Method for Producing an Aromatic Compound Having an Alkyl Group with at Least Three Carbon Atoms

Total Page:16

File Type:pdf, Size:1020Kb

Method for Producing an Aromatic Compound Having an Alkyl Group with at Least Three Carbon Atoms Europäisches Patentamt *EP000985649A2* (19) European Patent Office Office européen des brevets (11) EP 0 985 649 A2 (12) EUROPEAN PATENT APPLICATION (43) Date of publication: (51) Int Cl.7: C07C 5/27 15.03.2000 Bulletin 2000/11 (21) Application number: 99307167.9 (22) Date of filing: 09.09.1999 (84) Designated Contracting States: • Minomiya, Eiichi AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU Okazaki-shi, Aichi 444-3505 (JP) MC NL PT SE • Inohara, Masahiro Designated Extension States: Mizuho-ku, Nagoya-shi, Aichi 467-0042 (JP) AL LT LV MK RO SI • Iwayama, Kazuyoshi Nagoya-shi, Aichi 464-0074 (JP) (30) Priority: 09.09.1998 JP 25509898 • Kato, Testuya 19.11.1998 JP 32994498 Kamakura-shi, Kanagawa 248-0032 (JP) (71) Applicant: TORAY INDUSTRIES, INC. (74) Representative: Coleiro, Raymond et al Tokyo 103-8666 (JP) MEWBURN ELLIS York House (72) Inventors: 23 Kingsway • Nakatani, Jiro London WC2B 6HP (GB) Nagoya-shi, Aichi 458-0044 (JP) (54) Method for producing an aromatic compound having an alkyl group with at least three carbon atoms (57) Aromatic compounds having an alkyl group alyst containing zeolite and containing rhenium with at least 3 carbon atoms are produced in a process and/or silver, in a liquid phase, thereby changing the comprising at least one of the following steps: position of the carbon atoms of the alkyl group bonding to the aromatic ring of the compound; (1) a step of contacting a starting material that con- (3) a step of contacting a halogenated aromatic tains an aromatic compound having a branched compound having an alkyl group with at least 3 car- alkyl group with at least 3 carbon atoms, with a ze- bon atoms, with an acid-type catalyst, thereby olite-containing catalyst in a liquid phase in the isomerizing the compound; and presence of hydrogen therein, thereby changing the (4) a step of treating a mixture of isomers of an ar- position of the carbon atoms of the alkyl group omatic compound having an alkyl group with at bonding to the aromatic ring of the compound; least 3 carbon atoms, with a zeolite adsorbent that (2) a step of contacting a starting material that con- contains at least one exchangable cation selected tains an aromatic compound having a branched from alkali metals, alkaline earth metals, lead, thal- alkyl group with at least 3 carbon atoms, with a cat- lium and silver, thereby separating a specific isomer from the isomer mixture through adsorption. EP 0 985 649 A2 Printed by Jouve, 75001 PARIS (FR) EP 0 985 649 A2 Description [0001] The present invention relates to a method for producing of aromatic compounds having an alkyl group with at least 3 carbon atoms, which are useful as starting materials for production of various pharmaceuticals and agricultural 5 chemicals, through conversion, isomerization and/or adsorptive separation of aromatic compounds, and also to cata- lysts and adsorbents for the method. [0002] In aromatic compounds having a branched alkyl group with at least 3 carbon atoms, in general, it is difficult to change the position of the carbon atoms of the alkyl group bonding to the aromatic ring. Especially, (A) reducing the number of the branches of the alkyl group, (B) shortening the branched side chains of the alkyl group and (C) changing 10 the alkyl group into a different one bonding to the aromatic ring via a secondary carbon are difficult. [0003] One example of changing the position of the carbon atoms of an alkyl group bonding to an aromatic ring, thereby reducing the number of the branches of the alkyl group is represented by the following chemical reaction formula: 15 20 25 wherein R1 to R5 each represents a methyl, an ethyl group, or a linear alkyl group with at least 3 carbon atoms; 30 X1 and X2 each represent a methyl group, an ethyl group, a halogen atom, a formyl group, a carboxyl group, an alkoxy group, a nitro group, an amino group, or a cyano group; n is from 0 to 5. [0004] Another example of changing the position of the carbon atoms of an alkyl group bonding to an aromatic ring, 35 thereby shortening the branched side chains of the alkyl group is represented by the following chemical reaction for- mula: 40 45 50 wherein R6 represents an ethyl group, or a linear alkyl group with at least 3 carbon atoms; R8 represents a hydrogen atom, or an alkyl group of which the carbon chain is shorter than that of R6; R7 and R9 each represents an alkyl group; X3 and X4 each represent a methyl group, an ethyl group, a halogen atom, a formyl group, a carboxyl group, an alkoxy group, a nitro group, an amino group, or a cyano group; 55 n is from 0 to 5. [0005] Still another example of changing the position of the carbon atoms of an alkyl group bonding to an aromatic ring, thereby changing the alkyl group into a different one bonding to the aromatic ring via a secondary carbon is 2 EP 0 985 649 A2 represented by the following chemical reaction formula: 5 10 15 wherein R10 to R12 each represents an alkyl group; X5 and X6 each represent a methyl group, an ethyl group, a halogen atom, a formyl group, a carboxyl group, an alkoxy group, a nitro group, an amino group, or a cyano group; n is from 0 to 5. 20 [0006] Specifically, alkylating benzene with propylene gives a main product of isopropylbenzene in which the branched alkyl group directly bonds to the aromatic ring via its tertiary carbon, but gives a minor side product of n- propylbenzene in which the non-branched alkyl group directly bonds to the aromatic ring via its secondary carbon. In the main product of isopropylbenzene, the isopropyl group is stabilized. In this, therefore, it is difficult to change the configuration of the alkyl group bonding to the aromatic ring so as to change the isopropylbenzene into n-propylben- 25 zene. The same shall apply to any other aromatic compounds having a higher alkyl group. Anyhow, it is known that alkyl group-substituted aromatic compounds, in which the number of the branches of the alkyl group is small and/or the branched side chains of the alkyl group are short and/or the alkyl group bonds to the aromatic group via a secondary carbon, are difficult to produce. Therefore, in order to obtain n-alkyl group-substituted aromatic compounds, generally employed is a method of alkylating aromatic compounds with an n-alkyl halide or an n-alkyl alcohol. However, the 30 method is not always satisfactory in industrial use, since the reagents to be used are expensive and since the n-alkyl group-substituted aromatic compounds produced are partly isomerized. Another method is known, which comprises alkylating toluene with ethylene in the presence of an alkali catalyst, but this is still unsatisfactory in industrial use. Given that situation, it is desired to develop efficient and inexpensive methods for producing n-alkyl group-substituted aromatic conpounds. 35 [0007] Japanese Patent Laid-Open No. 141525/1984 discloses an inexpensive method of producing benzene com- pounds having an n-alkyl group from inexpensive starting materials. In the method, an alkylbenzene having a branched alkyl group, of which the number of carbon atoms is the same as that of carbon atoms of the n-alkyl group in the intended product, is contacted with zeolite catalyst along with a benzene derivative. Journal of Catalysis, Vol. 146, pp. 523-529, 1994, and Applied Catalysis A, Vol. 108, pp. 187-204, 1994 disclose vapor-phase alkylation of toluene with 40 isopropanol and propanol in the presence of a zeolite catalyst, in which the initial-stage product of methylisopropyl- benzene is trans-alkylated with the starting toluene or benzene into n-alkylbenzenes. [0008] Halogenated aromatic compounds having an alkyl group with at least 3 carbon atoms are produced from aromatic compounds having an alkyl group with at least 3 carbon atoms through nucleophilic substitution with halogens such as chlorine and bromine. The halogenation is extremely specific to ortho (o-) and para (p-) orientation. Therefore, 45 for obtaining meta (m-) isomer through the reaction, the product must be isomerized. The ratio of isomers of halogenated aromatic compounds having an alkyl group with at least 3 carbon atoms that are demanded in the market often differs from that of those isomers that are actually produced through halogenation. Therefore, for effectively utilizing halogen- ated aromatic compounds having an alkyl group with at least 3 carbon atoms, the isomerization of the compounds has an important technical meaning. Specifically, the isomerization referred to herein is to change the relative position of 50 the halogen and the alkyl group on the aromatic ring of halogenated aromatic compounds, and does not include isomer- ization of the alkyl group itself. As conventional examples of isomerization of aromatic compounds, generally known are a method of using a catalyst of aluminium trichloride or the like such as that disclosed in J. Org. Chem., Vol. 27, p. 3464, 1962; and a method of using a catalyst of HF-BF3 such as that disclosed in Japanese Patent Laid-Open No. 11809/1971. Apart from those, Acta Chemica Scandinavia, Vol. B39, p. 437, 1985, and Japanese Patent Laid-Open 55 No. 316600/1998 disclose isomerization of chloroethylbenzene with mordenite-type zeolite. Japanese Patent Laid- Open Nos. 4042ε/1982, 85330/1982, 163327/1982 and 309792/1995 disclose isomerization of halogenotoluenes with a catalyst of zeolite. [0009] A compound having a higher alkyl group shall include isomers, depending on the number of the branches of 3 EP 0 985 649 A2 the alkyl group therein, and the isomers generally have similar properties (boiling point, melting point, solubility).
Recommended publications
  • Report of the Advisory Group to Recommend Priorities for the IARC Monographs During 2020–2024
    IARC Monographs on the Identification of Carcinogenic Hazards to Humans Report of the Advisory Group to Recommend Priorities for the IARC Monographs during 2020–2024 Report of the Advisory Group to Recommend Priorities for the IARC Monographs during 2020–2024 CONTENTS Introduction ................................................................................................................................... 1 Acetaldehyde (CAS No. 75-07-0) ................................................................................................. 3 Acrolein (CAS No. 107-02-8) ....................................................................................................... 4 Acrylamide (CAS No. 79-06-1) .................................................................................................... 5 Acrylonitrile (CAS No. 107-13-1) ................................................................................................ 6 Aflatoxins (CAS No. 1402-68-2) .................................................................................................. 8 Air pollutants and underlying mechanisms for breast cancer ....................................................... 9 Airborne gram-negative bacterial endotoxins ............................................................................. 10 Alachlor (chloroacetanilide herbicide) (CAS No. 15972-60-8) .................................................. 10 Aluminium (CAS No. 7429-90-5) .............................................................................................. 11
    [Show full text]
  • Including Toluene Derivatives
    RSC Advances View Article Online PAPER View Journal | View Issue Catalytic C–H aerobic and oxidant-induced oxidation of alkylbenzenes (including toluene Cite this: RSC Adv., 2020, 10,23543 derivatives) over VO2+ immobilized on core–shell Fe3O4@SiO2 at room temperature in water† Pegah Mohammadpour and Elham Safaei * Direct C–H bond oxidation of organic materials, and producing the necessary oxygenated compounds under mild conditions, has attracted increasing interest. The selective oxidation of various alkylbenzenes 2+ was carried out by means of a new catalyst containing VO species supported on silica-coated Fe3O4 nanoparticles using t-butyl hydroperoxide as an oxidant at room temperature in H2O or solvent-free media. The chemical and structural characterization of the catalyst using several methods such as FTIR spectroscopy, XRD, FETEM, FESEM, SAED, EDX and XPS showed that VO2+ is covalently bonded to the silica surface. High selectivity and excellent conversion of various toluene derivatives, with less reactive Creative Commons Attribution 3.0 Unported Licence. Received 18th April 2020 aliphatic (sp3)C–H bonds, to related benzoic acids were quite noticeable. The aerobic oxygenation Accepted 15th May 2020 reaction of these alkylbenzenes was studied under the same conditions. All the results accompanied by DOI: 10.1039/d0ra03483e sustainability of the inexpensive and simple magnetically separable heterogeneous catalyst proved the rsc.li/rsc-advances important criteria for commercial applications. Introduction industrial communities. Among
    [Show full text]
  • Reactions of Benzene Or Alkylbenzenes with Steam Over a Silica-Supported Nickel Catalyst*
    54 Reactions of Benzene or Alkylbenzenes with Steam over a Silica-supported Nickel Catalyst* by .Masahiro Saito**, Yoshio Sohda** Michiaki Tokuno** and Yoshiro Morita** Summary: Benzene-steam and alkylbenzenes-steam reactions over a silica-supported nickel catalyst have been studied under atmospheric pressure in a temperature range of 370~430℃. In the reactionof benzene-steam,the methaneyield is lower and the carbon dioxideyield is higher than the estimatedvalue. The reactionis zero order with respectto benzeneand approxi- mately first order with respect to steam. In the reactionof alkylbenzenes-steam,ring breakdownand dealkylationoccur at the initial stage of reaction, and theformer occursmore easily than the latter at high conversionand at high temperature. The number and the position of the alkyl group on the benzene ring influencethe reaction rate and the selectivity. The reactionpath of dealkylationis proposed as follows: most effective catalyst for dealkylation with 1 Introduction steam, and they investigated reactivity and reac- The catalytic reaction of hydrocarbon with tion path on Ni/BeO at 450℃. steam is important for the production of hydrogen, In the present work, the reactions of benzene synthesis gas and town gas. The authors have or alkylbenzenes with steam were carried out previously reported the works on olefins-steam over a silica-supported nickel catalyst under and paraffins-steam reactions over a silica-sup- atmospheric pressure in a temperature range of ported nickel catalyst1)~3), and this study on 370~430℃, and the effects of reaction conditions, aromatics-steam reactions has been carried out rate of each reaction and the reaction path were as a consecutive one.
    [Show full text]
  • Disproportionation and Transalkylation of Alkylbenzenes Over Zeolite Catalysts
    Applied Catalysis A: General 181 (1999) 355±398 Disproportionation and transalkylation of alkylbenzenes over zeolite catalysts Tseng-Chang Tsaia, Shang-Bin Liub, Ikai Wangc,* aRe®ning and Manufacturing Research Center, Chinese Petroleum Corporation, Chiayi 600, Taiwan bInstitute of Atomic and Molecular Sciences, Academia Sinica, PO Box 23-166, Taipei 106, Taiwan cDepartment of Chemical Engineering, National Tsing-Hua University, Hsinchu 300, Taiwan Received 13 June 1998; received in revised form 3 October 1998; accepted 5 November 1998 Abstract Disproportionation and transalkylation are important processes for the interconversion of mono-, di-, and tri-alkylbenzenes. In this review, we discuss the recent advances in process technology with special focus on improvements of para-isomer selectivity and catalyst stability. Extensive patent search and discussion on technology development are presented. The key criteria for process development are identi®ed. The working principles of para-isomer selectivity improvements involve the reduction of diffusivity and the inactivation of external surface. In conjunction with the fundamental research, various practical modi®cation aspects particularly the pre-coking and the silica deposition techniques, are extensively reviewed. The impact of para-isomer selective technology on process economics and product recovery strategy is discussed. Furthermore, perspective trends in related research and development are provided. # 1999 Elsevier Science B.V. All rights reserved. Keywords: Disproportionation; Transalkylation;
    [Show full text]
  • Trimethylbenzenes CAS Registry Numbers: 526-73-6 (1,2,3-TMB) 95-63-6 (1,2,4-TMB) 108-67-8 (1,3,5-TMB) 25551-13-7 (Mixed Isomers)
    Development Support Document Final, September 4, 2015 Trimethylbenzenes CAS Registry Numbers: 526-73-6 (1,2,3-TMB) 95-63-6 (1,2,4-TMB) 108-67-8 (1,3,5-TMB) 25551-13-7 (Mixed Isomers) Prepared by Joseph T. Haney, Jr., M.S. Angela Curry, M.S. Toxicology Division Office of the Executive Director TEXAS COMMISSION ON ENVIRONMENTAL QUALITY Trimethylbenzenes Page i TABLE OF CONTENTS TABLE OF CONTENTS ............................................................................................................................................ I LIST OF TABLES ......................................................................................................................................................II ACRONYMS AND ABBREVIATIONS ................................................................................................................. III CHAPTER 1 SUMMARY TABLES .......................................................................................................................... 1 CHAPTER 2 MAJOR SOURCES AND USES ......................................................................................................... 4 CHAPTER 3 ACUTE EVALUATION ...................................................................................................................... 4 ACUTE 3.1 HEALTH-BASED ACUTE REV AND ESL ........................................................................................................ 4 3.1.1 Physical/Chemical Properties ....................................................................................................................
    [Show full text]
  • Studies of the Temporary Anion States of Unsaturated Hydrocarbons by Electron Transmission Spectroscopy
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Paul Burrow Publications Research Papers in Physics and Astronomy 1978 Studies of the Temporary Anion States of Unsaturated Hydrocarbons by Electron Transmission Spectroscopy Kenneth D. Jordan Paul Burrow Follow this and additional works at: https://digitalcommons.unl.edu/physicsburrow Part of the Atomic, Molecular and Optical Physics Commons This Article is brought to you for free and open access by the Research Papers in Physics and Astronomy at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Paul Burrow Publications by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. digitalcommons.unl.edu Studies of the Temporary Anion States of Unsaturated Hydrocarbons by Electron Transmission Spectroscopy Kenneth D. Jordan Mason Laboratory, Department of Engineering and Applied Science, Yale University, New Haven, Connecticut 06520 Paul D. Burrow Behlen Laboratory of Physics, University of Nebraska, Lincoln, Nebraska 68588 The concept of occupied and unoccupied orbitals has provided a useful means for visualizing many of the most important properties of mo- lecular systems. Yet, there is a curious imbalance in our experimen- tal knowledge of the energies of occupied and unoccupied orbitals. Whereas photoelectron spectroscopy has provided a wealth of data on positive ion states and has established that they can be associated, within the context of Koopmans’ theorem, with the occupied orbitals of the neutral molecule, the corresponding information for the neg- ative ion states, associated with the normally unoccupied orbitals, is sparse. In part this reflects the experimental difficulties connected with measuring the electron affinities of molecules which possess sta- ble anions.
    [Show full text]
  • BENZENE Disclaimer
    United States Office of Air Quality EPA-454/R-98-011 Environmental Protection Planning And Standards June 1998 Agency Research Triangle Park, NC 27711 AIR EPA LOCATING AND ESTIMATING AIR EMISSIONS FROM SOURCES OF BENZENE Disclaimer This report has been reviewed by the Office of Air Quality Planning and Standards, U.S. Environmental Protection Agency, and has been approved for publication. Mention of trade names and commercial products does not constitute endorsement or recommendation of use. EPA-454/R-98-011 ii TABLE OF CONTENTS Section Page LIST OF TABLES.....................................................x LIST OF FIGURES.................................................. xvi EXECUTIVE SUMMARY.............................................xx 1.0 PURPOSE OF DOCUMENT .......................................... 1-1 2.0 OVERVIEW OF DOCUMENT CONTENTS.............................. 2-1 3.0 BACKGROUND INFORMATION ...................................... 3-1 3.1 NATURE OF POLLUTANT..................................... 3-1 3.2 OVERVIEW OF PRODUCTION AND USE ......................... 3-4 3.3 OVERVIEW OF EMISSIONS.................................... 3-8 4.0 EMISSIONS FROM BENZENE PRODUCTION ........................... 4-1 4.1 CATALYTIC REFORMING/SEPARATION PROCESS................ 4-7 4.1.1 Process Description for Catalytic Reforming/Separation........... 4-7 4.1.2 Benzene Emissions from Catalytic Reforming/Separation .......... 4-9 4.2 TOLUENE DEALKYLATION AND TOLUENE DISPROPORTIONATION PROCESS ............................ 4-11 4.2.1 Toluene Dealkylation
    [Show full text]
  • Monoazo Dyes of the Benzothiazole Series, Their Preparation and Use In
    Europâisches Patentamt 0 013 809 (ij) QJJJ EuropeanEurooean Patent Office Qj)l'ï> Publication number: V ^- Office européen des brevets (lD EUROPEAN PATENT SPECIFICATION © Date of publication of patent spécification: 10.08.83 © Int. Cl.3: C 09 B 23/00, C 09 B 29/08, D 06 P 1/18 @^ Application number: 79302860.6 @ Dateof filing: 12.12.79 54) Monoazo dyes of the benzothiazole séries, their préparation and use in dyeing or printing hydrophobic fibres. (30) Priority: 25.12.78 JP 163617/78 @ Proprietor: SUMITOMO CHEMICAL COMPANY, 03.10.79 JP 128308/79 LIMITED 1 5 Kitahama 5-chome Higashi-ku Osaka-shi Osaka-fu (JP) © Date of publication of application: 06.08.80 Bulletin 80/16 @ Inventor: Yoshinaga, Kenja 10-3-314, Sonehigashinocho-2-chome @ Publication of the grant of the patent: Tokonaka-shi (JP) 1 0.08.83 Bulletin 83/32 Inventor: Hashimoto, Kiyoyasu 2-40, Hirata-1-chome Ibaraki-shi (JP) (84) Designated Contracting States: Inventor: Okaniwa, Tetsuo CH DE FR GB IT NL 27, Kuisehonmachi-1 -chome Amagasaki-shi (JP) Inventor: Kenmochi, Hirohito @ References cited: 9-1 5, Matsugaoka-4-chome DE - A - 1 959 777 Takatsuki-shi (JP) FR - A - 1 444 036 GB - A - 944 250 GB - A - 1 448 782 @ Representative: Harrison, Michael Robert et al, Urquhart-Dykes & Lord 47 Marylebone Lane London W1 M 6DL(GB) The file contains technical information submitted after the application was filed and not included in this specification Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted.
    [Show full text]
  • The Mechanism of Pyridine Hydrogenolysis on Molybdenum-Containing Catalysts III
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Universiteit Twente Repository JOURNAL OF CATALYSIS 34, 215-229 (1974) The Mechanism of Pyridine Hydrogenolysis on Molybdenum-Containing Catalysts III. Cracking, Hydrocracking, Dehydrogenation and Disproportionation of Pentylamine J. SONNEMANS” AND P. MARS l’wente University of Technology, Enschede, The Netherlands Received October 30, 1973 The conversion of pentylamine on a MoOrA1203 catalyst was studied between 250 and 350°C at various hydrogen pressures. The reactions observed were cracking to pentene and ammonia, hydrocracking to pentane and ammonia, dehydrogenation to pentanimine and butylcarbonitrile, and disproportionation to ammonia and dipentylamine. The equilibrium between pentylamine, dipentylamine and ammonia appeared to be established under most of the experimental conditions. The equilibrium constant is about 9 at 250°C and about 5 at 320°C. The disproportionation reaction is zero order in hydrogen and of -1 order in the initial pentylamine pressure. Dehydrogenation was observed at low hydrogen pressures, and especially at higher temperatures; the reaction is first order in pentylamine. Both cracking and hydrocracking take place, mainly above 300°C. Hydrocracking appears to be half order in hydrogen; the rate of cracking is almost independent of the hydrogen pressure. The hydrocarbon formation is of zero order in pentyl- amine or dipentylamine. The same type of reactions (except hydrocracking) take place on alumina, but with a far lower reaction rate. INTRODUCTION catalysts at hydrogen pressures of about One of the intermediates formed in the 60 atm (Z-4). They reported a high rate hydrogenolysis of pyridine is pentylamine of ammonia formation from the primary (1).
    [Show full text]
  • Method for Producing Pyridine Compound
    (19) TZZ¥_¥¥_T (11) EP 3 159 339 A1 (12) EUROPEAN PATENT APPLICATION published in accordance with Art. 153(4) EPC (43) Date of publication: (51) Int Cl.: 26.04.2017 Bulletin 2017/17 C07D 413/04 (2006.01) C07D 471/04 (2006.01) A01N 43/76 (2006.01) A01N 43/90 (2006.01) (21) Application number: 15806287.7 (86) International application number: (22) Date of filing: 29.05.2015 PCT/JP2015/065512 (87) International publication number: WO 2015/190316 (17.12.2015 Gazette 2015/50) (84) Designated Contracting States: (72) Inventors: AL AT BE BG CH CY CZ DE DK EE ES FI FR GB • WAKAMATSU, Takayuki GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO Oita-shi PL PT RO RS SE SI SK SM TR Oita 870-0106 (JP) Designated Extension States: • KASAI, Rika BA ME Osaka-shi Designated Validation States: Osaka 554-8558 (JP) MA (74) Representative: Vossius & Partner (30) Priority: 09.06.2014 JP 2014118457 Patentanwälte Rechtsanwälte mbB Siebertstrasse 3 (71) Applicant: Sumitomo Chemical Company, Limited 81675 München (DE) Tokyo 104-8260 (JP) (54) METHOD FOR PRODUCING PYRIDINE COMPOUND (57) To make it possible to produce a pyridine compound represented by formula (1) that is useful as an insecticide by reacting a compound represented by formula. (2) and a compound represented by formula (3). (In the formula, 1L represents a halogen atom; R2, R3, R4, R5, and R6 represent chain hydrocarbon groups, etc., having 1-6 carbon atoms optionally substituted by fluorine atoms. A 1 represents-NR7-, an oxygen atom, or a sulfur atom; A 2 represents a nitrogen atom or =CR8-.
    [Show full text]
  • Classification Tests for Hydrocarbons Using Solubility, Ignition, Nitration, Baeyer’S Test, Bromine Test and Basic Oxidation Test
    CLASSIFICATION TESTS FOR HYDROCARBONS USING SOLUBILITY, IGNITION, NITRATION, BAEYER’S TEST, BROMINE TEST AND BASIC OXIDATION TEST Jasher Christian Boado, Alyanna Cacas, Phoebe Calimag, Caryl Angelica Chin, Haidee Cosilet, John Francis Creencia Group 2, 2BMT, Faculty of Pharmacy, University of Santo Tomas ABSTRACT Hydrocarbons are classified as saturated, actively unsaturated, aromatic or an arene based on various classification tests involving test for solubility in concentrated H2SO4, ignition, active unsaturation using Baeyer’s test and Bromine test, aromaticity using nitration test, and basic oxidation test. This experiment aims to differentiate the intrinsic physical and the chemical properties of hydrocarbons, and to determine if it is saturated, actively unsaturated, aromatic or an arene. The sample compounds hexane, heptane, cyclohexane, cyclohexene, benzene and toluene were analyzed for their physical state in room temperature, color, and odor. Using solubility test, a drop of a sample was added cautiously into 1ml of concentrated H2SO4. Using the Baeyer’s Test and/or Bromine test in which 2 drops of 2% KmnO4 solution and 10 drops of 0.5% Br2 in CCl4 reagent, respectively, was added into 5 drops of a sample in a dry test tube, was shaken vigourously until the reagent is decolorized compared with water. Using Nitration test, 8 drops of nitrating mixture was added into 5 drops of a sample in a dry test tube, was observed for the formation of a yellow oily layer or droplet and was diluted with 20 drops of water. Using Basic Oxidation test, 8 drops of 2% KmnO4 solution and 3 drops of 10% NaOH solution was added into 4 drops of a sample in a dry test tube and was heated in a water bath for 2 minutes.
    [Show full text]
  • Hydrophobically Modified Polyethyleneimines And
    Wright State University CORE Scholar Browse all Theses and Dissertations Theses and Dissertations 2007 Hydrophobically Modified olyP ethyleneimines and Ethoxylated Polyethyleneimines Michael Joseph Simons Wright State University Follow this and additional works at: https://corescholar.libraries.wright.edu/etd_all Part of the Chemistry Commons Repository Citation Simons, Michael Joseph, "Hydrophobically Modified olyP ethyleneimines and Ethoxylated Polyethyleneimines" (2007). Browse all Theses and Dissertations. 162. https://corescholar.libraries.wright.edu/etd_all/162 This Thesis is brought to you for free and open access by the Theses and Dissertations at CORE Scholar. It has been accepted for inclusion in Browse all Theses and Dissertations by an authorized administrator of CORE Scholar. For more information, please contact [email protected]. Hydrophobically Modified Polyethyleneimines and Ethoxylated Polyethyleneimines A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science By MICHAEL J. SIMONS B.A., Columbia University, 1985 2007 Wright State University Wright State University School of Graduate Studies August 8, 2007 I HEREBY RECOMMEND THAT THE THESIS PREPARED UNDER MY SUPERVISION BY Michael J. Simons ENTITLED Hydrophobically Modified Polyethyleneimines and Ethoxylated Polyethyleneimines BE ACCEPTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF Master of Science. _______________________________ Eric Fossum, Ph. D. Thesis Director _______________________________ Kenneth Turnbull, Ph.D. Department Chair Committee on Final Examination _______________________________ Eric Fossum, Ph. D. _______________________________ Daniel Ketcha, Ph. D. _______________________________ Kenneth Turnbull, Ph.D. _______________________________ Joseph F. Thomas, Jr. Ph.D. Dean, School of Graduate Studies Abstract Michael Simons. M.S., Department of Chemistry, Wright State University, 2007. Hydrophobically Modified Polyethyleneimines and Ethoxylated Polyethyleneimines.
    [Show full text]