Juan Carlos Moreno-Piraján Liliana Giraldo-Gutierrez Fernando Gómez
Total Page:16
File Type:pdf, Size:1020Kb
Engineering Materials Juan Carlos Moreno-Piraján Liliana Giraldo-Gutierrez Fernando Gómez-Granados Editors Porous Materials Theory and Its Application for Environmental Remediation Engineering Materials This series provides topical information on innovative, structural and functional materials and composites with applications in optical, electrical, mechanical, civil, aeronautical, medical, bio- and nano-engineering. The individual volumes are complete, comprehensive monographs covering the structure, properties, manufac- turing process and applications of these materials. This multidisciplinary series is devoted to professionals, students and all those interested in the latest developments in the Materials Science field, that look for a carefully selected collection of high quality review articles on their respective field of expertise. More information about this series at http://www.springer.com/series/4288 Juan Carlos Moreno-Piraján • Liliana Giraldo-Gutierrez • Fernando Gómez-Granados Editors Porous Materials Theory and Its Application for Environmental Remediation 123 Editors Juan Carlos Moreno-Piraján Liliana Giraldo-Gutierrez Universidad de Los Andes Universidad Nacional de Colombia Bogotá, Colombia Bogotá, Colombia Fernando Gómez-Granados Universidad Nacional de Colombia Bogotá, Colombia ISSN 1612-1317 ISSN 1868-1212 (electronic) Engineering Materials ISBN 978-3-030-65990-5 ISBN 978-3-030-65991-2 (eBook) https://doi.org/10.1007/978-3-030-65991-2 © Springer Nature Switzerland AG 2021 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, expressed or implied, with respect to the material contained herein or for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations. This Springer imprint is published by the registered company Springer Nature Switzerland AG The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland Preface When we came up with the idea of writing this book, the authors told Prof. Rodríguez-Reinoso that we were working on this idea, which he loved, feeling honored. Later during the development of this work, he unfortunately passed away. This book has been written in honor of the memory of Doctor Francisco Rodríguez-Reinoso (R.I.P.), Chemist, Doctor of Chemistry, Professor and Emeritus Professor at the University of Alicante. Professor Reinoso was and will continue to be a world leader in the area of adsorption and porous materials. Anyone who has worked in this area has surely come across his countless publications in high-impact books and journals, where he published the results of his research. He was Editor of CARBON, the most important journal in the area of carbonaceous materials. He received several awards that recognized his work as a researcher, including the American Carbon Society (2010) and the Japan Carbon Society Prize (Japan Carbon Society, 2008). His generous personality led him to collaborate with scientists around the world, transmitting his knowledge. Today, many research groups owe the basis of their work to him, such as in Latin America. v vi Preface The industrial development of recent decades, seeking to obtain technological advances, has led to altered ecosystems breaking the existing balance, with serious consequences for the subsistence of living things. Scientists have strived to propose solutions to eliminate a great diversity of pollutants that are present both in water and in the atmosphere. Worldwide, environmental regulation standards are established day by day, which requires different industries to decrease their limits for the generation of waste from their industrial processes and greater control over said waste. Initially, the regulations sought to control emissions once produced to correct their polluting effects. However, in many countries, these regulations are not respected, particularly in developing countries. Consequently, pollutants from an industrial process are not adequately treated within industries and become a pol- lutant that eventually begins to accumulate, generating a problem in the environ- ment that can be increasingly dangerous over time. That is why the development of new materials to reduce pollutants has now become one of the priorities of science, which, together with industry, have made progress in this important area. This book presents advances in the area of porous materials at the nanomaterial level, ranging from the detailed description of their preparation, characterization, mathematical modeling and application, to the removal of contaminants both in aqueous solution and in the vapor phase. The book Porous Materials: Theory and its Application for Environmental is divided into 13 chapters. • The first chapter was written by Profs. Tanay Kundu, Leisan Gilmanova, Wai Fen Yong, Stefan Kaskel entitled “Metal-Organic Frameworks for Environmental Applications”, who very clearly illustrate this type of modern materials and their use in environmental applications. The authors show a comparison between functionalized porous materials such as activated carbons and zeolites. In the chapter is discuss MOFs proved their selectivity or prefer- ence to adsorptive removal of various toxic components. High surface area, varying geometries and various functional groups result in a high degree of functionality. Increasing the stability of MOFs for the environmental application purpose remains an actual concern. Studies in this regard showed that appro- priate approach to MOFs design helps to solve this problem and allows to synthesize materials applicable in real-world conditions. • The second chapter is a contribution by Prof. Teresa Bandoz, entitled “Porous Carbons as Oxygen Reduction Electrocatalysts”, where it shows the develop- ment of “flat” heteroatom-doped carbons for oxygen reduction electrocatalysis, followed by a discussion of the role of defects as a general driving force, through porous carbons doped with heteroatoms. The emphasis is on the importance of porosity. • The third chapter written by Profs. Lumeng Liu, Shiliang (Johnathan) Tan and D. D. Do presents an interesting topic entitled “Computer Simulation and Experimental Studies of Various Environmental Gases (NH3,CH2O, SO2,H2S, Preface vii Benzene, Water) on Carbon Materials”, where they present a detailed analysis of adsorption studies of a series of gases as well as performing computer simulations. • The fourth chapter was written by Profs. Artur P. Terzyk, Monika Zięba, Stanisław Koter, Emil Korczeniewski, Wojciech Zięba, Piotr Kowalczyk, Joanna Kujawa, who present in this book a chapter entitled “Recent Developments in the Electrophoretic Deposition of Carbon Nanomaterials”, who describe in this chapter basic concepts of the electrophoretic deposition process (EPD) in relation to carbon nanomaterials and analyze recent devel- opments in the deposition of carbon nanomaterials, mainly graphene, nanotubes, nanohorns, fullerenes and nanodiamonds. • The fifth chapter is presented by Profs. S. Reljic, E.O. Jardim, C. Cuadrado-Collados, M. Bayona, M. Martinez-Escandell, J. Silvestre-Albero, F. Rodríguez-Reinoso, entitled “CO2 Adsorption in Activated Carbon Materials”, where they present the selective capture of CO2 in different types of industrial streams to reduce actual emissions to the atmosphere and minimize environ- mental concerns. They focus on activated carbon materials and the effect of porous structure and surface chemistry on selective CO2 adsorption. • The sixth chapter is written by Profs. Shuwen Wang and Katsumi Kaneko, entitled “Graphene-Based Carbons of Tuned Nanoporosity and Crystallinity”, who present an interesting review on the adjustment of porosity and crystallinity of graphene-based porous carbons through a series of methods such as the activation of chemical reagents (with KOH, ZnCl2 and H3PO4), physical acti- vation (with CO2), compression and heat treatment. • The seventh chapter was written by Profs. Nuno S. Graça, Ana M. Ribeiro, Alexandre Ferreira and Alírio E. Rodrigues, entitled “Application of Adsorption Processes for the Treatment of Diluted Industrial Effluents”. It presents an analysis of how the use of a cyclic adsorption process, such as parametric pumping, where the mobile phase is filtered through the adsorption bed alter- nately up and down, associated with a simultaneous change in a thermodynamic variable (temperature, pressure, pH, etc.), enables the continuous purification of a contaminated stream avoiding the use of chemical regenerants and allows the recycling of the concentrated stream back to the industrial