Generalizing Musical Intervals
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Surviving Set Theory: a Pedagogical Game and Cooperative Learning Approach to Undergraduate Post-Tonal Music Theory
Surviving Set Theory: A Pedagogical Game and Cooperative Learning Approach to Undergraduate Post-Tonal Music Theory DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Angela N. Ripley, M.M. Graduate Program in Music The Ohio State University 2015 Dissertation Committee: David Clampitt, Advisor Anna Gawboy Johanna Devaney Copyright by Angela N. Ripley 2015 Abstract Undergraduate music students often experience a high learning curve when they first encounter pitch-class set theory, an analytical system very different from those they have studied previously. Students sometimes find the abstractions of integer notation and the mathematical orientation of set theory foreign or even frightening (Kleppinger 2010), and the dissonance of the atonal repertoire studied often engenders their resistance (Root 2010). Pedagogical games can help mitigate student resistance and trepidation. Table games like Bingo (Gillespie 2000) and Poker (Gingerich 1991) have been adapted to suit college-level classes in music theory. Familiar television shows provide another source of pedagogical games; for example, Berry (2008; 2015) adapts the show Survivor to frame a unit on theory fundamentals. However, none of these pedagogical games engage pitch- class set theory during a multi-week unit of study. In my dissertation, I adapt the show Survivor to frame a four-week unit on pitch- class set theory (introducing topics ranging from pitch-class sets to twelve-tone rows) during a sophomore-level theory course. As on the show, students of different achievement levels work together in small groups, or “tribes,” to complete worksheets called “challenges”; however, in an important modification to the structure of the show, no students are voted out of their tribes. -
The Generalised Hexachord Theorem
THEOREM OF THE DAY The Generalised Hexachord Theorem Suppose that S is a subset of the set of pitch classes comprising Zn, n even, with |S | = s; then the interval class vectors of S and its complement Zn \ S differ component- wise by |n − 2s|, except for the last component, for which the difference is |n/2 − s|. The interval class vector of S is the vector of length n/2 whose i-th component is the number of pairs a, b ∈ S , a < b, for which min(b − a, n − b + a) = i. For Z12, the integers modulo 12, this is illustrated above, using the opening bars of Chopin’s op. 10, no. 5, for i = 5 (the upper, red, curves in bars 2–3) and i = 2 (the lower, green, curves). The word ‘class’ is used to indicate that no distinction is made between the interval from, say, B♭ down to E♭ (the first red curve) or from B♭ up to E♭; both intervals have value 5 = min(10 − 3, 12 − 10 + 3). The complete interval class vectors have been calculated here using David Walters’ PC Set Calculator, which is attached to Gary Tucker’s excel- lent Introduction to Pitch Class Analysis. The right-hand part of Chopin’s ´etude uses only the five black-key notes of the piano, the complement of this set being all the white keys. The Generalised Hexachord Theorem then tells us that components 1–5 of the corresponding interval classes differ uniformly by 12 − 2 × 5 = 2. The original Hexachord Theorem, due to the composer Milton Babbitt and theorist David Lewin in the 1950s, applies to subsets of exactly six notes out of the twelve note scale, the interval class vectors of this ‘hexachord’ or ‘hexad’ and its complement then being identical. -
Set Theory: a Gentle Introduction Dr
Mu2108 Set Theory: A Gentle Introduction Dr. Clark Ross Consider (and play) the opening to Schoenberg’s Three Piano Pieces, Op. 11, no. 1 (1909): If we wish to understand how it is organized, we could begin by looking at the melody, which seems to naturally break into two three-note cells: , and . We can see right away that the two cells are similar in contour, but not identical; the first descends m3rd - m2nd, but the second descends M3rd - m2nd. We can use the same method to compare the chords that accompany the melody. They too are similar (both span a M7th in the L. H.), but not exactly the same (the “alto” (lower voice in the R. H.) only moves up a diminished 3rd (=M2nd enh.) from B to Db, while the L. H. moves up a M3rd). Let’s use a different method of analysis to examine the same excerpt, called SET THEORY. WHAT? • SET THEORY is a method of musical analysis in which PITCH CLASSES are represented by numbers, and any grouping of these pitch classes is called a SET. • A PITCH CLASS (pc) is the class (or set) of pitches with the same letter (or solfège) name that are octave duplications of one another. “Middle C” is a pitch, but “C” is a pitch class that includes middle C, and all other octave duplications of C. WHY? Atonal music is often organized in pitch groups that form cells (both horizontal and vertical), many of which relate to one another. Set Theory provides a shorthand method to label these cells, just like Roman numerals and inversion figures do (i.e., ii 6 ) in tonal music. -
MTO 17.1: Fitzpatrick, Models and Music Theory
Volume 17, Number 1, April 2011 Copyright © 2011 Society for Music Theory Models and Music Theory: Reconsidering David Lewin’s Graph of the 3-2 Cohn Cycle Michael Fitzpatrick NOTE: The examples for the (text-only) PDF version of this item are available online at: http://www.mtosmt.org/issues/mto.11.17.1/mto.11.17.1.fitzpatrick.php REFERENCE: http://www.mtosmt.org/issues/mto.07.13.4/mto.07.13.4.reed_bain.html REFERENCE: http://www.mtosmt.org/issues/mto.07.13.3/mto.07.13.3.nolan.html KEYWORDS: Cohn functions, Cohn cycles, Iconic models, David Lewin, Reed and Bain ABSTRACT: Iconic models are ubiquitous in music theoretical literature. Their purpose is to illustrate and thereby concretize abstract theoretical concepts that would otherwise exist only in the imagination. Despite the prevalence of iconic models, we find few comprehensive analyses of how they serve this purpose and the conceptual mechanisms that relate models to their subjects. This commentary is a case study that compares two competing music theory models and raises some of the questions that arise when evaluating a particular model’s fit with its theoretical subject. Here, I examine Reed and Bain’s assertion that their Tonnetz design provides a more satisfactory depiction of the sc 3-2 Cohn cycle than David Lewin’s graphic network of the same. By relating the iconic components of each model with elements of the theory, I suggest that Lewin’s network corresponds more accurately to the sc 3-2 Cohn cycle than Reed and Bain’s Tonnetz. Received August 2010 Introduction [1] In a recent issue of this journal, Jacob Reed and Matthew Bain (2007) review David Lewin’s (1996, 1998) graphic network of the set-class (sc) 3-2 Cohn cycle and his analysis of J. -
A Tonnetz Model for Pentachords
A Tonnetz model for pentachords Luis A. Piovan KEYWORDS. neo-Riemann network, pentachord, contextual group, Tessellation, Poincaré disk, David Lewin, Charles Koechlin, Igor Stravinsky. ABSTRACT. This article deals with the construction of surfaces that are suitable for repre- senting pentachords or 5-pitch segments that are in the same T {I class. It is a generalization of the well known Öttingen-Riemann torus for triads of neo-Riemannian theories. Two pen- tachords are near if they differ by a particular set of contextual inversions and the whole contextual group of inversions produces a Tiling (Tessellation) by pentagons on the surfaces. A description of the surfaces as coverings of a particular Tiling is given in the twelve-tone enharmonic scale case. 1. Introduction The interest in generalizing the Öttingen-Riemann Tonnetz was felt after the careful analysis David Lewin made of Stockhausen’s Klavierstück III [25, Ch. 2], where he basically shows that the whole work is constructed with transformations upon the single pentachord xC,C#, D, D#, F #y. A tiled torus with equal tiles like the usual Tonnetz of Major and Minor triads is not possible by using pentagons (you cannot tile a torus or plane by regular convex pentagons). Therefore one is forced to look at other surfaces and fortunately there is an infinite set of closed surfaces where one can gather regular pentagonal Tilings. These surfaces (called hyperbolic) are distinguished by a single topological invariant: the genus or arXiv:1301.4255v1 [math.HO] 17 Jan 2013 number of holes the surface has (see Figure 8)1. The analysis2 of Schoenberg’s, Opus 23, Number 3, made clear the type of transfor- mations3 to be used. -
Geometrical Music Theory
Clifton Callender College of Music, Florida State University. Ian Quinn Music Department, Yale University. Dmitri Tymoczko Music Department, Princeton University. To whom correspondence should be addressed. All three authors contributed equally to this report. GENERALIZED VOICE-LEADING SPACES SUMMARY: We translate basic concepts of music theory into the language of contemporary geometry. ABSTRACT: Western musicians traditionally classify pitch sequences by disregarding the effects of five musical transformations: octave shift, permutation, transposition, inversion, and cardinality change. Here we model this process mathematically, showing that it produces 32 equivalence relations on chords, 243 equivalence relations on chord sequences, and 32 families of geometrical quotient spaces, in which both chords and chord-sequences are represented. This model reveals connections between music- theoretical concepts, yields new analytical tools, unifies existing geometrical representations, and suggests a way to understand similarity between chord-types. To interpret music is to ignore information. A capable musician can understand the sequence of notes (C4, E4, G4) in various ways: as an ordered pitch sequence (an “ascending C-major arpeggio starting on middle C”), an unordered collection of octave- free note-types (a “C major chord”), an unordered collection of octave-free note-types modulo transposition (a “major chord”), and so on. Musicians commonly abstract away from five types of information: the octave in which notes appear, their order, their specific pitch level, whether a sequence appears “rightside up” or “upside down” (inverted), and the number of times a note appears. Different purposes require different information; consequently, there is no one optimal degree of abstraction. Here we model this process. -
JJS Strunk Park Tonnetz Proofs
Journal of Jazz Studies vol. 11, no. 1, pp. 40-64 (2016) Reflection on (and in) Strunk’s Tonnetz1 Joon Park INTRODUCTION In 2011, during the national meeting of the Society for Music Theory in Minneapolis, I met privately with Steven Strunk and showed him my analysis of Wayne Shorter’s “Fee-Fi-Fo-Fum” that uses a Tonnetz to map the contour of the melody (Figure 1). When describing the motion of the triangle (shown in Figure 1 as arrows), I repeatedly used the word “flip.” One of Strunk’s criticisms of my analysis was the use of the term “flip.” He said that nowhere in the world of geometric operations do we find the word “flip.”2 Instead, he advocated the use of terms such as “translation,” “rotation,” and “reflection,” borrowed from the field of transformational geometry, to describe operations on the neo- Riemannian Tonnetz.3 Strunk’s insistence on using geometric terms suggests that he comprehended the neo-Riemannian Tonnetz to be geometric in nature rather than group-theoretic, as they were originally conceived. 1 I presented an earlier version of this paper at the 2013 meeting of the Music Theory Society of the Mid-Atlantic. I would like to thank the following people for the invaluable input in shaping this article: Keith Salley, Keith Waters, and the anonymous reviewers. 2 Strunk’s 2003 article “Wayne Shorter’s Yes and No: An Analysis” cites two examples (Cohn 1997 and Morris 1998) to show his frustrations over theorists’ use of terms, such as “translation” and “flip,” without proper definitions (2003, 49n21). -
Composing with Pitch-Class Sets Using Pitch-Class Sets As a Compositional Tool
Composing with Pitch-Class Sets Using Pitch-Class Sets as a Compositional Tool 0 1 2 3 4 5 6 7 8 9 10 11 Pitches are labeled with numbers, which are enharmonically equivalent (e.g., pc 6 = G flat, F sharp, A double-flat, or E double-sharp), thus allowing for tonal neutrality. Reducing pitches to number sets allows you to explore pitch relationships not readily apparent through musical notation or even by ear: i.e., similarities to other sets, intervallic content, internal symmetries. The ability to generate an entire work from specific pc sets increases the potential for creating an organically unified composition. Because specific pitch orderings, transpositions, and permutations are not dictated as in dodecaphonic music, this technique is not as rigid or restrictive as serialism. As with integral serialism, pc numbers may be easily applied to other musical parameters: e.g., rhythms, dynamics, phrase structure, sectional divisions. Two Representations of the Matrix for Schönberg’s Variations for Orchestra a. Traditional method, using pitch names b. Using pitch class nomenclature (T=10, E=11) Terminology pitch class — a particular pitch, identified by a name or number (e.g., D = pc 2) regardless of registral placement (octave equivalence). interval class (ic) — the distance between two pitches expressed numerically, without regard for spelling, octave compounding, or inversion (e.g., interval class 3 = minor third or major sixth). pitch-class set — collection of pitches expressed numerically, without regard for order or pitch duplication; e.g., “dominant 7th” chord = [0,4,7,10]. operations — permutations of the pc set: • transposition: [0,4,7,10] — [1,5,8,11] — [2,6,9,0] — etc. -
Introduction to Pitch Class Set Analysis Pitch Class - a Pitch Without Regard to Its Octave Position
Theory 3 Dr. Crist Introduction to Pitch Class Set Analysis Pitch Class - A pitch without regard to its octave position. There are twelve total pitch classes. There is only one pitch class (C) represented here. Pitch Class Set - A group of pitch classes. Usually it isa motive that occurs melodically, harmonically, or both. Cardinal number refers to the number of elements in a set. A cardinal three set has three members. Octave Equivalence - In tonal music, if two notes an octave apart are presented we attribute them to the same tonal significance. When we hear a chord with widely spaced notes we recognize it as an expanded form of a closed position chord. Removal of redundant pitch classes. C Major Inversional Equivalence - When a chord changes its position (inversion) we recognize it as being the same chord. Even though these two chords are in different positions, both are still tonic functions. I6 I Transpositional Equivalence - In tonal music, when a pattern of notes transposes to another pitch level its identity is retained. Though the keys are different, one hears the chord functions as being equivalent. I IV V7 I = I IV V7 I Segmentation - The procedure for determining which musical units of a composition are to be regarded as analytical objects. Consider all musical parameters (register, duration, timbre, etc.) in determining segments. Segments are usually identified as contiguous elements but may be non-contiguous as well. The consistency of a musical surface composed of small groups of pitch-classes is regarded by Forte as a foundation for making statements about large-scale structure. -
On Chords Generating Scales; Three Compositions for Orchestra
INFORMATION TO USERS This reproduction was made from a copy of a document sent to us for microfilming. While the most advanced technology has been used to photograph and reproduce this document, the quality of the reproduction is heavily dependent upon the quality of the material submitted. The following explanation of techniques is provided to help clarify markings or notations which may appear on this reproduction. 1. The sign or “target” for pages apparently lacking from the document photographed is “Missing Page(s)”. If it was possible to obtain the missing page(s) or section, they are spliced into the film along with adjacent pages. This may have necessitated cutting through an image and duplicating adjacent pages to assure complete continuity. 2. When an image on the film is obliterated with a round black mark, it is an indication of either blurred copy because of movement during exposure, duplicate copy, or copyrighted materials that should not have been filmed. For blurred pages, a good image of the page can be found in the adjacent frame. If copyrighted materials were deleted, a target note will appear listing the pages in the adjacent frame. 3. When a map, drawing or chart, etc., is part of the material being photographed, a definite method of “sectioning” the material has been followed. It is customary to begin filming at the upper left hand comer of a large sheet and to continue from left to right in equal sections with small overlaps. If necessary, sectioning is continued again—beginning below the first row and continuing on until complete. -
1 Chapter 1 a Brief History and Critique of Interval/Subset Class Vectors And
1 Chapter 1 A brief history and critique of interval/subset class vectors and similarity functions. 1.1 Basic Definitions There are a few terms, fundamental to musical atonal theory, that are used frequently in this study. For the reader who is not familiar with them, we present a quick primer. Pitch class (pc) is used to denote a pitch name without the octave designation. C4, for example, refers to a pitch in a particular octave; C is more generic, referring to any and/or all Cs in the sonic spectrum. We assume equal temperament and enharmonic equivalence, so the distance between two adjacent pcs is always the same and pc C º pc B . Pcs are also commonly labeled with an integer. In such cases, we will adopt the standard of 0 = C, 1 = C/D, … 9 = A, a = A /B , and b = B (‘a’ and ‘b’ are the duodecimal equivalents of decimal 10 and 11). Interval class (ic) represents the smallest possible pitch interval, counted in number of semitones, between the realization of any two pcs. For example, the interval class of C and G—ic(C, G)—is 5 because in their closest possible spacing, some C and G (C down to G or G up to C) would be separated by 5 semitones. There are only six interval classes (1 through 6) because intervals larger than the tritone (ic6) can be reduced to a smaller number (interval 7 = ic5, interval 8 = ic4, etc.). Chapter 1 2 A pcset is an unordered set of pitch classes that contains at most one of each pc. -
Interval Vectors
Ilhan M. Izmirli George Mason University [email protected] The exploration of the profound and intrinsic cohesion between mathematics and music is certainly nothing new – it actually dates all the way back to Pythagoras (c. 570 BCE – c. 495 BCE). However, the introduction of the dodecaphonic (twelve-tone) system developed by Arnold Schoenberg (1874 – 1951) has taken this study to entirely new levels, and has instituted such concepts as set theory, ordered sets, vectors, and various types of spaces as useful tools in music theory. In this paper we will look into one of these tools, namely the notion of interval vectors. Around 1908, the Viennese composer Arnold Schoenberg developed a system of pitch organization in which all twelve unique pitches were to be arranged into an ordered row. This row and the rows obtained from it by various basic operations were then used to generate entire pitch contents, giving rise to a method of composition now usually referred to as the dodecaphonic (twelve-tone) system or serialism. This new system not only bolstered the existing ties between mathematics and music, but helped introduce some new ones as well. In fact, the field of musical set theory was developed by Hanson (1960) and Forte (1973) in an effort to categorize musical objects and describe their relationships in this new setting. For more information see Schuijer (2008) and Morris (1987). Let us first review the basic terminology, starting with a notational convention. We will call the octave from middle 퐶 to the following 퐵 the standard octave. If 퐶 denotes the middle 퐶, we will use the convention 퐶 = 0.