers solve inventive problems [13]: Specific problem: At high speed, the air flow over the top of a car tends to create a low-pressure area at the rear and thus the car is reducing traction and losing stability. Typical problem: Increasing traction and therefore the downward force (improving parameter #15–force) of a car at high speed, and do not want to increase its weight (worsening parameter #1–weight of a moving object). Typical solutions: We can find inventive principles #8,#1,#9,#13,#37,#28,#31,#35,#18 in the 2003 Contradiction Matrix, and finally select the inventive principle #8 “counterweight” (to compensate for the weight of an object, make it interact with the environment–e.g. use aerodynamic, hydrodynamic, buoyancy and other forces). Specific solutions: The spoilers used in airplanes for descending are adopted here on cars to reduce lift and thus improve traction while not increasing the car’s weight. This example illustrates the logic of TRIZ. It starts with mapping the problem from a specific scenario to a set of contradicted features (force and weight), and then it maps generic inventive principles to specific solutions (the counter weight principle yields the solution of spoilers.) Obviously, most specific problem can be solved by TRIZ based on above-mentioned process and this will help engineers a lot. Figure 2 Problem-solving model for TRIZ 3. Literature Review: Comprehensive Benefits Assessment The comprehensive benefits refer to the sum of direct and indirect benefits in engineering activities. The primary purpose of engineering activities is to obtain economic benefits, such as obtaining profits, maintaining market share, reducing costs, improving performances of products [14], improving resource utilization, improving quality and productivity, etc. [15]. Engineering activities should also pay attention to social benefits. Social benefits include promoting personal development, improving quality of life, promoting social welfare, improving resource utilization, etc. [16]. Intellectual benefits are also important in engineering activities. Intellectual benefits usually include obtaining inventive patents [17], and promoting technological accumulation [18]. Finally, negative benefits should be considered [19-20]. At present, the most commonly assessment system for comprehensive benefits is Oslo Manual assessment developed by OECD [21], which considers economic, social, and environmental impacts in production, delivery and business organization. Based on the researches above and the objective of this study, assessment index for comprehensive benefits were established as shown in Table 1. Table 1 Assessment index for comprehensive benefits by using TRIZ Benefits indicators Indicator interpretation / items in Questionnaire Source Direct profits TRIZ can increase direct profits Siegel, Oslo Manual Potential profits TRIZ can increase future profits Siegel, Oslo Manual Market demands growth TRIZ can boost product demands and enlarge market Oslo Manual share Increasing in TRIZ can improve the convenience of product
Recommended publications
  • Improving Innovation Using TRIZ
    University of Bath MPHIL Improving innovation using TRIZ Frobisher, Paul Award date: 2010 Awarding institution: University of Bath Link to publication Alternative formats If you require this document in an alternative format, please contact: [email protected] General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal ? Take down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Download date: 04. Oct. 2021 IMPROVING INNOVATION USING TRIZ VOLUME 1 OF 1 Paul Frobisher A THESIS SUBMITTED FOR THE DEGREE OF MASTER OF PHILOSOPHY University of Bath Department of Mechanical Engineering January 2010 COPYRIGHT Attention is drawn to the fact that copyright of this thesis rests with its author. This copy of the thesis has been supplied on condition that anyone who consults it is understood to recognise that its copyright rests with its author and that no quotation from the thesis and no information derived from it may be published without the prior written consent of the author.
    [Show full text]
  • PROTOTYPE INNOVATION USING TRIZ for 4Th INDUSTRIAL REVOLUTION
    PROTOTYPE INNOVATION USING TRIZ FOR 4th INDUSTRIAL REVOLUTION INTRODUCTION The 4th industrial revolution (IR4) combines various advanced technologies in the physical, digital and biological world, has dramatically reshaped the way people live, work and relate to one another, which drastically improves the efficiency of business and organizations. Institutions of higher learning around the world are equipping themselves to cope with the trend brought by the IR4 where the speed of technological breakthroughs has no historical precedent when compared with the previous industrial revolutions. However, lecturers and their students are struggling to incorporate these technologies into teaching and prototyping. Innovation is an important skill much needed during the IR4. As the IR4 is evolving at an exponential pace, the competition to achieve breakthrough in technology is becoming more intense. As a result, innovation is no longer a “nice-to-have” skill but a “must-have”. There is a way to learn innovation in a systematic approach. The approach is called TRIZ or Theory of Inventive Problem Solving. TRIZ is a tool which frequently applied in modern inventions to create smarter products and improve product families. TRIZ is recognized as one of the powerful methods for innovation. It is embraced by many corporations namely Siemens, Samsung, Intel, Whirlpool, LG, Christian Dior, Boeing, Procter & Gamble, L'Oreal, KIA, Hyundai, etc. COURSE OBJECTIVES At the end of the workshop, participants will be able to: 1. Understand the need for TRIZ 2. Understand the ecosystem of the prototype 3. Analyze the functioning of the prototype and its ecosystem 4. Uncover the users experience through 9-windows 5.
    [Show full text]
  • Case Study Application of Triz Tools – Strengths & Weaknesses
    CASE STUDY APPLICATION OF TRIZ TOOLS – STRENGTHS & WEAKNESSES Chia-Li Song, Teong-San Yeoh, Tay-Jin Yeoh, Intel Technology Sdn. Bhd. Penang, Malaysia [email protected] ABSTRACT TRIZ is essentially a toolbox with a multitude of tools to choose from. Although users prefer one tool versus another, it is important to note that each tool does have its strengths/weaknesses. We have conducted a series of Advanced TRIZ (Level 2) training classes to students across different Intel sites in Asia (Malaysia, China, Philippines). As a class exercise, we introduce a problem of two threaded joints which causes liquid leakage when screwed together. The challenge is to provide effective solutions using the various TRIZ tools which they have learnt from Basic (Level 1) TRIZ till Advanced TRIZ. One discovery was solutions generated by students were similar when they applied the same TRIZ tools irregardless of their educational background, culture, or years of working experience. This paper will discuss the details of the problem and solutions generated with different tools, along with pros and cons of the various TRIZ tools. INTRODUCTION TRIZ contains many tools for problem definition e.g. Functional Analysis, Flow Analysis, and Cause & Effect Chain (CEC); and innovative solution generation e.g. 40 Inventive Principles, 76 Standard Inventive Solutions. From Basic TRIZ to Advanced TRIZ (TRIZ Level 1 and 2), approximately 12 tools are studied. In basic class, we have Functional Analysis, CEC, Contradictions, Process Analysis; and in advanced class, we have ARIZ, Substance Field (Su-Field) Modeling Trends of Engineering System Evolution (TESE), 9 Windows. There can be some amount of confusion for people who are new to TRIZ in terms of what is right tool to use when solving a problem.
    [Show full text]
  • The Study of the Innovative Design Method TRIZ on 3G Products
    The Study of the Innovative Design Method TRIZ on 3G Products Liu Ge Liu Xin School of Economics & Management, Beijing University of Posts and Telecommunications, P.R.China, 100876 (E-mail: [email protected], [email protected]) Abstract A scientific design method is critical to the implementation of innovative product design. This article describes the definition of TRIZ, its basic principles and method, states basic definition, necessity, principles and procedure of 3G product development, performs analysis and study on the application of customer experience method from the TRIZ substance-field analysis theory in the process of 3G products design. It is expected that the TRIZ theory will be a very effective tool in the development of 3G products. Keywords 3G product development, TRIZ theory, substance-field analysis, customer experience 1 Introduction With the evolution of telecommunications technology from 2G to 3G, as for mobile communications carriers, the core competitiveness of an enterprise is innovative design capability of products. A long term study has been made on product innovation design, from the 1930s to 1980s, more than 300 types of innovation methods and more than 10 kinds of creation principles were emerged in the world. Through repeated practice and summarization, there are several common innovation methods as follows: the brain storm method, the SWZH method, the bionic association method, the listing category technique, the combination innovation method, the function design innovation method, the reverse design innovation method and so on. Although these innovative design methods have made a breakthrough in constraints on relevant factors that restrict innovation to a certain degree from their respective angles, they have not formed a set of comparatively complete theory system, which cannot implement the overall process of product innovation systematically.
    [Show full text]
  • Four Views on Triz
    FOUR VIEWS ON TRIZ Valeri Souchkov Published in The TRIZ Journal, March, 1999 First, this article should not be regarded as scientific. The only idea it discusses is how to view on TRIZ. I found this issue extremely important, because there is a lot of misunderstanding of what TRIZ is, in particular, by those who encounter with TRIZ for the first time. The questions I hear over and over again (even from those who took training in TRIZ) are ‘what is TRIZ? Is it a problem-solving method? Is it a science? Is it a methodology? Is it a toolbox? Is it something to help us with breaking our mental barriers and improve our creativity?’ And so on. So I decided to make a brief overview of what TRIZ really is, to shed some light on these questions. In my professional opinion, modern TRIZ comprises four distinct directions: 1. Theory of technology origins and evolution. 2. Techniques for overcoming mental inertia. 3. Techniques for analyzing, formulating and solving inventive problems. 4. Pointers, which organize mapping between technical functions and specific design solutions, technologies, and knowledge of natural science. In TRIZ, these directions did not evolve independently. However this could not be otherwise, as TRIZ originated from extensive studies of technical and patent information and has been developing since as a methodology for improving engineering creativity, and not as a science. TRIZ was born as a problem-solving tool based on a systemic view of the technological world. The primary idea behind TRIZ approach to solving problems is that information about a specific problem must be first generalized, a solution concept has to be generated, and then the concept should be specialized in terms of a feasible solution.
    [Show full text]
  • Systems Thinking Using SSM and TRIZ for Stakeholder Engagement in Infrastructure Megaprojects
    Article Systems Thinking Using SSM and TRIZ for Stakeholder Engagement in Infrastructure Megaprojects Johan Ninan 1,*, Ibukun Phillips 2, Shankar Sankaran 3 and Swaminathan Natarajan 4 1 Bartlett School of Construction and Project Management, University College London, London WC1E 6BT, UK 2 School of Industrial Engineering, Purdue University, West Lafayette 47907, IN, USA; [email protected] 3 School of Built Environment, University of Technology Sydney, Ultimo NSW 2007, Australia; [email protected] 4 Tata Consultancy Services (TCS), Chennai 600113, India; [email protected] * Correspondence: [email protected] Received: 29 June 2019; Accepted: 24 September 2019; Published: 26 September 2019 Abstract: Infrastructure megaprojects straddle multiple stakeholder boundaries who have an interest in the project and are affected by the project. Multiple papers in the literature stress the need for holistic approaches to stakeholder engagement, as existing approaches only address the concerns of the noisy stakeholders. This research proposes an innovative approach in which Soft Systems Methodology (SSM) is used for understanding stakeholder concerns, complemented by the use of Theory of Inventive Problem Solving (TRIZ) for identifying innovative solutions to address conflicting stakeholder goals. The researchers simulated the stakeholder engagement of the Coimbatore metro rail project, in India, through a workshop setting in a classroom to check the feasibility of this approach for stakeholder engagement. The 15 participants of the workshop were divided into four groups representing different stakeholders of the project. Data was collected through participant observations by the authors and oral feedback from the participants. The results show that while SSM helped to capture the concerns and goals of each stakeholder, TRIZ helped to identify and dissolve conflicts among these goals through innovative solutions.
    [Show full text]
  • Modelling the Conceptual Design Process with Hybridization of TRIZ Methodology and Systematic Design Approach
    Available online at www.sciencedirect.com ScienceDirect Procedia Engineering 131 ( 2015 ) 1064 – 1072 World Conference: TRIZ FUTURE, TF 2011-2014 Modelling the Conceptual Design Process with Hybridization of TRIZ Methodology and Systematic Design Approach a* a b Khairul Manami Kamarudin , Keith Ridgway , Mohd Roshdi Hassan ࢟Advanced Manufacturing Research Centre with Boeing, The University of Shef¿eld, Advanced Manufacturing Park, Wallis Way, Catcliffe, Rotherham, England S10 1GZ, UK ࢣDepartment of Mechanical and Manufacturing Engineering, Universiti Putra Malaysia, 43400 Serdang Selangor, Malaysia Abstract The Theory of Inventive Problem Solving (TRIZ) methodology is known to be very effective in complex problem solving. The method, however, needs enhancements in the safety considerations at the earlier stage of conceptual design. This paper presents a hybridized TRIZ methodology with the work of Pahl and Beitz, Systematic Design Approach (SDA) through an effective modelling. This modelling helps in critical problem solving in conceptual design of aircraft parts. The process is applied to a case study of selected aircraft components with a proposal of a systematic and creative methodology in the conceptual designing process. The implications of this study will help aircraft designers to optimize the aircraft parts design in an effective and creative way. © 20152015 The The Authors. Authors. Published Published by Elsevierby Elsevier Ltd. Ltd.This is an open access article under the CC BY-NC-ND license (Peer-reviewhttp://creativecommons.org/licenses/by-nc-nd/4.0/ under responsibility of the Scientific). Committee of TFC 2011, TFC 2012, TFC 2013 and TFC 2014 – GIC. Peer-review under responsibility of the Scientific Committee of TFC 2011, TFC 2012, TFC 2013 and TFC 2014 – GIC Keywords: Conceptual Design, TRIZ, SDA, TRIZ-SDA, Creative and Systematic.
    [Show full text]
  • Research on Application System of Integrating QFD and TRIZ
    Proceedings of the 7th International Conference on Innovation & Management ·499· Research on Application System of Integrating QFD and TRIZ Deng Chaoqun School of Management, Wuhan University of Technology, Wuhan, P.R.China, 430070 (E-mail: [email protected]) Abstract Customers are ultimate judges of products. In order to produce the world-ranking product, customer information must be embodied in the part of production and hierarchy of control. This paper firstly points out the deficiency of QFD and the superiority of TRIZ. And then it constructs the application system of integrating QFD and TRIZ based on the theoretical rationale of the integration. The main function modules of this system are also introduced in this paper. Finally it safely arrives at a conclusion as following: the integration of QFD and TRIZ can clarify the black-box process of converting the customer needs to design requirements. Key words QFD; TRIZ; Integration; Confliction matrix 1 Introduction QFD originated in Japan in 1960s.Two professors Mizuno and Yoji Akao compile and publish a book Quality Function Deployment, which introduces the main content of this method from the perspective of quality management. However, the deficiency of QFD in practical application arouses many scholars to add new analytical methods into QFD. Clausing and Pugh(1991)realized that the principle of innovation should be involved in the process of converting the customer needs to design requirements, and they put forward an Enhanced Quality Function Deployment (EQFD)[1]. Adiano and Roth (1994) supposed that traditional QFD can not resolve the dynamic feedback problems between customer needs and manufacturing process, thus they proposed Dynamic Quality Function Deployment (DQFD)[2].
    [Show full text]
  • Identifying an Innovative Su-Field Modeling Design Processes
    INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES Identifying an Innovative Su-Field Modeling Design Processes Chang-Tzuoh Wu synonym word, it means whether it is the methods of question Abstract—TRIZ is the Russian acronymic synonym of (Theory of to answer, Savransky (2000) think TRIZ method is that a Inventive Problem Solving). It is a systematic method for providing answer based on human knowledge invents the question valid suggestions to meet the requirements of inventive steps. Su-Field systems approach, Altshuller (the father of TRIZ)[3] have analytic method, deduced from TRIZ method, is one of the inventive explained the deduction course innovated and invented in problem solving tools that can be used to analyze and improve the efficacy of the technological system. By possessing a symbolic system detail. Hsiao (1999) point out that the engineers still adopt and transformation rules, the Su-Field analysis model can assist Brainstorming method to create new idea although lack of designers to diagnose and solve most design problems. This study systematic procedure, limitation of engineers’ knowledge base, proposes an innovative design and problem-solving process, based on engineer’s psychological obstacle and so on are the Su-Field modeling method integrated with extension of shortcomings of Brainstorming method. In the design process matter-element. of innovation, limitation of designer’s knowledge field, This research tries to integrating “extension of matter-element“ with the Su-Field modeling procedure to improve the efficiency and extent habitual thinking course, is the obstacle appeared in innovation of concept evolutions. We make use of extensibility of matter-element procedure, especially using the open thinking methods.
    [Show full text]
  • TRIZ-Based Patent Design Around for Enterprises: a Pencil Extender Device Innovative Redesign
    International Conference on Computer Science and Electronic Technology (CSET 2016) TRIZ-based Patent Design Around for Enterprises: A Pencil Extender Device Innovative Redesign Hai-yan Zhang1, Si-yuan Cheng1,2*, Xue-rong Yang1, Jing-ping Zhou1,2, Rui Wang1 1School of Electromechanical Engineering, Guangdong University of Technology, Guangzhou, CHINA 2Key Laboratory of Innovation Method and Decision Management System of Guangdong Province, Guangzhou, CHINA Abstract—Patent design around is crucial to the enterprise's experience. As the patented knowledge has the product design and technology innovation. The characteristics of advance and timeliness, it is the most patent-around innovative design method based on TRIZ is effective carrier of the technical information and has great proposed, using function analysis to analyze the existed realistic significance for enterprise’s innovation patent, providing the process and method for the [1].However, the enterprise often encounter patent barriers enterprise’s in-depth analysis of patent documents by when they take advantage of patents, so they should have standing in the patent-around perspective. Combining the the awareness of patent strategy. around strategies and TRIZ problem-solving tools, it finds Patent-around design is one of the most important out the relationship between them, thus provides guidance strategies of patent strategy. Initially, it is the America's for enterprises’ technical personnel and designers to utilize legitimate competitive behavior and only used as a passive suitable TRIZ problem-solving tools to solve the problem protective measure when their products are accused that arose after using the patent around strategies, to design infringement [2, 3]. But now patent design around is a kind a new product which is different to the existed patent.
    [Show full text]
  • Introduction to TRIZ by Lev Shulyak As Can Be Learned from His Biography, Genrich Some Basic TRIZ Tools
    Introduction to TRIZ by Lev Shulyak As can be learned from his biography, Genrich some basic TRIZ tools. It is here for two reasons: Altshuller analyzed thousands of worldwide patents First, it is important for new readers to first learn from the leading engineering fields. He then ana- TRIZ terminology and its meaning so that they may lyzed solutions that were, in his judgment, most ef- effectively utilize the 40 Principles to solve problems. fective. This work provided the first understanding Second, it is important for the reader to be familiar of the trends, or patterns, of evolution for technical with the philosophy underlying TRIZ tools and tech- systems. It also laid the foundation for the develop- niques in order to be able to fully apply them. ment of an analytical approach to solving inventive problems, later becoming the foundation for TRIZ, THE FOUNDATION OF TRIZ his theory of inventing problem solving, with its axiom: 1. Technical Systems: Everything that performs a function is a techni- The evolution of all technical systems is cal system. Examples of technical systems include cars, governed by objective laws. pens, books and knifes. Any technical system can con- sist of one or more subsystems. A car is composed of These laws reveal that, during the evolution of a the subsystems engine, steering mechanism, brakes technical system, improvement of any part of that and so on. Each of these is also a technical system system having already reached its pinnacle of func- unto itself (with its own series of subsystems) — and tional performance will lead to conflict with another each performs its own function.
    [Show full text]
  • TRIZ at Intel
    Agenda TRIZ Development at Intel Corporation Innovation at Intel TRIZ history at Intel TRIZ Role and Proliferation Japan TRIZ Symposium 2008 TRIZ as an Intel methodology Amir Roggel Principal Engineer Intel Israel (C) The Author & Japan TRIZ Society Slide 1 Japan TRIZ Symposium 2008 September 10, 2008 (C) The Author & Japan TRIZ Society Slide 2 Japan TRIZ Symposium 2008 September 10, 2008 The 20th Century Radical Innovation ~1900 ~2000 y Goes beyond competitive positioning y May lead to major paradigm shift y Usually an individual achievement; champion driven y Risky with high failure rate; rare in mature companies Courtesy Gene Meieran, Senior Intel Fellow Courtesy Gene Meieran, Senior Intel Fellow (C) The Author & Japan TRIZ Society Slide 3 Japan TRIZ Symposium 2008 September 10, 2008 (C) The Author & Japan TRIZ Society Slide 4 Japan TRIZ Symposium 2008 September 10, 2008 Radical Innovation Incremental Innovation 1920 y Address issues in non-traditional ways y Necessary to retain competitive position but does not 1/1,000,000 the cost 1/10,000,000 the size threaten status quo 1,000,000 X the reliability y Responsive to problems, opportunities or trends y Team driven; high expectation of success 1960 y Lots of recognition and reward for success 2000 Courtesy Gene Meieran, Senior Intel Fellow Courtesy Gene Meieran, Senior Intel Fellow (C) The Author & Japan TRIZ Society Slide 5 Japan TRIZ Symposium 2008 September 10, 2008 (C) The Author & Japan TRIZ Society Slide 6 Japan TRIZ Symposium 2008 September 10, 2008 The Future of Moore’s Law Incremental Innovation: Moore’s Law Communications No Relaxing! Design Info tech Architecture Networks Systems Automation Software Electronics Optics Mech.
    [Show full text]