Jean-Louis Guenet the Primary Sex (The Type of The

Total Page:16

File Type:pdf, Size:1020Kb

Jean-Louis Guenet the Primary Sex (The Type of The 13 THE GENET ICS OF SEX DETERMINATION AND DIFFERENTIATION Jean-Louis Guenet Service de Genetique cellulaire du College de France et de l'Institut Pasteur 25, rue du Dr. Roux 75724 Paris Cedex 15 The primary sex (theABSTRACT type of the gonad) depends upon the presence (male) or absence (female) of a cell surface antigen called H-Y. If the omnipotent gonad differentiates toward the male type, it then produces a steroid hormone called testo­ sterone. If, in turn, testosterone is present in the growing embryo and if the appropriate receptors are present on a spe­ cific group of undifferentiated cells, then a male genital tract develops. If none of these conditions are fulfilled, a female phenotype results. Sex differentiation thus seems to be controlled by a very simple genetic system with a very limited number of genes. 14 Most of the vertebrate species reproduce sexually. This means that male individuals have to copulate with female partners to produce a new specimen of their own species (a male ••. or a female Evolutionists!) . agree that sexual reproduction confers immense benefits when considered as a source of individual variability because it furnishes material with which natural selection may operate. It necessitates however the differen­ tiation of very highly specialized tissues, like those of the gonads producing the gametes or those of the genital tracts. We will discuss the present status of our knowledge about sex differentiation with special reference to the mammals. I.- IS SEX NECESSARY OR WHY DOES THE SEX EXIST Not all the ? vertebrate species have two sexes? some of them, among the fish or reptile classes, have only one sex. They reproduce parthenogenetically or gynogenetically. In true parthenogenesis, eggs laid by the female spontaneously initiate development toward individuals. Thus, males are totally unnecessary. In a modified form called gynogenesis, copulation with males of other species is required. Alien sperms, however, function only as stimuli to initiate the development of unfertilized eggs. Aquarium fanciers should be familiar with the amazon molly (PoeeiZia formosa), a small fish of pleasing coloration and shape. As the name implies, there is no male amazon molly for they are the hybrid between sailfin and Mexican mollies that became an all female gynogenic species. Among whiptail lizzards (genus Cnemidophorus) inha­ biting arid regions of Arizona and New Mexico, all female species are also found along the boundaries between neighbo­ ring bisexual species. Sexual reproduction is thus not necessary. However when the animals are diploid (like most of the vertebrates), the bisexuality has selective advantages as a source of gene­ tic diversity. If, at a given locus, an animal of a given species 15 is a/a' (two allelic forms) and if the species reproduce par­ thenogenetically, all the offspring will be a/a'. On the contrary, if the species reproduce bisexually, then three genotypes (a/a, a/a' and a'/a') are expected. The fittest will be selected by evolution. II.- WHY 2 SEXES INSTEAD OF 3, 4, OR MORE To make the probability of fertile? matings maxi­ mum,mathematicians have calculated that two sexes is optimal. It is also more simple to determine two sexes than three or more on a genetical basis. III. - TWO SEXES IN THE SAME INDIVIDUAL OR IN TWO Another! way to dispense with bisexual life ? is, of course, to combine the male and the female organs into one body. Hermaphroditism is wide spread among fish. When an individual can simultaneously lay eggs and ejaculate sperms, it is called a synchronous hermaphrodite. Asynchronous her­ maphrodites are those which go through spontaneous sex rever­ sal with age. They can be protoandrous (males when young and females when old) or protogynous (the converse of 'the above). Among perch-like fish, synchronous hermaphroditism is the normal mode of reproduction as well as in many species of sea basses of the family Serranidae and the gonads of these fishes consist of a pair of ovotestis. Since both male and female regions of the gonad mature simultaneously to produce eggs and sperms prior to the spawning season, self-fertili­ zation is a possibility, except that their habit of spawning en masse permit cross-fertilization. Asynchronous hermaphroditism of the protogynous type is also seen in perch-like fish of the family Serranidae. Groupers and their allies, Epinephelus, Mycteroperca, exhibit a protogynous type of asynchronous hermaphroditism as well as the swamp eels of the order Synbranchiformes which are all females when young and change their sexes at about 2 to 3 years of age. There is a switch from ovary to testis which 16 takes from 3 to 5 months to complete. The protoandrous form is seen among progies and sea breams. The above examples should suffice to illustrate the point that there are ways other than being bisexual for di­ ploid organisms to generate enough genetic diversity among their progeny. In the mammalian species and in man, however, perma­ nent bisexuality is a rule. Thus it seems that sexual specia­ lization of the mammalian species has some selective advantage. IV.- GENETIC SEX DETERMINATION AND THE ONE-TO-ONE SEX RATIO. The fact that in some fish, which are synchronous hermaphrodites, the gonad simultaneously function as both testis and ovary, and the fact that even in man, ovotestes are seen in pathological conditions, reveal that the embryonic gonad of vertebrates has a bipotential to develop into a tes­ tis as well as an ovary. It follows then that gonochorism (being bisexual) must owe its existence to a specific regula­ tory mechanism which makes testicular and ovarian developments mutually exclusive of each other. Sometimes, sexual determination depends upon envi­ ronmental influences as in the very strange case of the snap­ ping turtle of the Mississipi River (Chelydra) where it is determined by the temperature of incubation of the eggs. In most instances, however, sex determination is controlled by a genetic mechanism. We know that in most species of vertebrates there are homogametic sexes and hetero­ gametic sexes when the chromosomal complements are considered. In the mammals, the female is XX (this means that all the chromosomes can be paired) but the male is XY or heterogametic as one of the chromosomes (the Y) is unique and cannot be paired. The situation is reversed in the bird species where the female is (WZ) and the male (ZZ) . From the analysis of rare pathological conditions, we also know that the develop­ ment of a testis depends upon the presence or absence of a Y chromosome but not (like it is the case in the Drosophiia) from the ratio one X vs two XX. It has been found that the 17 presence of a single Y is sufficient for testes to differen­ t'iate even in individuals who have as many as four X in the karyotype (XXXX I Y constitution). The role that the Y chromosome plays in sexual differentiation of the mammals is however limited to this ini­ tial act of enticing an indifferent embryonic gonad to diffe­ rentiate toward a testicular direction. The differentiation of the genital tract itself is controlled by an hormonal in­ fluence and depends upon the presence or absence of testoste­ rone ; a male steroid hormone manufactured in the testes. We know from a series of experiments performed by Alfred Jost in Paris on rabbit and rat embryos that regardless of their sex chromosome constitutions, whether they be XY or XX, mammalian embryos have an inherent tendency to develop as females. Thus, if the testis is removed from the XX embryo early enough, it will develop all of the female characteristics while the male phenotype can easily be developed, out of an XX genotype, by continuously exposing it to testosterone. The female sex thus appears as the primordial sex, the manifestation of which requires no manipulation. The male, on another hand, is a female modified by an hormonal influence. V.- MALE AND FEMALE OR THE TWO SIDES OF THE SAME COIN. A mammalian body is composed of a considerable num­ ber of cells which are grouped in different tissues with a sharply defined function. Both the male and the female however have heart, brain, blood cells, etc. and of course these cells must not be "inducible" by the testosterone as they have a basic physiological function totally unrelated with the sexuality. Inducible cells are restricted to the so-called Wolfian and Mullerion embryonal systems. If a gonad is of the male type and produces a normal amount of testoste­ rone, the Wolfian system is induced and, in addition to the testis, epididymis, vasa deferens, and seminal vesicles deve­ lop as well as a penis with a prostatic gland, and an erectile tissue. If the gonad is of the ovarian type, the Wolfian sys- 18 tern degenerate and a female genital tract develops from the Mullerian system. The cell types which can respond to testosterone are categorized as target cells of testosterone. On these cells, receptor sites are present for the small hydrophobic testosterone molecules to bind with. Thus maleness and femaleness can be reduced to two alternative states : the testosterone bound state and the unbound state. Two sides of a same coin. VI.- THE GENETIC REGULATORY SYSTEM OF SEX DETERMINATION. Testosterone is a small hydrophobic molecule. By itself, it is incapable of recognizing a specific set of genes on the DNA double strands, but we know that there is a more complex molecule which is a protein called the Nuclear­ cytosol-androgen-receptor protein which plays the role of an intermediary between the cell surface (where it gets in con­ tact with the testosterone molecule) and the DNA of the cell (where it binds with a specific dormant set of genes to switch it on).
Recommended publications
  • Download Document
    Downloaded from UvA-DARE, the institutional repository of the University of Amsterdam (UvA) http://dare.uva.nl/document/197409 File ID 197409 Filename Chapter 5 Geographic variation in Poecilia Bloch and Schneider, 1801 (Teleostei: Poeciliidae), with descriptions of three new species and lectotypes for P. dovii Günther, 1866 and for P. vandepolli van Lidth de Jeude, 1887 SOURCE (OR PART OF THE FOLLOWING SOURCE): Type Dissertation Title From the Amazonriver to the Amazon molly and back again Author F. Poeser Faculty Faculty of Science Year 2003 Pages 180 ISBN 9076894329 FULL BIBLIOGRAPHIC DETAILS: http://dare.uva.nl/record/115955 Copyright It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use. UvA-DARE is a service provided by the library of the University of Amsterdam (http://dare.uva.nl) 44 From the Amazon river to the Amazon molly and back again: Chapter 5 Geographic variation in Poecilia Bloch and Schneider, 1801 (Teleostei: Poeciliidae), with descriptions of three new species and lectotypes for P. dovii Giinther, 1866 and for P. vandepolli van Lidth de Jeude, 1887 Fred. N. Poeser Institute for Systematics and Population Biology, Department of Ichthyology, University of Amsterdam P.O. Box 94766, 1090 GT Amsterdam, The Netherlands Abstract The South American species with the vernacular name "mollies" are analyzed and three new species of the genus Poecilia are described and figured, viz., P. boesemani n. sp. from Trinidad, P. koperi n. sp. from Venezuela and Colombia, and P.
    [Show full text]
  • Uva-DARE (Digital Academic Repository)
    UvA-DARE (Digital Academic Repository) From the Amazonriver to the Amazon molly and back again Poeser, F.N. Publication date 2003 Link to publication Citation for published version (APA): Poeser, F. N. (2003). From the Amazonriver to the Amazon molly and back again. IBED, Universiteit van Amsterdam. General rights It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons). Disclaimer/Complaints regulations If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible. UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl) Download date:24 Sep 2021 From the Amazon river to the Amazon molly and back again: Introduction iii Pre-Hennigian taxonomy of Poecilia In this introduction, I summarize the taxonomy of Poecilia and its allies. This is done in two chronological arranged sections. A third section is moved to Appendix 1. In Appendix 1, I summarize the taxa recorded by Eschmeyer (1990) as former and present synonyms of Poecilia in alphabetic order.
    [Show full text]
  • Mating Preferences of Amazon Mollies (Poecilia Formosa) in Multi-Host Populations
    Behaviour 149 (2012) 233–249 brill.nl/beh Mating preferences of Amazon mollies (Poecilia formosa) in multi-host populations Brandon L. Joachim ∗ and Ingo Schlupp Department of Zoology, University of Oklahoma, Norman, OK 73019, USA *Corresponding author’s e-mail address: [email protected] Accepted 6 March 2012 Abstract Gynogenesis is a peculiar mode of clonal reproduction in which eggs need to be pseudo-fertilized by sperm, but the male genes are not passed on to the offspring. One mating system in which gynogenesis is found involves a unisexual hybrid, the Amazon molly (Poecilia formosa), which typically uses males of its two parental species as sperm donors. Most gynogenetic lineages do not sexually parasitize males that were not involved in their hybrid origin and although some gynogens have the ability to utilize males from additional species, they rarely occur in sympatry with more than one sperm host. A few populations of the Amazon molly, however, do occur syntopically with more than one host species, raising the question of whether specific preferences have evolved in P. formosa and whether Amazon mollies can now act like Red Queens, driving the evolution of discrimination abilities in the host species. Near Ciudad Mante, Mexico, the critically endangered Tamesí molly (P. latipunctata) occurs in exclusive sympatry with Amazon mollies and one of P. formosa’s parental species, the Atlantic molly (P. mexicana). In this study we tested the initial and post-exposure preference of allopatric and sympatric P. formosa (with regards to P. latipunctata) between P. latipunctata and P. mexicana males. We predicted that P.
    [Show full text]
  • Survey of Texas Hornshell Populations in Texas: Years
    FINAL PERFORMANCE REPORT As Required by THE ENDANGERED SPECIES PROGRAM TEXAS Grant No. TX E-132-R-2 Endangered and Threatened Species Conservation Survey of Texas Hornshell Populations in Texas Prepared by: Drs. Lyubov Burlakova and Alexander Karatayev Carter Smith Executive Director Clayton Wolf Division Director, Wildlife 25 August 2014 FINAL REPORT STATE: ____Texas_______________ GRANT NUMBER: ___E – 132-R-2____ GRANT TITLE: Survey of Texas Hornshell Populations in Texas, Yr 2&3 REPORTING PERIOD: ____1 Sep 11 to 31 Aug 14 OBJECTIVE(S): To assess the current distribution of P. popeii in Texas; evaluate long-term changes in distribution range; locate and describe existing populations, and determine species’ habitat requirements. Segment Objectives: 1. Assess the current distribution of Popenaias popeii in Texas; 2. Evaluate long-term changes in distribution range; 3. Locate and describe existing populations, and (4) determine species’ habitat requirements. Significant Deviation: None. Summary Of Progress: Please see Attachment A. Location: Terrell, Maverick, Webb, and Val Verde counties, TX Cost: ___Costs were not available at time of this report.__ Prepared by: _Craig Farquhar_____________ Date: 25 Aug 2014 Approved by: ______________________________ Date:___ 25 Aug 2014 C. Craig Farquhar 2 ATTACHMENT A TEXAS PARKS AND WILDLIFE DEPARTMENT TRADITIONAL SECTION 6 Joint Project with New Mexico Department of Game and Fish FINAL PERFORMANCE REPORT State: Texas Project Number: 419446 Project Title: “Survey of Texas Hornshell Populations in Texas” Time period: February 3, 2012 - August 31, 2014 Full Contract Period: 3 February 2012 To: 31 August 2014 (with requested 12-month no-cost extension) Principal Investigators: Lyubov E. Burlakova, Alexander Y.
    [Show full text]
  • Pterygoplichthys Pardalis
    FULL ACCOUNT FOR: Pterygoplichthys pardalis Pterygoplichthys pardalis System: Freshwater Kingdom Phylum Class Order Family Animalia Chordata Actinopterygii Siluriformes Loricariidae Common name Amazon sailfin catfish (English, United States), carachama (Spanish, Ecuador, Peru), cascudo (Spanish, Peru), peru- riesenschilderwels (German, Germany), acari (Portuguese, Brazil), ajas (Spanish, Peru), pantterileväpleko (Finnish, Finland), cachpas (Spanish, Peru), cachga (Spanish, Peru), vieja (Spanish, Peru), acari bodó bodó (Portuguese, Brazil) Synonym Hypostomus pardalis , (Castelnau, 1855) Liposarcus jeanesianus , (Cope, 1874) Liposarcus pardalis , (Castelnau, 1855) Liposarcus varius , (Cope, 1872) Similar species Summary view this species on IUCN Red List Lifecycle Stages Growth of Pterygoplichthys is rapid during the first two years of life, with total lengths of many sailfin catfishes exceeding 300 mm by age 2. Specimens in aquaria may live more than 10 years. The size range for most of the adult species in the Loricariid family is 30–50 cm, but individuals have been observed to reach 70 cm. Pterygoplicthys spp. start reproducing at approximately 25 cm (Mendoza et al, 2009). Habitat Description Pterygoplichthys spp. can be found in a wide variety of habitats, ranging from relatively cool, fast- flowing and oxygen-rich highland streams to slow-flowing, warm lowland rivers and stagnant pools poor in oxygen. They are tropical fish and populations are typically limited only by their lower lethal temperature which has been found to be about 8.8-11°C in some species (Gestring, 2006). They can thrive in a range of acidic to alkaline waters in a range of about (pH 5.5.0 to 8.0) (Mendoza et al., 2009). They are often found in soft waters, but can adapt very quickly to hard waters.
    [Show full text]
  • Drainage Basin Checklists and Dichotomous Keys for Inland Fishes of Texas
    A peer-reviewed open-access journal ZooKeys 874: 31–45Drainage (2019) basin checklists and dichotomous keys for inland fishes of Texas 31 doi: 10.3897/zookeys.874.35618 CHECKLIST http://zookeys.pensoft.net Launched to accelerate biodiversity research Drainage basin checklists and dichotomous keys for inland fishes of Texas Cody Andrew Craig1, Timothy Hallman Bonner1 1 Department of Biology/Aquatic Station, Texas State University, San Marcos, Texas 78666, USA Corresponding author: Cody A. Craig ([email protected]) Academic editor: Kyle Piller | Received 22 April 2019 | Accepted 23 July 2019 | Published 2 September 2019 http://zoobank.org/B4110086-4AF6-4E76-BDAC-EA710AF766E6 Citation: Craig CA, Bonner TH (2019) Drainage basin checklists and dichotomous keys for inland fishes of Texas. ZooKeys 874: 31–45. https://doi.org/10.3897/zookeys.874.35618 Abstract Species checklists and dichotomous keys are valuable tools that provide many services for ecological stud- ies and management through tracking native and non-native species through time. We developed nine drainage basin checklists and dichotomous keys for 196 inland fishes of Texas, consisting of 171 native fishes and 25 non-native fishes. Our checklists were updated from previous checklists and revised using reports of new established native and non-native fishes in Texas, reports of new fish occurrences among drainages, and changes in species taxonomic nomenclature. We provided the first dichotomous keys for major drainage basins in Texas. Among the 171 native inland fishes, 6 species are considered extinct or extirpated, 13 species are listed as threatened or endangered by U.S. Fish and Wildlife Service, and 59 spe- cies are listed as Species of Greatest Conservation Need (SGCN) by the state of Texas.
    [Show full text]
  • Description of Poecilia (Acanthophacelus) Wingei N
    Contributions to Zoology, 74 (1/2) 97-115 (2005) Description of Poecilia (Acanthophacelus) wingei n. sp. from the Paría Peninsula, Venezuela, including notes on Acanthophacelus Eigenmann, 1907 and other subgenera of Poecilia Bloch and Schneider, 1801 (Teleostei, Cyprinodontiformes, Poeciliidae) Fred. N. Poeser1, Michael Kempkes2, Isaäc J. H. Isbrücker1 1 Zoological Museum Amsterdam, University of Amsterdam, P.O. Box 94766, 1090 GT, Amsterdam, The Nether- lands, e-mail: [email protected]; 2 Am Mühlenberg 25, D-46419 Isselburg – Anholt, Germany Keywords: Guppies, Poecilia reticulata, P. wingei, melanophore patterns, character displacement, Paría Peninsula, despeciation Abstract Remarks on the 'Endler’s live-bearer' ...................................... 113 Acknowledgements ..................................................................... 114 The taxonomy of the common guppy, Poecilia reticulata Peters, References ..................................................................................... 114 1859, is reviewed and the closely related Campoma guppy, P. wingei n. sp., is described. Formerly, the common guppy was not judged to be closely related to any other species of Poecilia, but Introduction the new species is the second species to be allocated in the sub- genus Acanthophacelus Eigenmann, 1907. The recognition of P. wingei results from observed character displacement, i.e., on the The common guppy, Poecilia reticulata Peters, 1859, interaction between two closely related species in a shared envi- has a long history as
    [Show full text]
  • Microsatellites for the Gynogenetic Amazon Molly, Poecilia Formosa: Useful Tools for Detection of Mutation Rate, Ploidy Determination and Overall Genetic Diversity
    c Indian Academy of Sciences RESEARCH NOTE Microsatellites for the gynogenetic Amazon molly, Poecilia formosa: useful tools for detection of mutation rate, ploidy determination and overall genetic diversity KATHRIN P. LAMPERT1∗, DUNJA K. LAMATSCH1,3, SUSANNE SCHORIES1, ARMIN HOPF1, FRANCISCO J. GARCIA´ DE LEON´ 2 and MANFRED SCHARTL1 1Department of Physiological Chemistry I, University of Wuerzburg, Biozentrum, Am Hubland, 97074 Wuerzburg, Germany 2Centro de Investigaciones Biol´ogicas del Noreste, S.C. (CIBNOR, S.C.), Col. Playa Palo de Santa Rita, La Paz, BCS, M´exico 23090 3Present address: Freshwater Biology, Royal Belgian Institute of Natural Sciences, Vautierstraat 29, 1000 Brussels, Belgium Introduction genetic material is usually excluded from the oocyte and does not contribute to the offsprings’ genomes. In very The Amazon molly Poecilia formosa is a model system for rare cases, however, the exclusion mechanism fails, either studying the evolution of sex (Turner 1980; Schartl 1995) leaving small parts of genetic material in the oocyte in the and skin cancer development (Schartl et al. 1997). Only very form of microchromosomes or leading to triploid individu- few variable microsatellites are known for this species. Mi- als. Laboratory strains bred with Black molly can have up crosatellites, however, have already proven to be very useful to three microchromosomes. A higher number of microchro- tools for diverse genetic analyses (Lampert et al. 2005). Here mosomes correlates with an increased risk of developing skin we report the results of cross-amplification of 63 microsatel- cancer (Schartl et al. 1997). lite loci, originally developed for Xiphophorus, tested in the Amazon mollies occur in mixed schools with P.mexicana Amazon molly and its two parental species P.
    [Show full text]
  • Character Displacement in Sailfin Mollies, Poecilia
    Environmental Biology of Fishes (2005) 73: 75–88 Ó Springer 2005 Character displacement in sailfin mollies, Poecilia latipinna: allozymes and behavior Caitlin R. Gabora, Michael J. Ryanb & Donald C. Morizotc aDepartment of Biology, Texas State University, San Marcos, TX 7866, U.S.A. (e-mail: [email protected]) bSection of Integrative Biology, C0930, University of Texas, Austin, TX 78712, U.S.A. cThe University of Texas M.D. Anderson Cancer Center, Science Park, Research Division, P.O. Box 389, Smithville, TX 78957, U.S.A. Received 2 December 2003 Accepted 7 October 2004 Key words: genetic variation, livebearing fishes, Poecilia formosa, speciation Synopsis We analyzed variation in allozymes and mating preferences in 12 populations across much of the range of the sailfin molly, Poecilia latipinna. Sailfin mollies can be sympatric with its sexual parasite Amazon mollies, P. formosa. Amazon mollies must co-exist and mate with bisexual males of closely related species (including sailfin mollies) to induce embryogenesis but inheritance is strictly maternal. Where sailfin and Amazon mollies are sympatric there is evidence of reproductive character displacement as males show a significantly stronger mating preference for sailfin molly females over Amazon mollies compared to preferences of males from allopatric populations. From the allozyme data we found a moderate amount of genetic variation across all populations but this variation did not reveal significant partitioning between sympatric and allopatric populations. Additionally, we found no evidence for isolation by distance as genetic distance was not significantly correlated with geographic distance. While allozyme variation also did not significantly correlate with male mating preferences, there was a significant correlation between male mating preferences and geographic distance.
    [Show full text]
  • Colour Vision and Mate Choice in the Family Poeciliidae
    Beauty in the Eyes of the Beholders: Colour Vision and Mate Choice in the Family Poeciliidae by Benjamin Alexander Sandkam B.Sc. (Integrative Biology), University of Illinois at Urbana-Champaign, 2009 Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in the Department of Biological Sciences Faculty of Science © Benjamin Alexander Sandkam 2015 SIMON FRASER UNIVERSITY Fall 2015 Approval Name: Benjamin Alexander Sandkam Degree: Doctor of Philosophy (Biological Sciences) Title: Beauty in the Eyes of the Beholders: Colour Vision and Mate Choice in the Family Poeciliidae Examining Committee: Chair: Gerhard Gries Professor Felix Breden Senior Supervisor Professor Wendy Palen Supervisor Associate Professor Kimberly Hughes Supervisor Professor Department of Biological Science Florida State University Michael Hart Internal Examiner Professor Department of Biological Sciences Karen Carleton External Examiner Associate Professor Department of Biology University of Maryland, College Park Date Defended/Approved: September 21, 2015 ii Ethics Statement iii Abstract Sexual selection plays a major role in numerous aspects of evolution. Many models have attempted to explain how mate preferences evolve both across populations within a species and across species. ‘Sensory bias’ predicts that the traits involved in mate choice will co-evolve with the tuning of the sensory systems responsible for detecting such traits. The family Poeciliidae is a classic system for studies of mate choice and provides an excellent opportunity to examine the co-evolution of preference for colour traits and the sensory system detecting such traits: colour vision. In this dissertation, I present a body of work investigating how colour vision differs across species and populations, thus exploring the potential role sensory systems have in shaping mate preferences.
    [Show full text]
  • The Journal of the American Livebearer Association
    LIVEBEARERS THE JOURNAL OF THE A MERICAN L IVEBEARER A SSOCIATION 2VOLUME 10 #241 www.livebearers.org WINTER 2018ALA LIVEBEARER-2019S SCIENCE JUST ASK A SCIENTIST ! WITH DR. MICHI TOBLER, ALA Kansas State University Division of Biology Question: I recently heard that the Amazon molly is a species without males. Is that true? How is that even possible? It turns out y’all have a lot of questions about how our fish reproduce. I figured this question would be a nice follow-up from the last installment of “Just Ask a Scientist!” that dealt with the possibility of sex change in livebearers. So, in the vein of weird reproductive practices, the Amazon molly (Poecilia formosa) does indeed exist, and it is an all-female species. Amazon mollies are actually named after the Amazons, the all-female warrior tribe of Greek mythology (not after the Amazon river as frequently assumed). Amazon mollies occur in coastal and freshwater habitats in Texas and Mexico, and their range along the coast of the Gulf of Mexico roughly stretches from Galveston, TX to Tampico, MX. The species has also been introduced in springs between San Marcos and New Braunfels in Central Texas, where some of you may have collected it during fieldtrips associated with past ALA meetings. So, if Amazon mollies are all-female, how do they reproduce? The technical term for the Amazon molly’s reproductive strategy is called gynogenesis, which is a form of asexual reproduction (also called parthenogenesis). Essentially, Amazon mollies clone themselves, producing all-female offspring that are genetically identical to the mother.
    [Show full text]
  • Phenotypic Variation in an Asexual-Sexual Fish System: Visual Lateralization
    fevo-09-605943 February 5, 2021 Time: 16:59 # 1 ORIGINAL RESEARCH published: 11 February 2021 doi: 10.3389/fevo.2021.605943 Phenotypic Variation in an Asexual-Sexual Fish System: Visual Lateralization Allison D. Connelly* and Michael J. Ryan Department of Integrative Biology, The University of Texas at Austin, Austin, TX, United States Sexual reproduction is nearly ubiquitous in the vertebrate world, yet its evolution and maintenance remain a conundrum due to the cost of males. Conversely, asexually reproducing species should enjoy a twofold population increase and thus replace sexual species all else being equal, but the prevalence of asexual species is rare. However, stable coexistence between asexuals and sexuals does occur and can shed light on the mechanisms asexuals may use in order to persist in this sex-dominated world. The asexual Amazon molly (Poecilia formosa) is required to live in sympatry with one of its sexual sperm hosts –sailfin molly (Poecilia latipinna) and Atlantic molly (Poecilia mexicana)—and are ecological equivalents to their host species in nearly every way except for reproductive method. Here, we compare the visual lateralization between Amazon mollies and sailfin mollies from San Marcos, Texas. Neither Amazon mollies Edited by: nor sailfin mollies exhibited a significant eye bias. Additionally, Amazon mollies exhibited Andrea S. Aspbury, Texas State University, United States similar levels of variation in visual lateralization compared to the sailfin molly. Further Reviewed by: investigation into the source of this variation –clonal lineages or plasticity—is needed to Jonathan Mee, better understand the coexistence of this asexual-sexual system. Mount Royal University, Canada Caitlin R.
    [Show full text]