Force Field Development Phase II: Relaxation of Physics-Based Criteria… Or Inclusion of More Rigorous Physics Into the Representation of Molecular Energetics

Total Page:16

File Type:pdf, Size:1020Kb

Force Field Development Phase II: Relaxation of Physics-Based Criteria… Or Inclusion of More Rigorous Physics Into the Representation of Molecular Energetics Journal of Computer-Aided Molecular Design https://doi.org/10.1007/s10822-018-0134-x PERSPECTIVE Force field development phase II: Relaxation of physics-based criteria… or inclusion of more rigorous physics into the representation of molecular energetics A. T. Hagler1,2 Received: 5 March 2018 / Accepted: 18 July 2018 © Springer Nature Switzerland AG 2018 Abstract In the previous paper, we reviewed the origins of energy based calculations, and the early science of FF development. The initial efforts spanning the period from roughly the early 1970s to the mid to late 1990s saw the development of methodolo- gies and philosophies of the derivation of FFs. The use of Cartesian coordinates, derivation of the H-bond potential, different functional forms including diagonal quadratic expressions, coupled valence FFs, functional form of combination rules, and out of plane angles, were all investigated in this period. The use of conformational energetics, vibrational frequencies, crystal structure and energetics, liquid properties, and ab initio data were all described to one degree or another in deriving and vali- dating both the FF functional forms and force constants. Here we discuss the advances made since in improving the rigor and robustness of these initial FFs. The inability of the simple quadratic diagonal FF to accurately describe biomolecular energetics over a large domain of molecular structure, and intermolecular configurations, was pointed out in numerous studies. Two main approaches have been taken to overcome this problem. The first involves the introduction of error functions, either exploit- ing torsion terms or introducing explicit 2-D error correction grids. The results and remaining challenges of these functional forms is examined. The second approach has been to improve the representation of the physics of intra and intermolecular interactions. The latter involves including descriptions of polarizability, charge flux aka geometry dependent charges, more accurate representations of spatial electron density such as multipole moments, anisotropic nonbond potentials, nonbond and polarization flux, among others. These effects, though not as extensively studied, likely hold the key to achieving the rigor- ous reproduction of structural and energetic properties long sought in biomolecular simulations, and are surveyed here. In addition, the quality of training and validation observables are evaluated. The necessity of including an ample set of energetic and crystal observables is emphasized, and the inadequacy of free energy as a criterion for FF reliability discussed. Finally, in light of the results of applications of the two approaches to FF development, we propose a “recipe” of terms describing the physics of inter and intramolecular interactions whose inclusion in FFs would significantly improve our understanding of the energetics and dynamics of biomolecular systems resulting from molecular dynamics and other energy based simulations. Keywords Force fields · Force field derivation · Potential functions · Van der Waals · Hydrogen bond · Drug discovery · Molecular dynamics · Molecular mechanics · Protein simulation · Molecular simulation · Nonbond interactions · Combination rules · Polarizability · Charge flux · Nonbond flux · Polarizability flux · Free energy · Coupling terms · Cross terms · AMBER · CHARMM · OPLS · GAFF · AMOEBA · SDFF · CFF · VFF · Consistent force field · Electrostatics · Multipole moments · Anisotropic nonbond potentials · Quantum derivative fitting · QDF Abbreviations AG Arithmetic–geometric Ala Alanine AMBER Assisted model building with energy * A. T. Hagler refinement [email protected] AMOEBA Atomic multipole optimized energetics 1 Department of Chemistry, University of Massachusetts, for biomolecular applications Amherst, MA 01003, USA AUE Absoluter unsigned error 2 Present Address: Valis Pharma, San Diego, CA, USA BCC Bond charge correction Vol.:(0123456789)1 3 Journal of Computer-Aided Molecular Design BNS Ben Naim–Stillinger OPLS-AA OPLS all atom C22 CHARMM22 OPLS-AA OPLS-AA/L OPLS all atom FF (L for CASP Critical assessment of protein structure LMP2) prediction PCILO Perturbative configuration interaction CFF Consistent force field using localized orbitals CHARMM Chemistry at HARvard Macromolecu- PDB Protein data base lar Mechanics PEFC Potential Energy Function Consortium CHELPG Charges from electrostatic potentials (Biosym) using a grid-based method PMF Potential of mean force CHEQ Charge equilibration method POL3 Polarizable water model (3) CMAP Grid based energy correction map PPII Polyproline II conformation CNDO Complete neglect of differential QCPE Quantum chemistry program exchange overlap QDF Quantum derivative fitting COMPASS Condensed-phase optimized molecu- QDP Charge dependent polarizability lar potentials for atomistic simulation QM Quantum mechanics studies RESP Restrained electrostatic potential CVFF Consistent valence force field RMS Root mean square DFT Density functional theory RMSD Root mean square deviation DMA Distributed multipole analysis RMSE Root mean square error DZVP Valence double-zeta plus SAMPL Statistical assessment of the modeling polarization of proteins and ligands (competition) ECEPP Empirical conformational energy pro- SAXS Small angle X-ray scattering gram for peptides SCF-LCAO-MO Self-consistent field-linear combina- EHT Extended Hückel theory tion of atomic–molecular orbital ESP Electrostatic potential SDFF Spectroscopically determined force EVB Empirical valence bond fields (for macromolecules) FEP Free energy perturbation SIBFA Sum of interactions between fragments FF Force field ab initio (computed) FQ Fluctuating charges SPC Simple point charge (water model) FRET Forster resonance energy transfer ST2 Four point water model replacing Ben- GAFF General AMBER force field Naim Stillinger (BNS) model Gly Glycine STO Slater-type atomic orbitals GROMOS GROningen MOlecular Simulation SWM4-NDP Simple water model with negative hCatL human Cathepsin L Drude polarization HF-SCF Hartree–Fock self-consistent-field TIP3P Transferable intermolecular potential Hyp Hydroxyproline three point IDP Intrinsically disordered protein TTBM Tri-tert-butylmethane LCAO Linear combination of atomic orbitals TZVP Triple-zeta plus valence polarization LJ Lennard-Jones (basis set) LP Oxygen lone pair UB Urey–Bradley MC Monte Carlo UBFF Urey Bradley force field MCMS FF Momany, Carruthers, McGuire, and VDW Van der Waals Scheraga force field VFF Valence force field MCY Matsuoka–Clementi–Yoshimine WH Waldman–Hagler MD Molecular dynamics MDDR MDL drug data report 1 Introduction MDL Molecular Design Limited MEP Molecular electrostatic potentials 1.1 Rigorous optimization of the 12-6-1 quadratic MM Molecular mechanics diagonal FF, and characterization of its capabili- MMFF Merck molecular force field ties and deficiencies NMA N-methylacetamide 1.2 Simple 12-6-1 quadratic diagonal FFs (as used in OPLS Optimized potential for liquid standard biomolecular FFs) are not adequate to simulations achieve quantitative accuracy 1 3 Journal of Computer-Aided Molecular Design 1.3 Abandoning representations based on Physics for 3.7 Thermodynamic data is essential in assessing the hybrid physics-based/empirical FFs. Polarizability validity of FFs and Empirical correction factors 3.7.1 Summary: physics in current 12‑6‑1 fixed charge FFs is incapable of reliably 2 AMBER—empirical adjustments: on tweaking of accounting for peptide and protein proper‑ torsional parameters to compensate for deficiencies ties in representation of physics 3.8 Drude polarizable FF 2.1 ff14ipq/ff15ipq 3.8.1 A major concern—omission of flexible 2.1.1 J‑coupling and secondary structure pro‑ geometry and charge flux pensities—convergence issues 3.8.2 Hydrocarbons 2.1.2 Protein stability—trajectories longer than 3.8.3 Observation of consequences of omission 10 μs required of charge flux 3.8.4 Internal parameters 2.2 AMBER-FB15/TIP3P-FB 3.8.5 Benzene 3.8.6 Extension of Drude FF to additional func‑ 2.2.1 Stability of seven proteins over short trajec‑ tional groups and proteins tories 3.8.7 Danger of deriving a FF from one or two 2.2.2 Temperature dependence of secondary compounds structure in two peptides 3.8.8 A reparametrization of the amide FF 2.2.3 CMAP in AMBER 3.9 Drude-2013 protein force field 2.3 Energetics, crystal structures and sublimation ener- gies: a forgotten and missed powerful resource 3.9.1 A third reparametrization of the amide FF 2.4 AMBER—introducing polarizability 3.9.2 Polarizability results in degradation of Fit 2.5 On the use of different data sets: a problem that permeates the FF development field and sabotages 3.10 Summary of Drude FF development for organic rigorous comparisons of the accuracy of FFs compounds and proteins. Polarizability does not lead to a general improvement of FF perfor- 3 CHARMM—empirical adjustments: introduction of mance—often degrades fit grid-based correction factors 3.10.1 Inadequate training sets can lead to future 3.1 CHARMM22/CMAP failures and need for reparametrization 3.2 Rigorously comparing FFs 3.11 CHARMM polarizable charge equilibration FF 3.2.1 Lysozyme 3.3 C22/CMAP—extension to other families 3.11.1 Significant deviations remain, indicating 3.4 On the immense value and validityof experimen- flaws in CHEQ FF tal crystal structure and thermodynamics for FF 3.11.2 CHEQ and other FFs (other than OPLS) assessment have difficulty accounting for energetics 3.5 C36: further reparametrization of sidechain torsion of tetra‑ala conformers potentials and the CMAP correction
Recommended publications
  • Measurement of the Speed of Gravity
    Measurement of the Speed of Gravity Yin Zhu Agriculture Department of Hubei Province, Wuhan, China Abstract From the Liénard-Wiechert potential in both the gravitational field and the electromagnetic field, it is shown that the speed of propagation of the gravitational field (waves) can be tested by comparing the measured speed of gravitational force with the measured speed of Coulomb force. PACS: 04.20.Cv; 04.30.Nk; 04.80.Cc Fomalont and Kopeikin [1] in 2002 claimed that to 20% accuracy they confirmed that the speed of gravity is equal to the speed of light in vacuum. Their work was immediately contradicted by Will [2] and other several physicists. [3-7] Fomalont and Kopeikin [1] accepted that their measurement is not sufficiently accurate to detect terms of order , which can experimentally distinguish Kopeikin interpretation from Will interpretation. Fomalont et al [8] reported their measurements in 2009 and claimed that these measurements are more accurate than the 2002 VLBA experiment [1], but did not point out whether the terms of order have been detected. Within the post-Newtonian framework, several metric theories have studied the radiation and propagation of gravitational waves. [9] For example, in the Rosen bi-metric theory, [10] the difference between the speed of gravity and the speed of light could be tested by comparing the arrival times of a gravitational wave and an electromagnetic wave from the same event: a supernova. Hulse and Taylor [11] showed the indirect evidence for gravitational radiation. However, the gravitational waves themselves have not yet been detected directly. [12] In electrodynamics the speed of electromagnetic waves appears in Maxwell equations as c = √휇0휀0, no such constant appears in any theory of gravity.
    [Show full text]
  • Classical Mechanics
    Classical Mechanics Hyoungsoon Choi Spring, 2014 Contents 1 Introduction4 1.1 Kinematics and Kinetics . .5 1.2 Kinematics: Watching Wallace and Gromit ............6 1.3 Inertia and Inertial Frame . .8 2 Newton's Laws of Motion 10 2.1 The First Law: The Law of Inertia . 10 2.2 The Second Law: The Equation of Motion . 11 2.3 The Third Law: The Law of Action and Reaction . 12 3 Laws of Conservation 14 3.1 Conservation of Momentum . 14 3.2 Conservation of Angular Momentum . 15 3.3 Conservation of Energy . 17 3.3.1 Kinetic energy . 17 3.3.2 Potential energy . 18 3.3.3 Mechanical energy conservation . 19 4 Solving Equation of Motions 20 4.1 Force-Free Motion . 21 4.2 Constant Force Motion . 22 4.2.1 Constant force motion in one dimension . 22 4.2.2 Constant force motion in two dimensions . 23 4.3 Varying Force Motion . 25 4.3.1 Drag force . 25 4.3.2 Harmonic oscillator . 29 5 Lagrangian Mechanics 30 5.1 Configuration Space . 30 5.2 Lagrangian Equations of Motion . 32 5.3 Generalized Coordinates . 34 5.4 Lagrangian Mechanics . 36 5.5 D'Alembert's Principle . 37 5.6 Conjugate Variables . 39 1 CONTENTS 2 6 Hamiltonian Mechanics 40 6.1 Legendre Transformation: From Lagrangian to Hamiltonian . 40 6.2 Hamilton's Equations . 41 6.3 Configuration Space and Phase Space . 43 6.4 Hamiltonian and Energy . 45 7 Central Force Motion 47 7.1 Conservation Laws in Central Force Field . 47 7.2 The Path Equation .
    [Show full text]
  • Development of an Advanced Force Field for Water Using Variational Energy Decomposition Analysis Arxiv:1905.07816V3 [Physics.Ch
    Development of an Advanced Force Field for Water using Variational Energy Decomposition Analysis Akshaya K. Das,y Lars Urban,y Itai Leven,y Matthias Loipersberger,y Abdulrahman Aldossary,y Martin Head-Gordon,y and Teresa Head-Gordon∗,z y Pitzer Center for Theoretical Chemistry, Department of Chemistry, University of California, Berkeley CA 94720 z Pitzer Center for Theoretical Chemistry, Departments of Chemistry, Bioengineering, Chemical and Biomolecular Engineering, University of California, Berkeley CA 94720 E-mail: [email protected] Abstract Given the piecewise approach to modeling intermolecular interactions for force fields, they can be difficult to parameterize since they are fit to data like total en- ergies that only indirectly connect to their separable functional forms. Furthermore, by neglecting certain types of molecular interactions such as charge penetration and charge transfer, most classical force fields must rely on, but do not always demon- arXiv:1905.07816v3 [physics.chem-ph] 27 Jul 2019 strate, how cancellation of errors occurs among the remaining molecular interactions accounted for such as exchange repulsion, electrostatics, and polarization. In this work we present the first generation of the (many-body) MB-UCB force field that explicitly accounts for the decomposed molecular interactions commensurate with a variational energy decomposition analysis, including charge transfer, with force field design choices 1 that reduce the computational expense of the MB-UCB potential while remaining accu- rate. We optimize parameters using only single water molecule and water cluster data up through pentamers, with no fitting to condensed phase data, and we demonstrate that high accuracy is maintained when the force field is subsequently validated against conformational energies of larger water cluster data sets, radial distribution functions of the liquid phase, and the temperature dependence of thermodynamic and transport water properties.
    [Show full text]
  • FORCE FIELDS for PROTEIN SIMULATIONS by JAY W. PONDER
    FORCE FIELDS FOR PROTEIN SIMULATIONS By JAY W. PONDER* AND DAVIDA. CASEt *Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, 51. Louis, Missouri 63110, and tDepartment of Molecular Biology, The Scripps Research Institute, La Jolla, California 92037 I. Introduction. ...... .... ... .. ... .... .. .. ........ .. .... .... ........ ........ ..... .... 27 II. Protein Force Fields, 1980 to the Present.............................................. 30 A. The Am.ber Force Fields.............................................................. 30 B. The CHARMM Force Fields ..., ......... 35 C. The OPLS Force Fields............................................................... 38 D. Other Protein Force Fields ....... 39 E. Comparisons Am.ong Protein Force Fields ,... 41 III. Beyond Fixed Atomic Point-Charge Electrostatics.................................... 45 A. Limitations of Fixed Atomic Point-Charges ........ 46 B. Flexible Models for Static Charge Distributions.................................. 48 C. Including Environmental Effects via Polarization................................ 50 D. Consistent Treatment of Electrostatics............................................. 52 E. Current Status of Polarizable Force Fields........................................ 57 IV. Modeling the Solvent Environment .... 62 A. Explicit Water Models ....... 62 B. Continuum Solvent Models.......................................................... 64 C. Molecular Dynamics Simulations with the Generalized Born Model........
    [Show full text]
  • Force Fields for MD Simulations
    Force Fields for MD simulations • Topology/parameter files • Where do the numbers an MD code uses come from? • How to make topology files for ligands, cofactors, special amino acids, … • How to obtain/develop missing parameters. • QM and QM/MM force fields/potential energy descriptions used for molecular simulations. The Potential Energy Function Ubond = oscillations about the equilibrium bond length Uangle = oscillations of 3 atoms about an equilibrium bond angle Udihedral = torsional rotation of 4 atoms about a central bond Unonbond = non-bonded energy terms (electrostatics and Lenard-Jones) Energy Terms Described in the CHARMm Force Field Bond Angle Dihedral Improper Classical Molecular Dynamics r(t +!t) = r(t) + v(t)!t v(t +!t) = v(t) + a(t)!t a(t) = F(t)/ m d F = ! U (r) dr Classical Molecular Dynamics 12 6 &, R ) , R ) # U (r) = . $* min,ij ' - 2* min,ij ' ! 1 qiq j ij * ' * ' U (r) = $ rij rij ! %+ ( + ( " 4!"0 rij Coulomb interaction van der Waals interaction Classical Molecular Dynamics Classical Molecular Dynamics Bond definitions, atom types, atom names, parameters, …. What is a Force Field? In molecular dynamics a molecule is described as a series of charged points (atoms) linked by springs (bonds). To describe the time evolution of bond lengths, bond angles and torsions, also the non-bonding van der Waals and elecrostatic interactions between atoms, one uses a force field. The force field is a collection of equations and associated constants designed to reproduce molecular geometry and selected properties of tested structures. Energy Functions Ubond = oscillations about the equilibrium bond length Uangle = oscillations of 3 atoms about an equilibrium bond angle Udihedral = torsional rotation of 4 atoms about a central bond Unonbond = non-bonded energy terms (electrostatics and Lenard-Jones) Parameter optimization of the CHARMM Force Field Based on the protocol established by Alexander D.
    [Show full text]
  • FORCE FIELDS and CRYSTAL STRUCTURE PREDICTION Contents
    FORCE FIELDS AND CRYSTAL STRUCTURE PREDICTION Bouke P. van Eijck ([email protected]) Utrecht University (Retired) Department of Crystal and Structural Chemistry Padualaan 8, 3584 CH Utrecht, The Netherlands Originally written in 2003 Update blind tests 2017 Contents 1 Introduction 2 2 Lattice Energy 2 2.1 Polarcrystals .............................. 4 2.2 ConvergenceAcceleration . 5 2.3 EnergyMinimization .......................... 6 3 Temperature effects 8 3.1 LatticeVibrations............................ 8 4 Prediction of Crystal Structures 9 4.1 Stage1:generationofpossiblestructures . .... 9 4.2 Stage2:selectionoftherightstructure(s) . ..... 11 4.3 Blindtests................................ 14 4.4 Beyondempiricalforcefields. 15 4.5 Conclusions............................... 17 4.6 Update2017............................... 17 1 1 Introduction Everybody who looks at a crystal structure marvels how Nature finds a way to pack complex molecules into space-filling patterns. The question arises: can we understand such packings without doing experiments? This is a great challenge to theoretical chemistry. Most work in this direction uses the concept of a force field. This is just the po- tential energy of a collection of atoms as a function of their coordinates. In principle, this energy can be calculated by quantumchemical methods for a free molecule; even for an entire crystal computations are beginning to be feasible. But for nearly all work a parameterized functional form for the energy is necessary. An ab initio force field is derived from the abovementioned calculations on small model systems, which can hopefully be generalized to other related substances. This is a relatively new devel- opment, and most force fields are empirical: they have been developed to reproduce observed properties as well as possible. There exists a number of more or less time- honored force fields: MM3, CHARMM, AMBER, GROMOS, OPLS, DREIDING..
    [Show full text]
  • Dynamics of Ions in a Water Drop Using the AMOEBA Polarizable Force Field Florian Thaunay, Gilles Ohanessian, Carine Clavaguera
    Dynamics of ions in a water drop using the AMOEBA polarizable force field Florian Thaunay, Gilles Ohanessian, Carine Clavaguera To cite this version: Florian Thaunay, Gilles Ohanessian, Carine Clavaguera. Dynamics of ions in a water drop using the AMOEBA polarizable force field. Chemical Physics Letters, Elsevier, 2017, 671, pp.131-137. 10.1016/j.cplett.2017.01.024. hal-01999944 HAL Id: hal-01999944 https://hal.archives-ouvertes.fr/hal-01999944 Submitted on 5 Feb 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Chemical Physics Letters 671 (2017) 131–137 Contents lists available at ScienceDirect Chemical Physics Letters journal homepage: www.elsevier.com/locate/cplett Research paper Dynamics of ions in a water drop using the AMOEBA polarizable force field ⇑ Florian Thaunay, Gilles Ohanessian, Carine Clavaguéra LCM, CNRS, Ecole Polytechnique, Université Paris Saclay, 91128 Palaiseau, France article info abstract Article history: Various ions carrying a charge from À2 to +3 were confined in a drop of 100 water molecules as a way to Received 13 October 2016 model coordination properties inside the cluster and at the interface. The behavior of the ions has been In final form 10 January 2017 followed by molecular dynamics with the AMOEBA polarizable force field.
    [Show full text]
  • Electronic Supplementary Information CHARMM All Atom Force Field
    Electronic Supplementary Information CHARMM all atom force field employs a Lennard-Jones (6-12) function to describe Van der Waals interactions. This potential is a combination of attractive and repulsive contributions. The repulsive term describes internuclear electrostatic repulsion and short-range repulsive forces (or exchange forces) between electrons with the same spin. The attractive term is due to dispersion forces, which in turn are due to instantaneous dipoles arising during the fluctuations in the electron clouds. The form of the potential energy function of two interacting atoms is: 12 6 éæs ö æs ö ù VvdW = 4e êç ÷ - ç ÷ ú ëêè r ø è r ø ûú Where r is the distance between the two atoms, s is the collision diameter (the distance at the zero energy) and e is the Lennard-Jones well depth. For a q atom and a c atom, these empirical parameters are expressed from the Lorentz-Berthelot mixing rules: 1 s = (s +s ) qc 2 qq cc e qc = e qqe cc Van der Waals interactions are also important to well describe the interaction between QM and MM regions in hybrid QM/MM enzyme simulation. The Van der Waals parameters relative to the QM atoms of the FAAH-oleamide complex, applied in all the simulations performed, are reported in the table below. These are consistent to those reported in the combined parameter file (CHARMM22 for protein, CHARMM27 for lipid) par_all27_prot_lipid.prm. For further details see www.charmm.org PRIVILEGED DOCUMENT FOR REVIEW PURPOSES ONLY ATOM NAME ATOM TYPE e (kcal mole-1) s (Å) Notes O1 O -0.120000 1.700000 Oleamide
    [Show full text]
  • Computation of Free Energy
    Helvetica Chimica Acta ± Vol. 85 (2002) 3113 Computation of Free Energy by Wilfred F. van Gunsteren*a), Xavier Daurab), and Alan E. Markc) a) Laboratory of Physical Chemistry, Swiss Federal Institute of Technology Zurich, ETH-Hˆnggerberg, CH-8093 Zurich (e-mail: [email protected]) b) Institucio¬ Catalana de Recerca i Estudis AvanÁats (ICREA) and Institut of Biotechnologia i de Biomedicina, Universitat Auto¡noma de Barcelona, E-08193 Bellaterra c) Department of Biophysical Chemistry, University of Groningen, NL-9747 AG Groningen Dedicated to Professor Dieter Seebach on the occasion of his 65th birthday Many quantities that are standardly used to characterize a chemical system are related to free-energy differences between particular states of the system. By statistical mechanics, free-energy differences may be expressed in terms of averages over ensembles of atomic configurations for the molecular system of interest. Here, we review the most useful formulae to calculate free-energy differences from ensembles generated by molecular simulation, illustrate a number of recent developments, and highlight practical aspects of such calculations with examples selected from the literature. 1. Introduction. ± The probability of finding a molecular system in one state or the other is determined by the difference in free energy between those two states. As a consequence, free-energy differences may be directly related to a wide range of fundamental chemical quantities such as binding constants, solubilities, partition coefficients, and adsorption coefficients. By means of statistical mechanics, free-energy differences may also be expressed in terms of averages over ensembles of atomic configurations for the molecular system of interest.
    [Show full text]
  • Behavior of Gas Reveals the Existence of Antigravity Gaseous Nature More Precisely Described by Gravity-Antigravity Forces
    Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 29 January 2020 Article Behavior of gas reveals the existence of antigravity Gaseous nature more precisely described by gravity-antigravity forces Chithra K. G. Piyadasa* Electrical and Computer engineering, University of Manitoba, 75, Chancellors Circle, Winnipeg, MB, R3T 5V6, Canada. * Correspondence: [email protected]; Tel.: +1 204 583 1156 Abstract: The Author’s research series has revealed the existence in nature, of gravitational repulsion force, i,e., antigravity, which is proportional to the content of thermal energy of the particle. Such existence is in addition to the gravitational attraction force, accepted for several hundred years as proportional to mass. Notwithstanding such long acceptance, gravitational attraction acting on matter has totally been neglected in thermodynamic calculations in derivation of the ideal gas law. Both the antigravity force and the gravitational force have to be accommodated in an authentic elucidation of ideal gas behavior. Based on microscopic behavior of air molecules under varying temperature, this paper presents: firstly, the derivation of the mathematical model of gravitational repulsive force in matter; secondly, mathematical remodeling of the gravitational attractive force in matter. Keywords: gravitational attraction, gravitational repulsion, antigravity, intermolecular forces, specific heat, thermal energy, adiabatic and isothermal expansion. 1. Introduction As any new scientific revelation has a bearing on the accepted existing knowledge, some analysis of the ideal gas law becomes expedient. The introduction discusses the most fundamental concepts relating to the ideal gas law and they are recalled in this introduction with fine detail to show how they contradict the observations made in this discussion.
    [Show full text]
  • Force-Field Analysis: Incorporating Critical Thinking in Goal Setting
    DOCUMENT RESUME ED 384 712 CE 069 071 AUTHOR Hustedde, Ron; Score, Michael TITLE Force-Field Analysis: Incorporating Critical Thinking in Goal Setting. INSTITUTION Community Development Society. PUB DATE 95 NOTE 7p. AVAILABLE FROMCDS, 1123 N. Water St., Milwaukee, WI 53202. PUB TYPE Collected Works Serials (022) JOURNAL CIT CD Practice; n4 1995 EDRS PRICE MFOI/PC01 Plus Postage. DESCRIPTORS Adult Education; Community Action; Community Involvement; *Force Field Analysis; *Goal Orientation; *Group Discussion; *Group Dynamics; Problem Solving ABSTRACT Force field analysis encourages mambers to examine the probability of reaching agreed-upon goals. It can help groups avoid working toward goals that are unlikely to be reached. In every situation are three forces: forces that encourage maintenance of the status quo or change; driving or helping forces that push toward change; and restraining forces that resist change. In conducting a force field analysis, the discussion leader asks two questions: What forces will help achieve the goal or objective? and What forces will hinder? All ideas are listed. The facilitator asks the group to select two or three important restraining and driving forces that they might be able to alter. Participants are asked to suggest specifically what might be done to change them. Responses are written down. After examining the driving and restraining forces, the group considers the balance between driving and restraining forces. If the group believes forces can be affected enough to create momentum toward the goal,it can realistically pursue the goal. If not, the group may decide to alter the goal or to drop it and pursue others.
    [Show full text]
  • 1 Multiscale Modeling of Electrochemical Systems Jonathan E
    j1 1 Multiscale Modeling of Electrochemical Systems Jonathan E. Mueller, Donato Fantauzzi, and Timo Jacob 1.1 Introduction As one of the classic branches of physical chemistry, electrochemistry enjoys a long history. Its relevance and vitality remain unabated as it not only finds numerous applications in traditional industries, but also provides the scientific impetus for a plethora of emerging technologies. Nevertheless, in spite of its venerability and the ubiquity of its applications, many of the fundamental processes, underlying some of the most basic electrochemical phenomena, are only now being brought to light. Electrochemistry is concerned with the interconversion of electrical and chemical energy. This interconversion is facilitated by transferring an electron between two species involved in a chemical reaction, such that the chemical energy associated with the chemical reaction is converted into the electrical energy associated with transferring the electron from one species to the other. Taking advantage of the electrical energy associated with this electron transfer for experimental or techno- logical purposes requires separating the complementary oxidation and reduction reactions of which every electron transfer is composed. Thus, an electrochemical system includes an electron conducting phase (a metal or semiconductor), an ion conducting phase (typically an electrolyte, with a selectively permeable barrier to provide the requisite chemical separation), and the interfaces between these phases at which the oxidation and reduction reactions take place. Thus, the fundamental properties of an electrochemical system are the electric potentials across each phase and interface, the charge transport rates across the conducting phases, and the chemical concentrations and reaction rates at the oxidation and reduction interfaces.
    [Show full text]