Planting and Growing Miscanthus

Total Page:16

File Type:pdf, Size:1020Kb

Planting and Growing Miscanthus PLANTING AND GROWING MISCANTHUS BEST PRACTICE GUIDELINES For Applicants to DEFRA’S Energy Crops Scheme Contents INTRODUCTION 3 WHY GROW ENERGY CROPS? 4 WHAT IS MISCANTHUS? 5 ANNUAL GROWING CYCLE 6 WHERE WILL MISCANTHUS GROW WELL? 7 SITE SELECTION AND PLANNING 8 PRE-PLANTING REQUIREMENTS 8 PLANTING MATERIAL 9 PLANTING EQUIPMENT 10 FERTILISER REQUIREMENTS 12 WEED CONTROL 12 PESTS AND DISEASES 14 HARVESTING 14 ENERGY VALUE 16 BIODIVERSITY 17 USEFUL CONTACTS AND REFERENCES 18 REPORTS AND PUBLICATIONS 18 Introduction This booklet has been produced to introduce farmers to a new crop. It gives guidance on the most appropriate location, land preparation, planting techniques and crop management required to grow miscanthus as an energy crop.The booklet summarises current research, which is ongoing, and these guidelines may be modified as further experience is gained. Please check that you have the latest version of the booklet with the DEFRA office at Crewe. This booklet should be read in association with the Energy Crops Scheme explanatory booklet, ‘Establishment grants for short rotation coppice and miscanthus.’ 3 Why grow energy crops? Why grow energy crops? 20% relative to 1990 levels. These targets could mean the generation of 500 - 1000 MWe The market for energy crops – crops which are from biomass by the year 2010, an undertaking grown specifically to be harvested and burnt in that would require as much as 125,000 power stations or heating systems – is now hectares of energy cropping. developing in response to the need for One energy crop is miscanthus. Grants to atmospheric carbon dioxide (CO2) abatement. The UK Government identifies biomass- establish this crop can be obtained from derived energy as one of the ways that it can DEFRA under the England Rural Development achieve its obligations to the Kyoto Climate Programme (Energy Crops Scheme). For Change Protocol of reducing greenhouse gas details of the grant scheme, ask for a booklet emissions by 12.5%. It has a target to generate from the DEFRA office at Crewe (see page 18), 10% of the nation’s electricity from renewables or see the DEFRA ERDP website www.defra.gov.uk/erdp/default.htm by 2010, and aims to reduce CO2 output by 4 What is miscanthus? What is miscanthus? spreads naturally by means of underground storage organs (rhizomes). However, their Miscanthus species are woody, perennial, spread is slow and there will not be any rhizomatous grasses, originating from Asia uncontrolled invasion of hedges or fields.These which have the potential for very high rates of rhizomes can be split and the pieces re-planted growth. Miscanthus may be familiar to many as to produce new plants. All propagation, a flowering garden ornamental, but it is the maintenance and harvest operations can be non-flowering forms that are of interest done with conventional farm machinery. In the agriculturally. UK, long-term average harvestable yields from Miscanthus is planted in spring and canes a mature crop have exceeded 13 dry tonnes produced during the summer are harvested in per hectare per year (t/ha/yr) at the most winter. This growth pattern is repeated every productive experimental sites. These high year for the lifetime of the crop, which will be yields suggest that the crop has the potential to at least 15 years. Miscanthus differs from short make an important contribution to the UK’s rotation coppice willow (an alternative energy commitments to energy generation from crop) in that it gives an annual harvest and thus renewable sources. an annual income to the farmer. Miscanthus Miscanthus in a semi-natural habitat in Japan 5 Annual growing cycle Annual growing cycle nutrients move back to the rhizome. Leaves then fall and a deep leaf litter develops. Any The growth pattern of the crop is simple. It remaining foliage dies following the first air produces new shoots annually and these frost, and the stems dry to a relatively low usually emerge from the soil during April. moisture content (30-50%) during winter. By These shoots develop into erect, robust stems, February, free standing, almost leafless canes which reach 1 - 2 m in height by late August of remain and it is these which are harvested the year of planting, with a diameter of 10 mm. mechanically. This growth cycle is repeated The stems, which have an appearance similar to once spring-time temperatures increase again. bamboo canes, are usually unbranched and From the second season onwards the crop can contain a solid pith. be expected to achieve a maximum height of From late July the lower leaves start to dry. 2.5 - 3.5 m. Crop drying accelerates during autumn, as M M Spring:- New shoots emerge Winter:- Summer:- Harvestable stems M Crop reaches M maximum height Autumn:- Annual growing cycle Accelerated crop drying 6 Where will miscanthus grow well? Where will miscanthus therefore plant growth, is not achieved at very low temperatures. However, the threshold for grow well? miscanthus photosynthesis (6oC) is More experience is needed of yields considerably lower than for maize and, under a wide range of soil conditions, but therefore, the potential growing season is current information suggests that most longer. The major constraint to long season lowland agricultural sites in England growth is late spring frosts which destroy early should be suitable for miscanthus spring foliage and effectively reduce the cropping, with the highest yields coming duration of the growing season. from deep, moisture retentive soils. Yield as plants mature Key determinants of yield are sunshine, The yield from the first season’s growth, 1-2 temperature and rainfall. The old ‘maize t/ha, is not worth harvesting. The stems do not growing zone’; south of a line drawn between need to be cut and so the stems may be left in the Bristol Channel and the Wash, will satisfy the field until the following season. From the the environmental requirements for high yield, second year onwards the crop is harvested but many lowland sites north of this line will annually. The second year harvestable yields also be suitable. Within these areas, annual may range from 4-10 t/ha (occasionally up to 13 rainfall levels will effect yield. t/ha), and those in the third year would be between 10 -13 t/ha or more. Peak harvestable Soils yields of 20 t/ha/yr have been recorded at a number of sites. The reason for the variation Miscanthus has been reported growing, and depends on planting density, soil type and producing high or reasonable yields on a wide climate. At sites where moisture supply or range of soils - from sands to high organic exposure limit yield, there may be a longer matter soils. It is also tolerant of a wide range ‘yield-building’ phase. of pH, but the optimum is between pH 5.5 and 7.5. Miscanthus is harvested in the winter or Long term yield early spring and therefore it is essential that the site does not get excessively waterlogged The long-term average results from a multi-site during this period, as this may cause problems study in England show that harvestable yields with the harvesting machinery. from good sites, including clay, clay loam and peaty soils, exceed 13 t/ha/yr.Yields from sites Temperature at 300 m altitude in the Yorkshire Wolds (ADAS High Mowthorpe) and on free-draining sandy The potential cropping zones for miscanthus soils (ADAS Gleadthorpe) have been much are quite widespread. Photosynthesis, and lower at 9 t/ha/yr or even less. 7 Site selection and planning Pre-planting requirements Site selection and planning The first step, in the autumn before planting, is to spray the site with an appropriate broad As with any crop that is likely to be in the spectrum herbicide (e.g. glyphosate) for ground for a number years, it is important that controlling perennial weeds. The site should be a number of issues (such as landscape, wildlife sub-soiled if necessary to remove compaction, value, archaeology and public access) are then ploughed and left to over-winter. On light considered in the selection of a site. soils it may be more appropriate to spring Miscanthus, once established can grow to 3.5 m plough. This will allow frost activity to break in height, it is therefore important to consider down the soil further. This may also help the visual impact this might have on the local prevent ‘ley’ pests attacking the newly landscape, especially if the site is close to a established plants, as any larvae or eggs already footpath or a favourite local view. in the soil from the previous crop will have Miscanthus has the potential to encourage a insufficient food over the winter to survive. In greater diversity of wildlife than some the following spring the site should be agricultural crops. This potential is most likely rotovated immediately prior to planting. This to be realised if it is grown as one component will not only improve establishment by aiding of a mixed cropping pattern and if it is located good root development but will also improve in an area of low conservation value or as a link the effectiveness of any residual herbicides between existing habitats. Care must be taken applied after planting. to prevent this new habitat from adversely affecting existing habitats, especially those within existing conservation areas. Details of land which is eligible, the environmental standards you must observe and the assessment of your application which will take place can be found in the Energy Crops Explanatory Booklet. If you are unsure about any of these requirements you should seek advice from DEFRA’s office at Crewe. Pre-planting requirements Thorough site preparation is essential for good establishment, ease of subsequent crop management and high yields.
Recommended publications
  • Giant Miscanthus Establishment
    Giant Miscanthus Establishment Introduction Giant Miscanthus (Miscanthus x giganteus), a warm-season perennial grass originating in Southeast Asia from two ornamental grasses, M. sacchariflorus and M. sinensis, is a popular candidate crop for biomass production in the Midwestern United States. This sterile hybrid is high yielding with many benefits to the land including soil stabilization and carbon sequestration. Vegetative propagation methods are necessary since giant Miscanthus does not produce viable seed. Field Preparation A giant Miscanthus stand first begins with field seedbed preparation. To provide good soil to rhizome contact, Figure 1. Rhizome segments. Photo credit: Heaton Lab. the seedbed should be tilled to a 3- to 5-inch depth. Soil moisture is critical to proper establishment for early stage time after the first frost in the fall and before the last one in germination. If working with dry land, prepare your field just the spring. If not immediately replanted in a new field, they prior to planting for optimal soil moisture. Good soil contact should be kept moist and cool (37-40º F) in storage. Ideal is also critical, so conversely, don’t till when the land is wet rhizomes have two to three visible buds, are light colored, and clods will form. Nutrient (NPK) and lime applications and firm (Fig. 1). Smaller rhizomes or those that are soft to should be made to the field as necessary before planting, the touch will likely have lower emergence. following typical corn recommendations for the area. Giant Miscanthus does not have high nutrient requirements once RHIZOME PLANTING established, but fields last for 20-30 years, so it is important Specialized rhizome planters are becoming available that adequate nutrition be present at establishment.
    [Show full text]
  • Ornamental Grasses for Kentucky Landscapes Lenore J
    HO-79 Ornamental Grasses for Kentucky Landscapes Lenore J. Nash, Mary L. Witt, Linda Tapp, and A. J. Powell Jr. any ornamental grasses are available for use in resi- Grasses can be purchased in containers or bare-root Mdential and commercial landscapes and gardens. This (without soil). If you purchase plants from a mail-order publication will help you select grasses that fit different nursery, they will be shipped bare-root. Some plants may landscape needs and grasses that are hardy in Kentucky not bloom until the second season, so buying a larger plant (USDA Zone 6). Grasses are selected for their attractive foli- with an established root system is a good idea if you want age, distinctive form, and/or showy flowers and seedheads. landscape value the first year. If you order from a mail- All but one of the grasses mentioned in this publication are order nursery, plants will be shipped in spring with limited perennial types (see Glossary). shipping in summer and fall. Grasses can be used as ground covers, specimen plants, in or near water, perennial borders, rock gardens, or natu- Planting ralized areas. Annual grasses and many perennial grasses When: The best time to plant grasses is spring, so they have attractive flowers and seedheads and are suitable for will be established by the time hot summer months arrive. fresh and dried arrangements. Container-grown grasses can be planted during the sum- mer as long as adequate moisture is supplied. Cool-season Selecting and Buying grasses can be planted in early fall, but plenty of mulch Select a grass that is right for your climate.
    [Show full text]
  • Research and Development Final Project Report (Not to Be Used for LINK Projects)
    DEPARTMENT for ENVIRONMENT, FOOD and RURAL AFFAIRS CSG 15 Research and Development Final Project Report (Not to be used for LINK projects) Two hard copies of this form should be returned to: Research Policy and International Division, Final Reports Unit DEFRA, Area 301 Cromwell House, Dean Stanley Street, London, SW1P 3JH. An electronic version should be e-mailed to [email protected] Project title A review of the potential of giant grasses for UK agriculture DEFRA project code NF0419 Contractor organisation SAC, Craibstone Estate, Bucksburn, Aberdeen AB21 9YA and location Total DEFRA project costs £ 10,000 Project start date 01/12/00 Project end date 31/03/01 Executive summary (maximum 2 sides A4) Executive Summary Introduction and background 1. Grasses such as reed canary grass, spartina and switchgrass have been studied to only a modest extent in the UK in comparison with miscanthus and short rotation coppice. In addition, other less widely known species of energy crops have been examined in various countries across the world, but their comparative potential has not been systematically evaluated. The aim of this desk study is to assess the competitive position of all these giant grasses, particularly the lesser known species, for cultivation in the UK. An objective of this work is to draw together the disparate studies conducted. It is aimed to present an evaluation of the agronomic and economic performances of giant grasses with a view to identifying any species with promise for UK conditions that merit more detailed study. Summary of agronomic review of crops for consideration Benchmark crops 2.
    [Show full text]
  • Upgrading of Wheat/Barley and Miscanthus Bio-Oil Over a Sulphided Catalyst Bogdan Shumeiko University of Chemistry and Technology, Czech Republic, [email protected]
    Engineering Conferences International ECI Digital Archives Pyroliq 2019: Pyrolysis and Liquefaction of Proceedings Biomass and Wastes 6-19-2019 Upgrading of wheat/barley and miscanthus bio-oil over a sulphided catalyst Bogdan Shumeiko University of Chemistry and Technology, Czech Republic, [email protected] Miloš Auersvald University of chemistry and technology, Prague David Kubička University of chemistry and technology, Prague Petr Straka University of chemistry and technology, Prague Pavel Šimáček University of chemistry and technology, Prague See next page for additional authors Follow this and additional works at: https://dc.engconfintl.org/pyroliq_2019 Part of the Engineering Commons Recommended Citation Bogdan Shumeiko, Miloš Auersvald, David Kubička, Petr Straka, Pavel Šimáček, and Dan Vrtiška, "Upgrading of wheat/barley and miscanthus bio-oil over a sulphided catalyst" in "Pyroliq 2019: Pyrolysis and Liquefaction of Biomass and Wastes", Franco Berruti, ICFAR, Western University, Canada Anthony Dufour, CNRS Nancy, France Wolter Prins, University of Ghent, Belgium Manuel Garcia-Pérez, Washington State University, USA Eds, ECI Symposium Series, (2019). https://dc.engconfintl.org/pyroliq_2019/24 This Abstract and Presentation is brought to you for free and open access by the Proceedings at ECI Digital Archives. It has been accepted for inclusion in Pyroliq 2019: Pyrolysis and Liquefaction of Biomass and Wastes by an authorized administrator of ECI Digital Archives. For more information, please contact [email protected]. Authors Bogdan
    [Show full text]
  • Methane Yield Potential of Miscanthus (Miscanthus × Giganteus (Greef Et Deuter)) Established Under Maize (Zea Mays L.)
    energies Article Methane Yield Potential of Miscanthus (Miscanthus × giganteus (Greef et Deuter)) Established under Maize (Zea mays L.) Moritz von Cossel 1,* , Anja Mangold 1 , Yasir Iqbal 2 and Iris Lewandowski 1 1 Department of Biobased Products and Energy Crops (340b), Institute of Crop Science, University of Hohenheim, Fruwirthstr. 23, 70599 Stuttgart, Germany; [email protected] (A.M.); [email protected] (I.L.) 2 College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China; [email protected] * Correspondence: [email protected]; Tel.: +49-711-459-23557 Received: 11 November 2019; Accepted: 2 December 2019; Published: 9 December 2019 Abstract: This study reports on the effects of two rhizome-based establishment procedures ‘miscanthus under maize’ (MUM) and ‘reference’ (REF) on the methane yield per hectare (MYH) of miscanthus in a field trial in southwest Germany. The dry matter yield (DMY) of aboveground biomass was determined each year in autumn over four years (2016–2019). A biogas batch experiment and a fiber analysis were conducted using plant samples from 2016–2018. Overall, MUM outperformed REF 3 1 due to a high MYH of maize in 2016 (7211 m N CH4 ha− ). The MYH of miscanthus in MUM was significantly lower compared to REF in 2016 and 2017 due to a lower DMY. Earlier maturation of miscanthus in MUM caused higher ash and lignin contents compared with REF. However, the mean substrate-specific methane yield of miscanthus was similar across the treatments (281.2 and 276.2 lN 1 1 3 1 kg− volatile solid− ). Non-significant differences in MYH 2018 (1624 and 1957 m N CH4 ha− ) and 1 in DMY 2019 (15.6 and 21.7 Mg ha− ) between MUM and REF indicate, that MUM recovered from biotic and abiotic stress during 2016.
    [Show full text]
  • Environmental Performance of Miscanthus, Switchgrass and Maize: Can C4 Perennials Increase the Sustainability of Biogas Production?
    sustainability Article Environmental Performance of Miscanthus, Switchgrass and Maize: Can C4 Perennials Increase the Sustainability of Biogas Production? Andreas Kiesel *, Moritz Wagner and Iris Lewandowski Department Biobased Products and Energy Crops, Institute of Crop Science, University of Hohenheim, Fruwirthstrasse 23, 70599 Stuttgart, Germany; [email protected] (M.W.); [email protected] (I.L.) * Correspondence: [email protected]; Tel.: +49-711-459-22379; Fax: +49-711-459-22297 Academic Editor: Michael Wachendorf Received: 31 October 2016; Accepted: 15 December 2016; Published: 22 December 2016 Abstract: Biogas is considered a promising option for complementing the fluctuating energy supply from other renewable sources. Maize is currently the dominant biogas crop, but its environmental performance is questionable. Through its replacement with high-yielding and nutrient-efficient perennial C4 grasses, the environmental impact of biogas could be considerably improved. The objective of this paper is to assess and compare the environmental performance of the biogas production and utilization of perennial miscanthus and switchgrass and annual maize. An LCA was performed using data from field trials, assessing the impact in the five categories: climate change (CC), fossil fuel depletion (FFD), terrestrial acidification (TA), freshwater eutrophication (FE) and marine eutrophication (ME). A system expansion approach was adopted to include a fossil reference. All three crops showed significantly lower CC and FFD potentials than the fossil reference, but higher TA and FE potentials, with nitrogen fertilizer production and fertilizer-induced emissions identified as hot spots. Miscanthus performed best and changing the input substrate from maize to miscanthus led to average reductions of −66% CC; −74% FFD; −63% FE; −60% ME and −21% TA.
    [Show full text]
  • Herbaceous Biomass: State of the Art
    HERBACEOUS BIOMASS: STATE OF THE ART Kenneth J. Moore Department of Agronomy, Iowa State University Meeting the U.S. Departments of Agriculture and Energy’s goal of replacing 30 percent of transportation energy by 2030 with cellulosic biofuels will require development of highly productive energy crops. It is estimated that a billion-ton annual supply of biomass of all sources will be required to meet this goal, which represents a fi vefold increase over currently available biomass. Under one scenario, dedicated energy crops yielding an average of 8 dry tons/yr are projected to be planted on 55 million acres. Switchgrass (Panicum virgatum L.) is a perennial native grass that has received substantial interest as a potential energy crop due to its wide adaptation. However, it produces relatively low yields on productive soils and has other limitations related to seed dormancy and establishment. More recently, Miscanthus (Miscanthus × giganteus) has been touted as a potential energy crop. A warm-season perennial grass native to Southeastern Asia, it has relatively high yield potential when grown on productive soils. However, it is a sterile hybrid that must be propagated vegetatively and requires a few years to achieve maximum production. Both species have potential as dedicated energy crops, but require further improvement and development. Other crops with high potential for cellulosic energy are photoperiod-sensitive sorghum (Sorghum bicolor (L.) Moench) and corn (Zea mays L.) cultivars. Vegetative development of these cultivars occurs over a longer period in temperate regions and they produce little or no viable seed. A rational long-term approach will be required to develop alternative, high-yielding biomass crops specifi cally designed for energy and industrial uses.
    [Show full text]
  • Management of Miscanthus Sinensis Mary Hockenberry Meyer, Associate Professor, University of Minnesota
    Fact Sheet and Management of Miscanthus sinensis Mary Hockenberry Meyer, Associate Professor, University of Minnesota Common names: Japanese silvergrass, Chinese silvergrass, susuki (in Japan), miscanthus, and pampas grass (regional) Native Habitat: Southeast Asia, often along roadsides and disturbed places throughout much of Japan, especially at higher elevations 3,000‟-4,500‟, in a variety of soil types including light, well-drained, nutrient- poor soils on semi-natural grasslands. Several other species are common in Japan, Taiwan, and other parts of southeast Asia; additional species are native to southern Africa. Plant Description: Over 50 ornamental forms of Miscanthus sinensis are sold in the US nursery trade, including selections with green and yellow foliage and various flower colors, many of which have been popular garden plants for over 100 years. Mature plants have large, showy, and feathery flowers that appear in September and October. Most ornamental forms such as „Zebrinus‟ and „Variegatus‟ with striped or banded foliage set little or no seed, especially when grown as individual, isolated plants in a garden setting. Multiple Miscanthus grown together, especially in warmer regions such as USDA Zones 6 &7, may set a significant amount of viable seed. Ornamental plantings are probably the source of the “wild type” Miscanthus that is now common in western North Carolina; near Valley Forge, PA; and in other areas in the Middle Atlantic States. This wild type grows on light, well-drained soils that are low in nutrients and marginal for crop production, such as roadsides, power right-of-ways, along railroads, and steep embankments. The wild type sets a significant amount of airborne seed.
    [Show full text]
  • Growing Giant Miscanthus in Illinois
    Growing Giant Miscanthus in Illinois Rich Pyter1, Tom Voigt2, Emily Heaton3, Frank Dohleman4, and Steve Long5 University of Illinois Images Courtesy of Frank Dohleman Highlights • Giant Miscanthus (Miscanthus x giganteus) is a warm-season Asian grass showing great potential as a biomass crop in Illinois; at several Illinois sites, research plantings of Giant Miscanthus have produced greater yields than switchgrass. • Giant Miscanthus is sterile and is propagated by rhizome division. • To grow Giant Miscanthus, plant rhizomes approximately 4-inches deep and 3-feet apart within rows and 3-feet between rows. • Weeds must be controlled during the planting season to ensure a successful planting. • Stems of Giant Miscanthus are harvested in winter when dormant. • To date, there have been no biomass losses due to insects or diseases. Introduction In Illinois, traditional energy sources include coal, oil, and nuclear power. There is presently, however, much interest in locally produced energy sources that can reduce reliance on energy that originates outside of Illinois. Wind, corn-based ethanol, and soybean-based biodiesel are all examples of locally produced alternative energy sources. Other potential Illinois energy sources are crop residues or dedicated plants, primarily perennial grasses, which are burned to produce heat and electricity or treated with enzymes to produce sugars that can then be used to produce cellulosic ethanol. Plants used in these ways may be termed biomass crops, biofuel crops, bioenergy crops, or feedstocks. One such biomass crop is the U.S. native prairie plant, switchgrass (Panicum virgatum). A warm-season grass, switchgrass can grow to six feet or more; produces short, scaly rhizomes; and is tolerant of a variety of soils.
    [Show full text]
  • Miscanthus: a Fastgrowing Crop for Biofuels and Chemicals Production
    Review Miscanthus: a fast- growing crop for biofuels and chemicals production Nicolas Brosse, Université de Lorraine, Vandoeuvre-lès-Nancy, France Anthony Dufour, CNRS, Université de Lorraine, Nancy, France Xianzhi Meng, Qining Sun, and Arthur Ragauskas, Georgia Institute of Technology, Atlanta, GA, USA Received February 9, 2012; revised April 17, 2012; accepted April 18, 2012 View online at Wiley Online Library (wileyonlinelibrary.com); DOI: 10.1002/bbb.1353; Biofuels, Bioprod. Bioref. (2012) Abstract: Miscanthus represents a key cand idate energy crop for use in biomass-to-liquid fuel-conversion processes and biorefi neries to produce a range of liquid fuels and chemicals; it has recently attracted considerable attention. Its yield, elemental composition, carbohydrate and lignin content and composition are of high importance to be reviewed for future biofuel production and development. Starting from Miscanthus, various pre-treatment technolo- gies have recently been developed in the literature to break down the lignin structure, disrupt the crystalline structure of cellulose, and enhance its enzyme digestibility. These technologies included chemical, physicochemical, and biological pre-treatments. Due to its signifi cantly lower concentrations of moisture and ash, Miscanthus also repre- sents a key candidate crop for use in biomass-to-liquid conversion processes to produce a range of liquid fuels and chemicals by thermochemical conversion. The goal of this paper is to review the current status of the technology for biofuel production from
    [Show full text]
  • An Approach to Identify the Suitable Plant Location for Miscanthus-Based Ethanol Industry: a Case Study in Ontario, Canada
    Energies 2015, 8, 9266-9281; doi:10.3390/en8099266 OPEN ACCESS energies ISSN 1996-1073 www.mdpi.com/journal/energies Article An Approach to Identify the Suitable Plant Location for Miscanthus-Based Ethanol Industry: A Case Study in Ontario, Canada Poritosh Roy 1,*, Animesh Dutta 1,* and Bill Deen 2 1 School of Engineering, University of Guelph, Guelph, ON N1G 2W1, Canada 2 Department of Plant Agriculture, University of Guelph, Guelph, ON N1G 2W1, Canada; E-Mail: [email protected] * Authors to whom correspondence should be addressed; E-Mails: [email protected] (P.R.); [email protected] (A.D.); Tel.: +1-519-824-4120 (ext. 52441) (P.R. & A.D.); Fax: +1-519-836-0227 (P.R. & A.D.). Academic Editor: Robert Lundmark Received: 26 June 2015 / Accepted: 18 August 2015 / Published: 28 August 2015 Abstract: The life cycle (LC) of ethanol extracted from Miscanthus has been evaluated to identify the potential location for the Miscanthus-based ethanol industry in Ontario, Canada to mitigate greenhouse gas (GHG) emissions and minimize the production cost of ethanol. Four scenarios are established considering the land classes, land use, and cropping patterns in Ontario, Canada. The net energy consumption, emissions, and cost of ethanol are observed to be dependent on the processing plant location and scenarios. The net energy consumption, emissions, and cost vary from 12.9 MJ/L to 13.4 MJ/L, 0.79 $/L to 0.84 $/L, and 0.45 kg-CO2e/L to 1.32 kg-CO2e/L, respectively, which are reliant on the scenarios. Eastern Ontario has emerged as the best option.
    [Show full text]
  • Miscanthus Giganteus – an Overview About Sustainable Energy Resource for Household and Small Farms Heating Systems
    Romanian Biotechnological Letters Vol. 20, No. 3, 2015 Copyright © 2015 University of Bucharest Printed in Romania. All rights reserved REVIEW Miscanthus giganteus – an overview about sustainable energy resource for household and small farms heating systems Received for publication, November 6, 2014 Accepted, April 3,2015 ANA ELISABETA (OROS) DARABAN1, ȘTEFANA JURCOANE1, IULIAN VOICEA2 1 University of Agronomic Sciences and Veterinary Medicine of Bucharest, Mărăști, 59, 011464, Romania, 2National Institute of Research-Development for Machines and Installations Designed to Agriculture and Food Industry- INMA Bucharest, Ion Ionescu de la Brad Bdv., 6, 013813, Romania * Corresponding author: [email protected] Abstract In the last decade, the local Romanian farmers are facing more and more new challenges from the competition with the big farming systems. The temperamental changing weather of recent years has left arable farmers looking very seriously at new and secure profit opportunities for the future. For a sustainable, profitable and reliable long-term investment, Miscanthus giganteus represent one of the most important energy crops. Energy plants provide many years of gains that are 4 times as much as they were with normal woods or coppice rotation plants, so one hectare of energy plant replaces 4,000 to 7,000 litters of oil per year. Moreover Miscanthus giganteus is a phytoexcluder plant, which have a specific property not extracting contaminants from the soil, being suitable for field restoration. The use of bioenergy crops for rural progress may differ in various regions depending on farmers` perception and acceptance, supported by programmes established at national and local level for bio- renewable energy resources.
    [Show full text]