Acarina 20 (2): 108–129 © Acarina 2012

ACARI () — PARASITES OF M. Fajfer Department of Morphology, Adam Mickiewicz University, Faculty of Biology, Umultowska 89, 61–614 Poznan, Poland; e-mail: [email protected]

ABSTRACT: A brief review of parasitizing reptiles (Reptilia) was presented. Reptilian mites are represented by 15 families of temporary and permanent parasites which belong to 3 orders: (Entonyssidae, Heterozerconidae, Ixodorhynchi- dae, Laelapidae, , Omentolaelapidae, Paramegistidae), Metastigmata (Amblyommidae, Argasidae, Ixodidae) and Prostigmata (Cloacaridae, Harpirhynchidae, Leeuwenhoekiidae, Pterygosomatidae, Trombiculidae). The main aspects of host- parasite relationships were analyzed. Acari of six families (Acariformes: Cloacaridae, Harpirhynchidae, Pterygosomatidae and Parasitiformes: Entonyssidae, Ixodorhynchidae, Omentolaelapidae), i.e. 242 were recorded as permanent parasites of reptiles. All hosts of these mites are summated in table format. The obtained results indicated that host-specificity among acari- form mites is higher than that one in Parasitiformes. Differences in specificity between permanent endoparasitic and ectoparasitic mites were not significant. Most ectoparasitic mites occur under the host’s scales or in sites not reached by itching activities of the reptiles e.g. the ear canals or elbow joints. Endoparasites live in the respiratory passages of their reptilian hosts or in the host cloaca and muscles. Available data show that permanent parasites are characterized by the low prevalence index (IP) while IP of temporary parasites is high. The effect of mites on host fitness is unclear. Most studies showed that acari may cause various dis- eases and debilitation in reptiles e.g. anemia, reduced activity or dermatitis what is very marked in captive collections of reptiles. Additionally, species belonging to five families, i.e. Amblyommidae, Argasidae, Ixodidae, Macronyssidae, and Pterygosomatidae were recorded as vectors of many pathogens.

KEY WORDS: Acari, host-parasite relationships, parasites, Reptilia

INTRODUCTION Symbiotic relationships such as commensal- (1947) and Balashov (1982) and do not discuss ism and parasitism are widely distributed among micropredators attacking reptiles. Data about rep- acari-like chelicerates named Acari or Acarina tilian mites are summated in Table 1. (Chelicerata) (Krantz and Walter 2009). Many overall systematics and the species monographic reviews concerning host-parasite re- names used in this paper were obtained from the lationships of mammal and bird-associated acari TIGR/JCVI (http://www.reptile- were published in the past 20 years (Balashov database.org as of 24 April 2012 (Uetz 2010). 1982, 2009; Kim 1985; Clayton and Moore 1997; For the analysis of host-specificity among Bochkov 2009, etc). At the same time, host-para- permanent parasites of Reptilia 240 mite species site relationships between acari and reptiles or am- from six families (Acariformes: Cloacaridae, phibians received only limited attention (Balashov Harpirhynchidae, Pterygosomatidae and Parasiti- 1982, 2009) and special reviews about this topic formes: Entonyssidae, Ixodorhynchidae, Omento- are absent. In acari, the strongly limited number of laelapidae) were used (see Table 2). To estimate of taxa is associated with amphibians, whereas rep- the host specificity level, parasitiform mites vs. tile-associated acari are numerous and belong to acariform mites and ectoparasites vs. endopara- several families being known throughout the sites were compared using Fisher’s exact test. world. Moreover, mites of some families are as- Confidence intervals (CI) for proportions were sociated exclusively with these hosts (Krantz and calculated using the binomial distribution. Walter 2009). Even studying a small fraction of I. Host and phylogeny the over 9000 extant reptile species described to date allowed for the recording of more than 400 Zug et al. (2001) grouped extant reptiles into species of parasitic acari. three subclasses: Anapsida, Lepidosauria, and Ar- In this paper, I try to briefly summarize our chosauria. The first subclass Anapsida contains knowledge about host-parasite relationships of ac- only one order of turtles, Testudines with two sub- ari and reptiles. orders: the hidden-neck turtles Cryptodira (248 species) and the side-necked turtles Pleurodira (79 Material and methods species). This order is the oldest reptile group that In relation to acari taxonomy I follow the sys- evolved sometime prior to the Upper Jurassic or tem of Krantz and Walter (2009). Types of parasit- Cretaceous (Pyron 2010). ism are accepted according to the classification by The second subclass Lepidosauria contains Balashov (1982, 2009). I am focused exclusively two orders, Rhynhocephalia (2 species) and Squa- on parasitic relationships as defined by Dogel mata. The second order includes Sauria (~4900

108 Acari (Chelicerata) — parasites of reptiles sp.), Ophidia (~3070 sp.), and Amphisbaenia leaf-litter samples. Later on, it has been shown (~200 sp.). The lepidosaurs appeared in the Upper that Fain’s record was possibly accidental after he Triassic (over 200 Myr) and diversified into nu- checked the nasal cavities of a related spe- merous families during the Jurassic and Creta- cies. It is most probable that members of Benoiny­ ceous period (Vidal and Hedges 2009). ssus are free-living soil mites and might resort to The third subclass, Archosauria includes the parasitic lifestyles if the opportunity occurs (Ol- order Crocodylia which contains crocodylians, al- ivier and Theron 1997). ligators, and gharials (25 sp.). The order appeared 2. Obligate parasites in the Upper Cretaceous and includes the closest 2.1. Temporary parasites living relatives of birds (Brochu 2003). 2.1.1. Temporary ectoparasites Traditionally, the classical phylogeny divided PARASITIFORMES living reptiles into two phylogenetic branches Ixodoidea based on morphology and the fossil records: Up to now, more than 100 hard and soft tick anapsid reptiles (with a single opening in their species belonging to eight genera of the families sculls i.e. Testudines) and diapsid reptiles (with Argasidae and Ixodidae have been collected from two temporal openings in their sculls i.e. the Ar- reptiles worldwide (Pietzsch et al. 2006). chosauria and Lepidosauria) (Hedges and Poling Ticks from above mentioned families have a 1999). wide geographical distribution and are described Despite the series of taxonomic revisions from all classes of terrestrial vertebrates (Amphib- (Zug et. al. 2001; Fujita et. al. 2004; Vidal and ia, Reptilia, Aves and Mammalia). However, in Hedges 2009; Pyron et. al. 2011) the phylogenetic many cases reptiles are the principal hosts of ticks relationships among the primary lineages of Rep- (e.g. nearly all species of the Aponomma tilia remain still unclear. Both morphological and parasitize , , and tuatara; a lot of Am­ molecular studies have yielded multiple hypothe- blyomma species show a marked preference for ses for the phylogenetic relationships of Reptilia. reptilian hosts). There are known a few cases when Morphological studies show that Testudines may all stages are found exclusively on one reptile spe- be the only extant anapsid amniotes and the sister cies (monoxenous parasitism) e.g. Argas (Mi­ taxon of the diapsids. On the other hand, recent croargas) transversus (Argasidae) from Chelo­ molecular studies show that Testudines may be ac- noidis nigra (Quoy et Gaimard, 1824) (Hoogstraal tually diapsid amniotes who have lost their tempo- and Kohls 1966; Hoogstraal et al. 1973). ral scull openings. Most molecular data confirms Macronyssidae the hypothesis that Testudines are sisters of the Ar- In the family Macronyssidae (Parasitiformes: chosauria, however, Rieppel and Reisz (1999) Mesostigmata), only mites of the genus Ophionys­ placed turtles as the sister group to lepidosaurs sus are ectoparasites of reptiles, mainly lizards of rather than to archosaurs. Similarly, the phyloge- various genera (Fain and Bannert 2000, 2002). netic links of snakes (Ophidia) among other Lepi- The genus comprises 16 described species from dosauria are uncertain. Some studies place them (Sauria: , Scincidae, Lacerti- among lizards within Anguimorpha (Lee 2000), dae, Cordylidae, Diplodactylidae, and Ophidia), whereas others place snakes as sisters of a clade although mammals have also been reported as including all the lizards (Underwood 1970). More- hosts (Fain and Bannert 2002). Most frequently over, Rhynhocephalia is usually placed as a sister these ectoparasites are located on the soft tissues group to the Squamata based on morphology, al- around the eyes, in the ears (tympanic membrane), though analyses of limited molecular data suggest under the scales or around the cloaca of their hosts that tuataras are closer to archosaurs and turtles (Bannert et. al. 2000). Protonymphs and females (Rest 2003). of these mites are parasitic. The larva and II. Host-parasite relationships deutonymph do not feed and display only low ac- 1. Facultative parasites tivity (elatostatic forms). Females lay eggs wheth- The only recorded example of this type of in- er or not they are inseminated. The virgin females teraction is Benoinyssus najae Fain, 1958 (Eupo- produced male offspring exclusively (arrhenotok- didae) found in the nasal cavities of Naja melano­ ous parthenogenesis), while inseminated females leuca Hallowell, 1857 (Squamata: Elapidae) (Fain produced offspring of both sexes (Bannert et. al. 1958). Subsequently, a large number of specimens 2000). All Ophionyssus species have been found belonging to this species were found in soil and in the Old World, except for O. natricis which

109 M. Fajfer is a cosmopolitan inhabitant of captive snakes Among trombiculids, representatives of two (Wozniak and DeNardo 2000). genera, Vatacarus (2 species) and Iguanacarus (4 Paramegistidae species) are reptile endoparasites. Mites from both Mites of the family Paramegistidae are usu- genera occur in the lungs and nasal passages of am- ally associated with myriapods and insects. The phibious marine sea snakes (Laticauda sp.) and ma- genus Ophiomegistus is an exception and includes rine iguanas (Amblyrhynchus sp.) in coastal areas of blood sucking parasites living on skinks and the Pacific Ocean (Nadchatram 1980, 2006). snakes. So far, 21 species of this genus are de- These mites are presumably host-specific par- scribed from the Oriental and Australasian regions, asites, which is atypical for the family Trombicu- with most of them found in New Guinea (13 spe- lidae. Larvae of the genus Vatacarus increase 1. cies). Only adult mites have been described from 500 times or more during feeding and assume a reptiles, thus we may assume that immature indi- maggot-like shape with highly developed digit- viduals are free-living. Klompen and Agustin form papillae (neosomules) covering almost the (2007) claimed that these mites may be limited to entire idiosoma (neosome). These papillae enable this region and associated with specific hosts oc- the larvae to move in the tracheal mucosa of the cupying semi-fossorial areas. host (Nadchatram 2006). The adult mites emerge Heterozerconidae directly from the larvae (tachygenesis), which is Most representatives of the family Heterozer- unique in the family Trombiculidae. conidae are associated with millipedes (Diplopoda) Additionally, their life cycle is closely corre- living in warm regions around the world. However, lated with the life cycle of their hosts; when sea adults of three species have been found on snakes snakes Laticauda sp. go ashore during the mating (Ophidia: Boidae and ) and lizards (Am- season the mites leave the host to continue with phisbaenidae) in the Neotropical region (Lizaso the free-living phase of their life cycle. Mites from 1979; Flechtmann and Johnston 1990). the second parasitic genus, Iguanacarus, are not ACARIFORMES vermiform after feeding, do not have neosomules Trombiculoidea on idiosoma and are known only from larval forms Most species of the worldwide distributed (Nadchatram 1980). families Trombiculidae and Leeuwenhoekiidae 2.2 Permanent parasites (>3000 species) are known from the larval stages This type of parasitism occurs in three mite or- (chiggers). The larvae parasitize and ders and seven families of mites — Parasitiformes vertebrates (including reptiles). Most chiggers are (including Entonyssidae, Ixodorhynchidae and not host specific. However, many of them are Omentolalepidae), Acariformes (Cloacaridae and found exclusively in particular (e.g. nests, Harpirhynchidae), and Pterygosomatidae. In addi- burrows etc.) (Callaghan et al. 1994). Aside from tion, in the family Argasidae (normally represented species that have been reported from the soft parts by temporary parasites) the species Argas (Microar­ of reptile skin (e.g axilla, groins, “pocket-like gas) transversus (Banks, 1902) spends its entire life structures” etc.) specimens of Babiangia bulbifera on the giant tortoise Chelonoidis nigra (Quoy and Southcott, 1954 were found completely hidden Gaimard 1824) on the Galapagos Islands and even under the scales of the skink Lygosoma sp. (South- lays eggs directly onto this host (Hoogstraal and cott 1954). It appears that this unique species be- Kohls 1966; Hoogstraal et al. 1973). gins the process of host adaptation by hiding com- 2.2.1. Permanent ectoparasites pletely under a scale of its host, and by PARASITIFORMES having a flattened body. Ixodorhynchidae 2.1.2 Temporary endoparasites This family includes 31 species of 6 genera Up to now only a few mite species of the fam- associated exclusively with snakes of the families ily Trombiculidae are known as temporary endop- Colubridae, Elapidae, , and Viperi- arasites of reptiles. It is worth mentioning that one dae. They are often found attached beneath the species of the family Laelapidae (Parasitiformes), snake’s scales, on the head and around the snake’s Mabuyonyssus freedmani Till, 1957, was taken eyes. The mites are distributed worldwide, exclud- from the African lizard Trachylepis margaritifera ing Australia (Fain 1962). (Peters, 1854) by Till (1954) and it could be a par- Omentolaelapidae asite inhabiting the nasal cavities of these hosts The family Omentolaelapidae contains only (Fain 1961b). one species — Omentolaelaps mehelyae (Fain

110 Acari (Chelicerata) — parasites of reptiles

1961) which infests snakes of the genus Bochkov and OConnor (2006) claimed in (Lamprophiidae) from Central Africa (Fain 1961). their paper that parasitism of the family on lizards The mites can hide beneath the host’s scales en- probably developed as a result of switching from tirely (idiosoma is greater in breadth than in to reptile hosts. length). Moreover, mites of this highly-specialized 2.2.2. Permanent endoparasites species have developed an organ on the ventral The Entonyssidae (Parasitiformes) and Cloa- surface of the hysterosoma which acts as a sucker caridae (Acariformes) are permanent endopara- and helps it stay on the body surface of the host. sites of Reptilia. However, the cloacal region is ACARIFORMES also used as a niche by some mites of the family Harpirhynchidae Pterygosomatidae (Prostigmata). Two species of Mites of the family Harpirhynchidae are per- the family (Pterygosoma tuberculata Jack, 1962 manent and highly specialized ectoparasites of birds and P. gracilipalpis Jack, 1962) were recorded and snakes. One of the subfamilies (Ophioptinae) is from the cloaca of agamas despite the fact that associated only with snakes belonging to three fam- most species in this family are ectoparasites (Jack ilies: Colubridae, Elapidae, and Lamprophiidae 1962). (Ophidia: Colubroidea). At present this subfamily PARASITIFORMES includes 16 species belonging to two genera: Ophi­ Entonyssidae optes (14 species) and Afrophioptes (2 species) This family includes 24 species belonging to (Fain 1964; Lizaso 1981). All development of these eight genera. All species have been found in the mites proceeds within the scales. The life cycle lungs of snakes belonging to the families Colubri- consists of egg, larva and nymph (both stage are dae, Lamprophiidae, Elapidae, Homalopsidae, and legless), and adults (which possess four pairs of Viperidae (Ophidia: Colubroidea). The life cycle fully developed legs and can move freely over the consists of egg, larva, protonymph, deutonymph, host’s skin). The development of immatures occurs and adults (Fain 1961b). They were recorded on in the soft tissue at the base of the scales. most continents excluding Australia. Most of them are recorded from tropical or ACARIFORMES subtropical regions, with only one mite species re- Cloacaridae corded on the European colubrid snake (Beron In the family Cloacaridae, only mites of the 1974). The ancestor of Ohioptinae probably mi- subfamily Cloacarinae (14 species) are highly grated from passerine birds onto the colubroid host-specific endoparasites of reptiles. They have snakes (Bochkov et al. 1999). been discovered exclusively in the cloaca and Pterygosomatidae muscles of turtles living in North America, , Most representatives of this family are known Australia and Africa (Fain 1968; Pence and Casto as external parasites of Reptilia (only the genus 1975; Pence and Wright 1998; Bochkov and Pimeliaphilus contains species that are parasites OConnor 2008). of arthropods). The family includes 156 species These mites have been found on turtles be- and divided into eight genera (Ptery­ longing to the suborders Cryptodira and Pleurodi- gosoma; Geckobia; Geckobiella; Zanurobia; ra. Cloacarines are probably transmitted venere- Hirstiella, Ixodiderma, Scaphothrix, and Tequi­ ally between turtles, however, Casto et. al. (1975) sistlana). Mites from all these genera are perma- suggested that arrhenotoky also might be a method nent, highly specified ectoparasites of lizards of reproduction among these mites. The deep mor- (Sauria) (Bertrand et al. 2000; Bochkov and OCon- phological specialization among of cloacarin and nor 2006). So far, only one species Geckobia enig­ their wide distribution among host taxa indicate matica (Bertrand et Pedrono 1999) was described that the relationship between cloacarines and tur- from the tortoise Astrochelys yniphora (Vaillant, tles has ancient origin. Most authors suggest that 1885) (Testudines). the common ancestor of cloacarines appeared be- They spend their entire life on the host and fore the divergence of the Pleurodira and Crypto- the majority of the species are parthogenetic. Most dira in the Upper Jurassic or Cretaceous (Pence of them can be found under the lizard’s scales, and Casto 1975; Bochkov and OConnor 2008). particularly those belonging to the families Gek- III. Host specificity konidae, Agamidae, Cordylidae, and Gerrhosauri- dae. Most representatives of this family are widely From the 15 families of reptilian mites, six distributed throughout the world. families are restricted to particular host orders.

111 M. Fajfer

This strict host specificity is mostly observable in most frequently from the description of new spe- permanent parasites of reptiles (Omentolaelapi- cies. We should be aware that upcoming research dae, Ixodorhynchidae, Entonyssidae, Pterygoso- may show that in many cases host-specificity has matidae, Harpirhynchidae, and Cloacaridae). been overestimated by researches. Thus, in Table 3 I gathered information about host- IV. preference specifity at different levels to determine (1) if the current data shows if the degree of host specificity Reptile mites are capable of occupying a wide at family, generic and species levels in members range of parasitic niches and most species are of the Parasitiformes and Acariformes is the same strongly specific with respect to their location in and (2) if host-specificity among permanent- en or on a reptilian host. As we see in Table 1 most doparasites and ectoparasites of reptiles varies. ectoparasites from both megaorders the Parasiti- (1) As seen in Table 3, all permanent mite formes (Omentolaelapidae, Ixodorhynchidae, Pa­ species show a tendency to infest hosts belonging ra­megistidae, Heterozerconidae) and Acariformes to the same family or the same genus (closely re- (Pterygosomatidae, Harpirhynchidae) occur under lated hosts). For the analyzed Parasitiformes and the host’s scales. Acariformes species (N=56, N=184 respectively) Mites from the families Omentolalepidae, Ar- the number of mite species specific to one host gasidae (Argas transversus), Pterygosomatidae, species was 31 for Parasitiformes and 138 for Ac- and Trombiculidae (Babiangia bulbifera) live ariformes. Using available data on described spe- completely hidden under the host’s scales. Their cies and recorded hosts, it appears that Acari- idiosoma is flattened dorso-ventrally and is greater formes are more specific than Parasitiformes. in breadth than in length (convergent evolution) However, these results show that this is true only (Fain 1969). In turn, mites of the subfamily Ophi- at the family level of host-specificity χ( 2 = 9.78, df optinae (Harpirhynchidae) which occur in the (1) p = 0.0018; CI calculated using the binominal same habitat have rounded bodies with a reduced distribution, p = 0.0035). At the species level spec- number of setae on idiosoma, large coxae and ificity is not significantly differentχ ( 2 = 1.47, df strong legs that help them live in the pits which (1) p = 0.02246; CI calculated using the binominal they cause at the distal end of host’s scales. distribution, p = 0.2695). A similar conclusion can Unlike mites from the above mentioned fami- be reached when we compare specificity at the ge- lies, the Paramegistidae, Ixodorhynchidae and neric level (χ��������������������������������������2������������������������������������� = 0.01, df(1) p = 0.9080, CI calcu- Heterozerconidae cannot hide beneath the scales lated using the binominal distribution, p = 1.000). entirely. Mites of the genus Ophiomegistus The maximum number of host species and (Paramegistidae) live partially lodged under the subspecies recorded per mite species was: 20 for scales of their hosts (Klompen and Austin 2007). the Geckobiella texana (Pterygosomatidae) and Ixodorhynchidae and Heterozerconidae prefer the nine for Ixobioides butantanensis (Ixodorhynchi- lateral or ventral scales of snakes and can also be dae) and Pterygosoma draconensis (Pterygosoma- found near the head (Fain 1962, Finnegan 1931). tidae) (see Table 2). Considering the proportions A typical niche for ectoparasites that cannot of species with the highest host specificity (i.e. hide under the scales are sites not reached by itch- monoxenous), Ixodorhynchidae seems to be the ing activities of the reptiles. Sites of attachment least host-specific, and Cloacaridae the most. for ticks and ophionyssids (Macronyssidae) on (2) These results show that host-specificity lizards are the head, including the nasal passages between permanent endoparasites and ectopara- and ear canals, the legs including the axillae, the sites is not significantly different at the family elbow joints, between toes and in the cloacal re- level (χ2 = 9.78, df (1) p = 0.0018; CI calculated gion. On snakes they are commonly found around using the binominal distribution, p = 0.0035), ge- the eyes, under the scales and shields, on the un- neric (χ2 = 9.78, df (1) p = 0.0018; CI calculated derside of a host’s head or in loreal pits (Ophidia: using the binominal distribution, p = 0.0035) and Crotalinae) (Bannert et al. 2000; Simonov and species level (χ�������������������������������������2������������������������������������ = 9.78, df (1) p = 0.0018; CI cal- Zinchenko 2010). culated using the binominal distribution, p = Mites from the family Trombiculidae are most 0.0035). frequently found in the “pocket-like structures” It is worth mentioning that the majority of the (folds of skin on the host’s body where mites tend mite-reptile relationships analyzed here (see Table to aggregate) and in the joint regions, especially 2) are based on single records in the literature, armpits (Arnold 1986; Audy 1954). Leeuwenhoe-

112 Acari (Chelicerata) — parasites of reptiles kiidae are most frequently collected from the ex- had the smallest gain in body mass (Klukowski ternal ear canals and axillary regions of the legs and Nelson 2001), physical endurance, reduced (Audy 1954). activity, focal inflammation of the skin and swell- Moreover, despite living beneath the scales, ing observed around the site of attachment (Rear- Pterygosomatidae may also occur in “pocket-like don and Norbury 2004). But, on the other hand, structures” (Bertrand and Modry 2004) and in Goldberg and Bursey (1991) showed no histologi- completely unprotected sites on the host’s body. cal evidence that a load of chiggers causes signifi- For example, a few species from the genus Ptery­ cant damage to the hosts — if it was present, it gosoma attach to the wing-like membranes of ag- must have been minimal. Other long-term studies amid lizards from the South-Asian genus made by Bull and Burzacott (1993) on the lizards while other mites (genus Geckobiella, Hirstella, Taliqua rugosa Gray, 1825 have shown that liz- Cyclurobia) most frequently use sites like the ax- ards with the largest numbers of ticks reach the illa, groin, neck or host’s tail (Jack 1962, Bertrand largest body size and are more likely to be in mat- 2000). ing pairs than those with low tick loads. Moreover, Endoparasitic mite species live in the respira- according to the Red Queen hypothesis of Leigh tory tracks of their reptilian hosts (Parasitiformes: van Valen, parthenogenetic individuals should be Entonyssidae; Acariformes: Trombiculidae), the more vulnerable to parasitism than their sexual nasal passages (Parasitiformes: Laelapidae) or in relatives. Surveys made by Moritz et al. (2001) on the cloaca and muscles of reptiles (Acariformes: the clonal lineages of , Heteronotia binoei Cloacaridae) (Fain 1961b; 1968). Gray, 1945 and its sexual relatives provides strong support for this idea, but later study of the gecko V. Prevalence Lepidodactylus Fitzinger, 1843 showed that the Permanent parasites are characterized by the sexual individuals have a higher load of he- low prevalence index (IP) e.g. IP for examined matophagous mites than asexual gecko living in snakes parasitized by Entonyssidae was 2% the same habitat (Hanley et al. 2005). (N=2000) (Fain 1961) while the overall percent- The negative effect of mites on host fitness is age of snakes (N=2180) parasitized by Ixodor- very marked in captive collections of reptiles. e.g. hynchidae was 3.3 % (Fain 1962). However, these cause anemia and debility studies were conducted on museum material (the when living on snakes. The skin around chroni- snakes were preserved in alcohol) and these re- cally attached mites often becomes reddened and cords might be too low. swollen. Moreover, the mites also attract the atten- It seems that IP for temporary parasites on rep- tion of the affected . The snakes appear to tiles is higher than for permanent ones. Unfortu- be extremely irritated and can be seen rubbing af- nately we do not have enough data for solid conclu- fected areas frequently and/or spending long peri- sions. For example, the highest and most varied IP ods of time soaking in water (Wozniac et al. is noted for temporary parasites of reptiles. For ex- 2000). ample, IP for Tropidurus hispidus (Spix, 1925) VII. The transmission of blood-parasites parasitized by Eutrombicula alfreddugesi (Tromb- iculidae) was 100% (Delfino et al. 2011). It is worth In addition to the direct parasitic influence de- mentioning that these surveys were conducted by scribed above, reptile mites may be involved in examining hosts taken directly from the field. the transmission of blood parasites. Acari species belonging to five families (Macronyssidae, Ixodi- VI. Impact of mites on reptiles fitness dae, Amblyommidae, Argasidae, Pterygosomati- Acari may cause various diseases and debili- dae) have been recorded as vectors of many patho- tation in reptiles. However, despite a growing gens. body of research, the direct impact of mites on the Mites from the genus Hirstiella (Pterygoso- health condition of reptiles is still unclear (Rear- matidae) may serve as a vector of the hemogre- don and Norbury 2004). Even for ticks and chig- garinae Hepatozoon sauromali Lewis et Wagner, gers, which have been the subjects of many thor- 1964 (Apicomplexa: Hepatozoidae), or even as a ough studies, evidence of damage to host fitness is potential vector of Plasmodium sp. (Newell and often ambiguous. For example, several papers Ryckman 1964) (Apicomplexa: Plasmodiidae). have shown that high ectoparasitic loads have a Geckobiella texana Banks, 1904 (Pterygosomati- metabolic cost (lizards with high-mite infestation dae) is a vector of the protozoarian Schellackia oc­

113 M. Fajfer cidentalis Bonorris et Ball, 1955 (Apicomplexa: Publisher: Nauka, Saint Petersburg, 371 pp. [In Lankesterellidae) (Bonorris and Ball 1955), while Russian] mites from the genus Ophionyssus (Macronyssi- Bannert, B., Karaca, H.Y. and Wolthmann, H. 2000. dae) are known as vectors for the bacteria Proteus Life cycle and parasitic interaction of the lizard- hydrophilus (Chester, 1901) (Gammaproteobacte- parasitizing mite Ophionyssus galloticolus (Acari: Gamasida: Macronyssidae), with remarks about ria: Aeromonadaceae) (Camin 1948) or haemogre- the evolutionary consequences of parasitism in garine protozoon Karyolysus sp.(Apicomplexa: mites. Experimental and Applied Acarology, 24: Haemogregarinidae) which parasitize the lacertid 597–613. lizards (Bannert et. al. 2000). Beron, P. 1974. Deuxieme contribution a 1’etude des Furthermore, some research has shown that acaricns parasites des reptiles: Ophioptes beshkovi lizards may also be reservoirs of Borrelia burg­ sp.n. (Ophioptidae) et Hemilaelops piger (Berl.) dorferi Johnson et al., 1984 (with ticks serving as (Ixodorhynchidae) de Bulgarie. Comptes Rendus vectors) and play a role in the maintenance of this de I’Acaddmie Bulgare des Sciences, 27: 689– pathogen (Ekner at. al. 2011). Consequently, rep- 492. tile-feeding ticks which are also known to be vec- Bertrand, M., Paperna, I. and Finkelman, S. 2000. Pterygosomatidae: descriptions et observations tors for and reservoirs of many other pathogens sur les genres Pterygosoma, Geckobia, Zonurobia have recently been investigated by many authors et Hirstiella (Acari: Actinedida). Acarologia, 40: (Burridge 2001; Burridge and Simons 2003; 275–304. Nowak 2010). The focus of this work has been on Bertrand, M. and Modry, D. 2004. The role of mite ticks spreading outside of their natural range (es- pocket-like structures on caudospinosa pecially via the international trade in pet reptiles). (Agamidae) infested by Pterygosoma livingstonei Some populations of ticks can adapt to new cli- sp. n. (Acari: Prostigmata: Pterygosomatidae). Fo­ mates and cause the spread of human and animal lia Parasitologica, 51: 61–66. tick-borne diseases (possibly an important zoo- Bochkov, A.V., Mironov, S.V. and Fain, A. 1999. Phy- geographical and epidemiological problem). logeny and host-parasite relationships of the mite family Harpirhynchidae (Acari, Prostigmata). Ac­ ACKNOWLEDGEMENTS arina, 7: 69–87. I am deeply grateful to Dr André Bochkov Bochkov, A.V. and OConnor, B.M. 2006. [A review of (Zoological Institute of the Russian Academy of the external morphology of the family Pterygoso- matidae and its systematic position within the Sciences, St. Petersburg, Russia — ZISP) for his Prostigmata (Acari: Acariformes)]. Parazitologi­ highly constructive comments and helpful sugges- ya, 40: 201–214. [In Russian] tions which were irreplaceable. Drs Dmitry Apa- Bochkov, A.V. and OConnor, B.M. 2008. A new mite naskevich (University of South Georgia, States- superfamily Cloacaroidea and its position within boro, USA) and Alexander Stekolnikov (ZISP) the Prostigmata (Acariformes). Journal of Parasi­ made valuable comments. I also want to thank my tology, 94: 335–344. friend Alexander Lensky (Canada) for proofread- Bochkov, A.V. 2009. A review of mites of the parvorder ing my English draft. Eleutherengona (Acariformes: Prostigmata) — permanent parasites of mammals. Acarina, Sup- REFERENCES plement 1, 149 pp. Arnold, E.N. 1986. Mite pockets of lizards: a possible Bonorris, J.S. and Ball, G.H. 1955. Schellackia occi­ means of reducing damage by ectoparasites. Bio­ dentalis n. sp. a blood-inhabiting coccidian found logical Journal of the Linnean Society, 29: 1–21. in lizards in southern California. The Journal of Audy, J.R. 1954. Notes on the taxonomy of trombiculid Parasitology, 2: 31–34. mites, with description of a new subgenus. Malay- Brochu, C.A. 2003. Phylogenetic approaches toward sian Parasites. I–XV. No 26. Part. IX. Publisher: crocodylian history. Annual Review of Earth and Institute for Medical Research, Kuala Lumpur, Planetary Sciences, 31: 357–397. Federation of Malaya, 123–170. Bull, C.M. and Burzacott, D. 1993. The impact of tick Balashov, Yu.S. 1882. Parazito-khozyainnye otnosh­ load on the fitness of their lizard host. Oecologia, eniya chlenistonogikh s nazemnymi pozronochny­ 96: 415–419. mi [Host-Parasite Relations of Arthropods and Burridge, M.J. 2001. Ticks (Acari: Ixodidae) spread by Terrestrial Vertebrates] Publisher: Nauka, Saint the international trade in reptiles and their poten- Petersburg, 220 pp. [In Russian] tial roles in dissemination of diseases. Bulletin of Balashov, Yu.S. 2009. Parazitizm kleshchey i naseko­ Entomological Research, 91: 3–23. mykh na nazemnykh pozronochnykh [Parasitism of Burridge, M.J. and Simmons, L.A. 2003. Exotic tick Acarines and Insects on Terrestrial Vertebrates] introduced into United States on imported reptiles

114 Acari (Chelicerata) — parasites of reptiles

from 1962 to 2001 and their potential roles in in- bidiformes). Bulletin de I'lnstitut Royal des Sci­ ternational dissemination of diseases. Veterinary ences Naturelles de Belgique, Entomologie, 44: Parasitology, 113: 289–320. 1–33. Callaghan, M.G.O., Carmichael, I.H., Finnie, J.W., and Fain, A. 1969. Adaptation to parasitism in mites. Ac­ Conaghty, S. 1994. Lesions associated with infes- arologia, 9: 429–449. tation of a yellow-footed rock wallaby (Petrogale Fain, A. and Bannert, B. 2000. Two new species of xanthopus xanthopus) with larvae of Odontacarus Ophionyssus Megin (Acari: Macronyssidae) para- (Leogonius) adelaideae (Womersley) (Acarina: sitic on lizards of the genus Gallotia Boulenger Trombiculidae) in South Australia. Journal of (Reptilia: Lacertidae) from the Canary Islands. In­ Wildlife Diseases, 30: 257–259. ternational Journal of Acarology, 26: 41–50. Camin, J.H. 1948. Mite transmission of a hemorrhagic Fain, A. and Bannert, B. 2002. New observations on septicemia in snakes. Journal of Parasitology, 34: species of the genus Ophionyssus Megin (Acari: 345–354. Macronyssidae) parasitic on lizards of the genus Clayton, D.H. and Moore, J. 1997. Host-parasite evo­ Gallotia Boulenger (Reptilia: Lacertidae) from lution: General principles and avian models. Ox- the Canary Islands, Spain with description of a ford University Press, England, 473 pp. new species. International Journal of Acarology, Delfino, M.M.S, Ribeiro, S.C., Furtado, I.P., Anjos, 28: 361–367. L.A., and Almeida, W.O. 2011. Pterygosomatidae Finnegan, S. 1931. On a new species of mite of the and Trombiculidae mites infesting Tropidurus his­ family Heterozerconidae parasitic on a snake. pidus (Spix, 1825) (Tropiduridae) lizards in north- Proceedings of the Zoological Society of London, ern Brazil. Brazilian Journal of Biology, 71: 549– 33: 1349–1357. 555. Flechtmann, C.H.W. and Johnston, D.E. 1990. Zetero­ Dogel, V.A. 1947. Kurs obshchey parazitologii [Course hercon, a new genus of Heterozerconidae (Acari: of General Parasitology] Publisher: Uchpedgiz, Mesostigmata) and the description of Zeteroher­ Saint Petersuburg, 371 pp. [In Russian] con amphisbaenae n. sp. from Brasil. Internation­ Goldberg, S.R. and Bursey, C.R. 1991. Integumental al Journal of Acarology, 163: 143–148. lesions caused ectoparasites in a wild population Fujita, M.K., Engstrom, T.N., Starkey, D.E., and Shaf- of the side-blotched lizard (Uta stansburiana). fer, H.B. 2004. Turtle phylogeny: insights from a Journal of Wildlife Diseases, 27: 68–73. novel nuclear intron. Molecular Phylogenetics Ekner, A., Dudek, K., Sajkowska, Z., Majláthová, V., and Evolution, 31: 1031–1040. Majláth, I., and Tryjanowski, P. 2011. Anaplasma- Hanley, K.A., Fisher, R.N. and Case, T.J. 1995. Lower taceae and Borrelia burgdorferi sensu lato in the Mite Infestations in an Asexual Gecko Compared sand lizard Lacerta agilis and co-infection of these With Its Sexual Ancestors. Evolution, 49: 418– bacteria in hosted Ixodes ricinus tick. Parasites 426. and Vectors, 4: 182. Hayashi, F. and Hasegawa, M. 1984. Selective parasit- Fain, A. 1958. Un nouvel Acarien Trombidiforme para- ism of the tick Ixodes asanumai (Acarina: Ixodi- sitant les fosses nasales d’un Serpent au Ruanda- dae) and its influence on the host lizard Eumeces Urundi. Revue de Zoologie et de Botanique Afric­ okadae in Miyake-jima, Izu Islands. Applied Ento­ aines, 57: 177–183. mology and Zoology, 19: 181–191. Fain, A. 1961a. Une nouvelle famille d’acariens, para- Heatwole, H. and Shine, R. 1976. Mosquitoes Feeding sites de serpents du genre Mehelya au Congo: on Ectothermic Vertebrates. A Review and New Omentolaelaptidae fam. nov. (Mesostigmata). Re­ Data. Australian Zoologist Volume, 19: 69–75. vue de Zoologie et de Botanique Africaines, 66: Hedges, S.B. and Poling, L.L. 1999. A molecular phy- 283–296. logeny of reptiles. Science, 283: 998–1001. Fain, A. 1961b. Les Acariens parasites endopulmo- Hoogstraal, H. and Kohls, G.M. 1966. Argas (Microar­ naires des Serpents (Entonyssidae: Mesostigmata). gas) transversus Banks (New subgenus) (Ixodoidea, Bulletin de I’lnstitut Royal des Sciences Naturel­ Argasidae), a diminutive parasite of the Galapagos les de Belgique, 37: 1–135. giant tortoise: Redescription of the holotype male Fain, A. 1962. Les Acariens Mesostigmatiques ectopar- and description of the larva. Annals of the Entomo­ asites des Serpentes. Institut Royal des Sciences logical Society of America, 59: 247–252. Naturelles de Belgique, 38: 1–133. Hoogstraal, H., Clifford, C.M. and Keirans, J.E. 1973. Fain, A. 1964. Les Ophioptidae Acariens parasites des Argas (Microargas) transversus (Ixodoidea: Ar- ecailles des serpents (Trombidiformes). Bulletin gasidae) of the Galapagos giant tortoises: descrip- de I'lnstitut Royal des Sciences Naturelles de Bel­ tion of the female and nymph. Annals of the Ento­ gique, Entomologie, 40: l–57. mological Society of America, 66: 725–732. Fain, A. 1968. Notes sur les acariens de la familie Cloa- Jack, K.M. 1962. Observations on the genus Pterygo­ caridae Camin et al. parasites du cloaque et des soma (Acari: Pterygosomatidae). Parasitology, tissus profonde des tortues (Cheyletoidea: Trom- 52: 261–295.

115 M. Fajfer

Kim, K.C. 1985. Coevolution of Parasitic Arthropods the cloaca of the green turtle Chelonia mydas and Mammals. Wiley-Interscience, New York, (Cheloniidae). Journal of Parasitology, 84: 835– 800 pp. 839. Klompen, H. and Austin, C.C. 2007. A new species of Pietzsch, M., Quest, R., Hillyard, P.D., Medlock, J.M., Ophiomegistus Banks (Acari: Paramegistidae) and Leach S. 2006. Importation of exotic ticks into from Papua New Guinea. Zootaxa, 1387: 47–57. the United Kingdom via the international trade in Klukowski, M. and Nelson, C.E. 2001. Ectoparasite reptiles. Experimental and Applied Acarology, 38: loads in free-ranging northern fence lizards, Sce­ 59–65. loporus undulatus hyacinthinus: Effects of testos- Pyron, A.R. 2010. A Likelihood Method for Assessing terone and sex. Behavioral Ecology and Sociobi­ Molecular Divergence Time Estimates and the ology, 49: 289–295. Placement of Fossil Calibrations. Systematic Biol­ Krantz, G.W. and Walter, D.E. (Eds.). 2009. A Manual ogy, 59: 185–194. of Acarology. Third Edition. Texas Tech Univer- Pyron, R.A., Burbrink, F.T, Colli, G.R, Montes de Oca, sity Press; Lubbock, Texas, 807 pp. A.N., Vitt, J.L., Kuczynski, C.A., and Wiens, J.J. Lizaso, N.M. 1979. Un novo acaro da familia Heterozer- 2011.The phylogeny of advanced snakes (Colu- conidae coletado sobre serpentes brasileiras. De- broidea), with discovery of a new subfamily and scricao de Heterozercon elegans sp. n. (Acarina, comparison of support methods for likelihood Mesostigmata). Memorias do Instituto Butantan, trees. Molecular Phylogentics and Evolution, 58: 42/43: 139–144. 329–342. Lizaso, N.M. 1981. Acaros ectoparasitas de serpentes. Reardon, J.T. and Norbury, G. 2004. Ectoparasite and Descricao de Ophioptes longipilis sp. n. Ophioptes hemoparasite infection in a diverse. temperate liz- brevipilis sp. n. (Trombidiformes, Ophioptidae). ard assemblage at Macraes Flat, South Island, Memórias do Instituto Butantan, 44/45: 377–381. New Zeland. Journal of Parasitology, 90: 1274– Mortiz, C., McCallum, H., Donnellan, S., and Roberts, 1278. J.D. 1991. Parasite loads in parthenogenetic and Rest, J.S., Ast, J.C., Austin, C.C, Waddell, P.J., Tibbetts, sexual lizards (Heteronotia binoei): Support for E.A., Hay, J.M., and Mindell, D.P. 2003. Molecu- the Red Queen hypothesis. Proceedings of the lar systematics of primary reptilian lineages and Royal Society of London, 244: 145–149. the tuatara mitochondrial genome. Molecular Phy­ Nadchatram, M. 1980. The genus Iguanacarus, new logenetics and Evolution, 29: 289–297. status (Acari: Prostigmata: Trombiculidae), with Rieppel, O. and Reisz, R.R. 1999. The Origin and Early description of a new species from the tracheae of Evolution of Turtles. Annual Review of Ecology amphibious sea snake. Journal of Medical Ento­ and Systematic, 30: 1–22. mology, 17: 529–532. Simonov, E. and Zinchenko, V. 2010. Intensove infes- Nadchatram, M. 2006. A review of endoparasitic acar- tation of Siberian pit-viper, Gloydius halys halys ines of with special reference to novel by the common snake mite, Ophionyssus natrcis. endoparasitism of mites in amphibious sea snakes North-Western Journal of Zoology, 6: 134–137. and supplementary notes on ecology of chiggrs. Southcott, R.V. 1954. Description of a new genus and Tropical Biomedicine, 23: 1–22. species of larval mite from New Guinea. Transac­ Newell, M.I. and Ryckman, R.E. 1964. Hirstiella pyri­ tions of the Royal Society of South Australia, 77: formis sp. n. (Acari: Pterygosomidae) a new para- 98–102. site of lizards from Baja California. The Journal of Uetz, P. 2010. The original description of reptiles. Zoot­ Parasitology, 50: 163–171. axa, 2334: 56–68. Nowak, M. 2010. The international trade in reptiles Underwood, G. 1970. The eye. In: C. Gans (Ed.). Biol- (Reptilia). The cause of the transfer of exotic ticks ogy of the Reptilia. Academic Press, New York, (Acari: Ixodida) to Poland. Veterinary Parasitol­ pp. 1–97. ogy, 169: 373–381. Wozniac, E.J. and DeNardo, D.F. 2000. The biology, Olivier, P A.S. and Theron, P.D. 1997. The genus Benoi­ clinical significance and control of the common nyssus Fain (Acari: Eupodidae) from southern Af- snake mite, Ophionyssus natricis, in captive rep- rica, with descriptions of five new species.African tile. Journal of Herpetological Medicine and Sur­ Entomology, 5: 301–3018. gery, 10: 4–10. Pence, B.D. and Casto, S.D. 1975. Two new species of Vidal, N. and Hedges, S.B. 2009. The molecular evolu- the genus Caminacarus (Acarina: Cloacaridae) tionary tree of lizards, snakes, and amphisbae- from turtles in Louisiana. The Journal of Parasi­ nians. Comptes Rendus Biologies, 332: 129–139. tology, 6: 133–139. Zug, G.R., Vitt, L.J. and Caldwell, J.P. 2001. Herpetol- Pence, D.B. and Wright, S.D. 1998. Chelonacarus ogy, 2nd edition. Academic Press San Diego, Lon- elongatus n. gen., n. sp. (Acari: Cloacaridae) from don, 630 pp.

116 Acari (Chelicerata) — parasites of reptiles

Table 1. Parasitic mites (Acari) of reptiles

Mite family No. of No. of Order, suborder and the Locality on/in the Type of Distribution (Subfamily) species genera family of the hosts hosts parasitism PARASITIFORMES: MESOSTIGMATA Squamata: Sauria: Scinco- morpha (Scincidae); EC (partially Paramegistidae 21 1 Ophidia: Phytonoidea lodged under the T Australia, Asia Tragardh, 1946 (Pythonoidae); Colubroidea scales) (Colubridae, Elapidae) Squamata: Sauria: Amphis- Heterozerconidae baenia (Amphisbaenidae); 3 2 EC (on the head) T South America Berlese, 1892 Ophidia: Booidea (Boidae); Colubroidea (Colubridae) Europe, Africa, Squamata: Sauria: Iguania Asia, Australia EC (around the (Agamidae); Gekkota (cosmopolitan Macronyssidae eyes, in the ears, in 16 1 (Diplodactylidae); Scinco- T Ophionyssus Oudemans, 1936 the skin folds, on morpha (Cordylidae, natricis Gervalis, the legs) Lacertidae, Scincidae) 1844 recorded on captive reptiles). Squamata: Ophidia: Europe, Africa, Entonyssidae 24 8 Colubroidea (Colubridae, EN (lungs) P Asia, North and Ewing, 1922 Elapidae, Viperidae) South America Laelapidae Squamata: Sauria: Scinco- EN (nasal 1 1 T Africa Berlese, 1892 morpha (Scincidae) passages) Squamata: Ophidia: EC (under the Europe, Africa, Ixodorhynchidae 31 6 Colubroidea (Colubridae, scales on or near P Asia, North and Ewing, 1923 Elapidae, Viperidae) the head region) South America Squamata: Ophidia: Omentolaelapidae EC (under the 1 1 Colubroidea (Lamprophii- P Africa Fain, 1961 scales) dae) PARASITIFORMES: METASTIGMATA Ixodoidea Testudines: Cryptodia; Europe, Africa, (Ixodidae Koch, Rhynhocephalia: Spheno- EC (around the Asia, Australia, 1844 and >100 8 dontia; Squamata: Sauria, head, skin folds, T North and South Argasidae Koch, Ophidia; Crocodylia: around the cloaca) America 1844) Eusuchia ACARIFORMES: PROSTIGMATA Squamata: Sauria: Iguania (Agamidae, Iguanidae, Liolaemidae, Liolaemidae Phrynosomatidae); Gekkota (, Carphodac- EC (mainly under Europe, Africa, tylidae, Diplodactylidae, Pterygosomatidae the scales); EN (2 Asia, Australia, 156 8 Eublepharidae, Phyllodac- P Oudemans, 1910 species only) North and South tylidae); Scincomorpha (cloaca) America (Gerrhosauridae, Cordyli- dae, Lacertidae); Testudines: Cryptodira: Testudinoidea (Testudini- dae)

EC — ectoparasites; EN — endoparasites; P — permanent parasites, T — temporary parasites

117 M. Fajfer

Table 1. Continued Squamata: Iguania (Agamidae); Scincomorpha Trombiculoidea (Scincidae); Gekkota EC (mite-pock- (Trombiculidae Europe, Africa, (Gekkonidae, Phyllodactyli- ets”, armpits, Ewing, 1929 and Asia, Australia, >40 18 dae); Varanoidea (Varani- around the head); T Leeuwenhoekii- North and South dae); Rhynhocephalia: EN (6 species) dae Womersley, America Rhynchocephalia (Spheno- (respiratory tracks) 1944) dontidae); Ophidia: Colubroidea (Colubridae) Europe, Asia, Harpirhynchidae Squamata: Ophidia: EC (within the Africa, Australia, Dubinin, 1957 16 2 Colubroidea (Colubridae, P scales) North and South (Ophioptinae) Lamprophiidae, Elapidae) America Testudines: Cryptodira Cloacaridae (Chelydridae, Emydidae, Camin, Moss, North and South Geoemydidae, Trionychi- Oliver et Singer, 14 6 EN (cloaca) P America, Asia, dae, Testudinidae, Chelonii- 1967 (Cloacari- Africa, Australia dae); Pleurodira (Chelidae, nae) Pelomedusidae)

Table 2. Permanent parasites (Acari) of reptiles (Reptilia)

Mite genus (in bold), Host species Host family Host order Region mite species ENTONYSSIDAE Entonyssus Ewing, 1923 Pituophis sp. halli Ewing, 1923 Pituophis melanoleucus Daudin, 1803 Coluber flagellum Shaw, 1802 Coluber constrictor constrictor Linneaus, 1758 North America colubri Coluber constrictor flaviventris Say, 1823 (Hubbard, 1938) Colubridae Coluber constrictor foxii (Baird et Girard, 1853) Ophidia asiaticus Fain, 1960 chrysargos (Schlegel, 1837) javanicus Fain, 1961 Xenochrophis vittatus (Linnaeus, 1758) squamatus Fain, 1983 Elaphe schrenckii Strauch, 1873 Asia philippinensis Fordonia leucobalia (Schlegel, 1837) Homolopsidae Fain, 1961 Crotalus sp. rileyi Ewing, 1923 Viperidae North America Crotalus atrox Baird et Girard, 1853 Entophionyssus Fain, 1960 hamertoni Thamnophis sirtalis parietalis (Say, 1823) Radford, 1939 Thamnophis sirtalis sirtalis (Linnaeus, 1758) Pantherophis alleghaniensis (Holbrook, 1836) Pantherophis obsoletus (Say, 1823) glasmacheri Pantherophis emoryi (Baird et Girard, 1853) (Vitzthum, 1935) Pituophis catenifer sayi (Schlegel, 1837) Colubridae Ophidia North America Lampropeltis getula (Linnaeus, 1766) Nerodia fasciata (Linnaeus, 1766) natricis Keegan, 1943 Nerodia sipedon sipedon (Linnaeus, 1758) fragilis Keegan, 1946 Lampropeltis getula (Linnaeus, 1766) heterodontos Heterodon platirhinos Latreille, 1801 Keegan, 1943 Lampropeltis calligaster (Harlan, 1827)

118 Acari (Chelicerata) — parasites of reptiles

Hamertonia Turk, 1947 bedfordi Dendroaspis angusticeps (Smith, 1849) Elapidae (Radford, 1937) Psammophis trinasalis Werner, 1902 Psammophis sibilans (Linnaeus, 1758) Rhamphiophis oxyrhynchus (Reinhardt, 1843) Lamprophiidae Ophidia Africa psammophis Till, 1957 Psammophis lineatus (Bibron et Duméril, 1854) Meizodon coronatus (Schlegel, 1837) Colubridae radfordi Fain, 1960 Hapsidophrys smaragdina (Schlegel, 1837) Entophiophaga Fain, 1960 congolensis Dasypeltis scabra (Linnaeus, 1758) Fain, 1960 Crotaphopeltis hotamboeia (Laurenti, 1768) scaphiophis Africa Scaphiophis albopunctatus Peters, 1870 Colubridae Ophidia Fain, 1960 natriciterei Fain, 1960 Natriciteres olivacea (Peters, 1854) colubricola Fain, 1960 Dolichophis cassius (Gmelin, 1789) Europe Viperacarus Fain, 1960 europaeus Fain, 1960 Vipera berus (Linnaeus, 1758) Viperidae Ophidia Europe Cobranyssus Fain, 1960 schoutedeni Naja naja (Linnaeus, 1758) Elapidae Ophidia Asia (Radford, 1953) Pneumophionyssus Fonseca, 1940 aristoterisi Erythrolamprus aesculapii (Linnaeus, 1758) Colubridae Ophidia South America Fonseca, 1940 jellisoni ?snake ? Fain et Junker 1972 Entophioptes Fain, 1960 liophis Fain 1960 Lygophis anomalus (Günther, 1858) Colubridae Ophidia South America IXODORHYNCHIDAE Hemilaelaps Ewing, 1923 Pantherophis obsoletus (Say, 1823) Lampropeltis calligaster (Harlan, 1827) triangulus Lampropeltis triangulum (Lacépède, 1789) North America Ewing, 1923 Coluber schotti (Baird et Girard, 1853) Drymarchon couperi (Holbrook, 1842) Hierophis gemonensis (Laurenti, 1768) piger (Berlese, 1918) Zamenis situla (Linnaeus, 1758) Natrix natrix natrix (Linnaeus, 1758) Europe feideri Fain, 1962 Natrix natrix helvetica (Lacépède 1789) radfordi (Feider et Dolichophis caspius (Gmelin, 1789) Colubridae Ophidia Salomon, 1959) Natrix natrix (Linnaeus, 1758) imphalensis Coelognathus radiatus (Boie, 1827) Asia (Radford, 1947) tanneri Rhabdophis tigrinus (Boie, 1826) (Tibbetts, 1954) javanensis Fain, 1961 Lycodon subcinctus Boie, 1827 Oceania evansi Fain, 1961 Coelognathus flavolineatus (Schlegel, 1837) novae-guineae calligastra (Günther, 1867) Fain, 1961 dipsadoboae Dipsadoboa unicolor Günther, 1858 Africa Fain, 1962

119 M. Fajfer

Boaedon lineatus Duméril, Bibron et Duméril, 1854 Lamprophiidae Bothrophthalmus lineatus (Peters, 1863) Platyceps florulentus (Geoffroy, 1827) farreri Dasypeltis scabra sabra linneaus (Linnaeus, (Tibbetts, 1954) 1758) Colubridae Elaphe dione (Pallas, 1773) Philothamnus carinatus (Andersson, 1901) Scaphiophis albopunctatus Peters, 1870 congolensis Causus rhombeatus (Lichtenstein, 1823) Fain, 1962 Ophidia Africa causicola Fain, 1961 Causus rhombeatus (Lichtenstein, 1823) Viperidae ophidius Causus lichtensteinii (Jan, 1859) (Lavoipierre, 1958) Bitis nasicornis (Shaw, 1802) caheni Fain, 1961 Naja melanoleuca Hallowell, 1857 Elapidae schoutedeni Boaedon fuliginosus (Boie, 1827) (Fain, 1961) Bothrophthalmus lineatus (Peters, 1863) Boaedon fuliginosus (Boie, 1827) Lamprophiidae upembae (Fain, 1961) Boaedon lineatus Duméril, Bibron et Duméril, 1854 Strandtibbettsia Fain, 1961 Natrix stolata Stejneger, 1907 gordoni Rhabdophis subminiatus (Schlegel, 1837) Asia (Tibbetts, 1957) Colubridae Ophidia Rhabdophis tigrinus (Boie, 1826) brasiliensis Fain, 1961 Siphlophis cervinus (Laurenti, 1768) South America Ixodorhynchus Ewing, 1923 Leptophis mexicanus Duméril, Bibron et Duméril, 1854 Storeria dekayi (Holbrook, 1839) liponyssoides Thamnophis ordinoides (Baird et Girard, 1852) Ewing 1923 Thamnophis sauritus sauritus (Linnaeus, 1766) Colubridae Ophidia North America Thamnophis sirtalis parietalis (Say, 1823) Thamnophis sirtalis sirtalis (Linnaeus, 1758) johnstoni Fain, 1961 Heterodon platirhinos Latreille, 1801 leptodeirae Fain, 1962 Leptodeira maculata (Hallowell, 1861) cubanensis Fain, 1962 Caraiba andreae (Reinhardt et Lütken, 1862) Ixobioides Fonseca, 1934 Philodryas chamissonis (Wiegmann, 1835) Mastigodryas bifossatus (Raddi, 1820) Xenodon merremi (Wagler, 1824) Tomodon dorsatus Duméril, Bibron et Duméril, butantanensis 1854 Fonseca, 1934 Lygophis anomalus (Günther, 1858) Liophis poecilogyrus (Wied-Neuwied, 1825) Colubridae Ophidia South America Erythrolamprus aesculapii (Linnaeus, 1758) Erythrolamprus venustissimus (Wagler) Carollia sp. fonsecae Fain, 1961 Xenodon guentheri Boulenger, 1894 brachispinosus Xenodon neuwiedii Gunther, 1863 Lizaso, 1983 Chironius bicarinatus (Wied, 1820)

120 Acari (Chelicerata) — parasites of reptiles brachispinosus Thamnodynastes strigatus (Günther, 1858) South America Lizaso, 1983 Pantherophis vulpinus (Baird et Girard, 1853) Colubridae Ophidia truncatus Pantherophis obsoletus (Say, 1823) North America (Johnson, 1962) Thamnophis sirtalis (Linnaeus, 1758) Chironobius Lizaso 1983 alvus Lizaso, 1983 Chironius bicarinatus (Wied, 1820) nordestinus Colubridae Ophidia South America Chironius carinatus (Linnaeus, 1758) Lizaso, 1983 Ophiogongylus Lizaso 1983 Xenodon neuwiedii Günther, 1863 rotundus Lizaso, 1983 Erythrolamprus aesculapii (Linnaeus, 1758) Leptodeira annulata (Linnaeus, 1758) Colubridae Ophidia South America breviscutum Liophis poecilogyrus (Wied-Neuwied, 1825) Lizaso, 1983 OMENTOLAELAPIDAE Omentolaelaps Fain, 1961 Gonionotophis capensis (Smith, 1847) mehelyae Fain, 1961 Lamprophiidae Ophidia Africa Gonionotophis savorgnani (Mocquard, 1887) PTERYGOSOMATIDAE Pterygosoma Peters, 1849 annectens (Blanford, 1870) annectans Jack, 1962 Agama lionotus Boulenger, 1896 annectans circularis Agama lionotus Boulenger, 1896 Jack, 1962 transvaalense (Smith, 1849) Lawrence, 1935 Acanthocercus cyanogaster (Rüppell, 1835) Agama armata Peters, 1855 agamae Peters, 1849 Agama agama Linnaeus, 1758 Agama aculeata distanti (Boulenger 1902) agamae aculeatum Agama aculeata aculeata Merrem, 1820 Lawrence, 1936 Agama armata Peters, 1855 Agama kikii Boulenger, 1885 Agama mossambica Peters, 1854 Agama armata Peters, 1855 agamae agamae Agamidae Sauria Africa Agama kirkii Boulenger, 1885 Peters, 1849 Agama agama Linnaeus, 1758 Agama montana Barbour et Loveridge, 1928 armatum Agama armata Peters, 1855 Lawrence, 1936 aculetum Agama hispida aculeate Loveridge, 1936 Lawrence, 1935 bedfordi Agama atra Daudin, 1802 Lawrence, 1936 Agama aculeate Merrem, 1820 benguellae Jack, 1961 Agama anchietae Bocage, 1896 Agama impalearis Boettger, 1874 bibronii Jack, 1962 Laudakia stellio (Linnaeus, 1758) bibronii pseudorbicu­ Agama impalearis Boettger, 1874 laris Jack, 1962

121 M. Fajfer crewei Agama agama Linnaeus, 1758 Lavoipierre, 1955 Agama atra Daudin, 1802 fimbriata Agama planiceps Peters, 1862 Lawrence, 1951 fimbriata problema­ Agama planiceps Peters, 1862 tica Jack, 1962 phillipsi Jack, 1961 Acanthocercus phillipsii (Boulenger, 1895) hirsti Lawrence, 1936 Agama aculeata Merrem, 1820 longipalpe Agama hispida aculeate Loveridge, 1936 Lawrence, 1936 Agama atra Daudin, 1802 melanum Hirst, 1917 Agama atra Daudin, 1802 melanum capensis Agama atra Daudin, 1802 Jack, 1962 melanum longipalpe Agama atra Daudin, 1802 Lawrence, 1936 Agama planiceps Peters, 1862 melanum angolae Agama aculeata Merrem, 1820 Jack, 1962 Agama anchietae Bocage, 1896 Africa Calotes versicolor (Daudin, 1802) neumanni Calotes liocephalus Günther, 1872 (Berlese, 1910) Calotes liolepis Boulenger, 1885 Calotes mystaceus Duméril et Bibron, 1837 Agama rueppelli Vaillant, 1882 serrata Jack, 1961 Agama rueppelli occidentalis Parker 1932 singularis Jack, 1961 Agama agama Linnaeus, 1758 spinosa Jack, 1961 Agama spinosa Gray, 1831 Agamidae Sauria spinosa orbicularis Agama agama Linnaeus, 1758 Jack, 1962 Agama agama Linnaeus, 1758 tenuisetis Jack, 1962 Agama aculeata Merrem, 1820 triangulare Agama hispida (Kaup, 1827) Lawrence, 1936 Agama hispida hispida (Kaup 1827) livingstonei Bertrand Agama caudospinosa Meek, 1910 et Modry 2004 neumanni Agama agama Linnaeus, 1758 (Berlese, 1910) Agama doriae Boulenger, 1885 Africa, Asia inermis Laudakia stellio (Linnaeus, 1758) (Tragardh, 1905) Laudakia stoliczkana (Blanford, 1875) (Gray, 1827) tuberculata Jack, 1962 Laudakia himalayana (Steindachner, 1867) gladiator Bertrand, Paperna et Finkelman Calotes versicolor (Daudin, 1802) 1999 pseudotrapelus Bochkov, Mielnikov Pseudotrapelus sinaitus (Heyden, 1827) Asia et Nazarov, 2009 Draco beccarii Peters et Doriae, 1878, Draco blandfordii Blandford, 1878 dracoensis Jack, 1962 Draco cornatus Günther, 1864 Draco lineatus Daunin, 1802 Draco maculatus Gray, 1845

122 Acari (Chelicerata) — parasites of reptiles

Draco ornatus Gray, 1845 Draco reticulates Günther, 1864 dracoensis Jack, 1962 Draco spilopterus Wiegmann, 1834 Draco timorensis Kuhl, 1820 caucasica Jack, 1961 Laudakia caucasia (Eichwald, 1831) dayana Jack, 1962 Laudakia dayana (Stoliczka, 1871) expansum Bertrand, Paperna et Finkelman Laudakia stellio (Linnaeus, 1758) 1999 gracilipalpis Laudakia tuberculata (Gray, 1827) Agamidae Asia Jack, 1962 adramitana Acanthocercus adramitanus (Anderson, 1896) Jack, 1961 persicum Hirst, 1917 (De Filippi, 1843) sinaita Jack, 1961 mutabilis (Merrem, 1820) Sauria mutabilis Jack, 1961 Trapelus mutabilis (Merrem, 1820) rhipidostichata Bertrand, Paperna et Trapelus mutabilis (Merrem, 1820) Finkelman, 1999 foliosetis Jack, 1961 Psammophilus dorsalis (Gray, 1831) patagonica de la Cruz, Morando Liolaemus sp. Liolaemidae ? et Avila, 2004 Gerrhosaurus flavigularis Wiegmann, 1828 bicolor Gerrhosaurus nigrolineatus Hallowell, 1857 Lawrence, 1935 Gerrhosaurus multilineatus Bocage, 1866 gerrhosauri Gerrhosaurus validus Smith, 1849 Gerrhosauridae Africa Lawrence, 1935 Gerrhosaurus major Duméril, 1851 hystrix Gerrhosaurus flavigularis Wiegmann, 1828 Lawrence, 1935 Geckobia Megnin, 1878 pachydactyli Chondrodactylus bibronii (Smith, 1846) Lawrence, 1936 damarensis montanus Lawrence, 1951 Methuen et Hewitt, 1914 hewitti Pachydactylus maculatus Gray, 1845 Lawrence, 1936 fitzsimonsi Afroedura karroica (Hewitt, 1925) Lawrence, 1951 karroica karroika Afroedura karroica (Hewitt, 1925) Lawrence, 1951 karroica draconensis Afroedura ni varia (Boulenger, 1894) Gekkonidae Sauria Africa Lawrence, 1951 tasmani Hemidactylus mabouia Lawrence, 1936 (Moreau De Jonnès, 1818) homopholis Homopholis walbergii (Smith, 1849) Lawrence, 1936 phyllodactyli Afrogecko porphyreus (Daudin, 1802) Lawrence, 1936 socotrensis Pristurus rupestris Blanford, 1874 Hirst, 1917 infanadianaensis Phelsuma sp. Haitlinger, 1988

123 M. Fajfer mananjaryensis Phelsuma lineata Gray, 1842 Haitlinger, 1988 ardoharonomailsoensis Phelsuma sp. Haitlinger, 1988 samambavyensis Hemidactylus frenatus Schlegel, 1836 Haitlinger, 1988 australis Hirst, 1917 Lygodactylus capensis (Smith, 1849) oedurae Afroedura transvaalica (Hewitt, 1925) Lawrence, 1936 Lygodactylus capensis (Smith, 1849) transvaalensis Pachydactylus capensis (Smith, 1846) Lawrence, 1936 Chondrodactylus angulifer Peters, 1870 natalensis Lygodactylus capensis (Smith, 1849) Lawrence, 1936 Africa ovambica Rhoptropus barnardi Hewitt, 1926 Lawrence, 1936 Rhoptropus boultoni Schmidt, 1933 rhoptropi Rhoptropella ocellata (Boulenger, 1885) Lawrence 1936 Lygodactylus capensis (Smith, 1849) namaquensis Pachydactylus namaquensis (Sclater, 1898) Lawrence, 1936 Pachydactylus acuminatus Fitzsimons, 1941 capensis capensis Pachydactylus capensis (Smith, 1849) Lawrence, 1951 capensis hostata Pachydactylus purcelli Boulenger, 1910 Lawrence, 1951 Pachydactylus acuminatus Fitzsimons, 1941 capensis lanceolata Pachydactylus punctatus Peters, 1854 Lawrence 1951 Gekkonidae Sauria Hemidactylus mabouia Africa, Asia, (Moreau De Jonnès, 1818) Mediterranean, hemidactyli Hemidactylus tasmani Hewitt, 1932 Central and Lawrence, 1936 Hemidactylus frenatus Schlegel, 1836 South America, Caribbean Hemidactylus mercatorius Gray, 1842 malayana Hirst, 1917 Cyrtodactylus pulchellus Gray, 1827 turkestana Hirst, 1926 Mediodactylus russowii (Strauch, 1887) hirsti Bochkov et Cyrtopodion caspium (Eichwald, 1831) Mironov, 2000 ?uenoi Kawashima et Goniurosaurus kuroiwae splendens Kamo, 1960 Rösler, 1995 philippinensis ?Haplodactylus sp. Lawrence, 1953 Hemidactylus frenatus Schlegel, 1836 indica Hirst, 1917 Hemidactylus brookii Gray, 1845 Hemiphyllodactylus yunnanensis boulengeri Hirst, 1917 (Boulenger, 1903) Asia glebosum Bertrand, Paperna et Finkelman, Hemidactylus platyurus (Schneider, 1792) 1999 parvulum Bertrand, Paperna et Finkelman, Mediodactylus kotschyi (Steindachner, 1870) 1999 dubium Bertrand, Paperna et Finkelman, Hemidactylus frenatus Schlegel, 1836 1999 hindustanica Hemidactylus leschenaultii Hirst,1926 Duméril et Bibron, 1836

124 Acari (Chelicerata) — parasites of reptiles

Hemidactylus leschenaultii orientalis Duméril et Bibron, 1836 Abdussalam, 1941 Hemidactylus flaviviridis Rüppell, 1835 morum Bertrand, Paperna et Finkelman, Hemidactylus turcicus (Linnaeus, 1758) 1999 nipponica Gekko japonicus (Schlegel, 1836) Kawashima, 1962 Asia simplex Hirst, 1926 Hemidactylus leschenaultii Schlegel, 1836 diversipelis Hemidactylus leschenaultii Schlegel, 1836 Hirst, 1926 kasurensis Hemidactylus flaviviridisRüppell, 1835 Abdussalam, 1941 bataviensis Hemidactylus brookii Gray, 1845 Vitzhum, 1926 Hemidactylus frenatus Schlegel, 1836 New Guinea gymnodactyli Heteronotia binoei (Gray, 1845) Australia Womersley, 1941 Phyllodactylus marmoratus Loveridge, 1934 cayennensis Platydactylus sp. Floch et Fauran, 1955 Gekkonidae manaensis Floch et Platydactylus sp. Abonnenc, 1945 guyanensis Floch et Platydactylus sp. Abonnenc, 1945 carcinoides Bertrand Gehyra oceanica (Lesson, 1830) et Ineich, 1989 blanci Bertrand et Gehyra oceanica (Lesson, 1830) Ineich, 1986 Oceania Sauria voraci Bertrand et Gehyra vorax Girard, 1858 Ineich, 1986 gibbsoni Bertrand et Lepidodactylus sp. Ineich, 1987 gehyrae Hirst, 1926 Gehyra oceanica (Lesson, 1830) grasipes Bertrand et Gehyra vorax Girard, 1858 Ineich, 1987 papuana Hirst, 1917 Cyrtodactylus louisiadensis (De Vis, 1892) terentoale North America Tarentola american (Gray, 1831) de la Cruz, 1973 (Cuba) squameum Bertrand, Paperna et Finkelman, Ptyodactylus guttatus Heyden, 1827 Asia 1999 leonilae Hoffman et Morales-Malacara, Phyllodactylus lanei Smith, 1935 America 1985 tarentulae Tarentola annularis Phyllodactyli- Tragardth, 1906 (Geoffroy De St-Hilaire, 1827) dae Africa loricata Berlese, 1812 Tarentola mauritanica (Linnaeus, 1758) latasti Megnin 1878 Tarentola mauritanica (Linnaeus, 1758) Africa, Europe canariensis Zapatero- Tarentola delalandii (Duméril et Bibron, 1836) Europe Romos et. al. 1989 tinerfensis Zapatero- Tarentola delalandii (Duméril et Bibron, 1836) Oceania Romos et. al. 1989 clelandi Hirst, 1917 Phyllurus platurus (Shaw, 1790) Carphodactyli- manzanelli Australia Phyllurus cornutus Günther 1897 dae Domrow, 1983

125 M. Fajfer haplodactyli Naultinus sp. Womersley,1941 Diplodactyli- New Zeland naultina dae Naultinus sp. Sauria Womersley, 1941 anocellatus Bochkov Eublepharis angramainyu Eublepharidae Asia et Mironov 2000 Anderson et Leviton, 1966 enigmatica Bertrand et Astrochelys yniphora (Vaillant, 1885) Testudinae Testudines Africa Pedrono 2000 Hirstiella Berlese, 1920 Gonatodes albogularis Sphaerodac- tenuipes (Hirst, 1917) (Duméril et Bibron, 1836) tylidae Sauromalus darius Dickerson, 1919 pyriformis Sauromalus ater Duméril, 1856 Newell et Ryckman, 1964 Sauromalus ater ater Duméril, 1856 Sauromalus hispidus Stejneger, 1891 North America trombidiformes Sauromalus ater Duméril, 1856 Berlese, 1920 bakeri Cunliffe, 1952 ?iguana boneti Cunliffe, 1952 Ctenosaura multispinis Cope, 1886 javieri Cyclura nubila (Gray, 1831) (de la Cruz) 1984 Iguanidae ? South America (collected from stamii Jack, 1961 Iguana iguana (Linnaeus, 1758) iguanas in the Sauria Amsterdam Zoo, Holland) Brachylophus vitiensis Gibbons, 1981 South America (Caribbean Brachylophus fasciatus (Brongniart, 1800) diolii Baker, 1998 region) Australia Cyclura cornuta (Bonnaterre, 1789) (Toronga Zoo) palaezi Cunliffe, 1949 Sceloporus ferrariperezi Cope, 1885 Phrynosomati- jimenezi Parades-Leon North America et Morales-Maracara, Phyllodactylus bordai Taylor, 1942 dae 2009 sharifi Hemidactylus flaviviridisRüppell, 1835 Asia (Abdussalam, 1941) Gekkonidae insignis Tarentola mauritanica (Linnaeus, 1758) Europe, Africa (Berlese 1892) otophila Hunter et Coleonyx variegatus (Baird, 1858) Eublepharidae North America Loomis 1966 Geckobiella Hirst, 1917 Sceloporus undulatus (Bosc et Daudin, 1801) Sceloporus undulatus undulatus (Bosc et Daudin 1801) Sceloporus spinosus Wiegmann, 1828 Sceloporus torquatus Wiegmann, 1828 Sceloporus torquatus melanogaster Cope 1885 Phrynosomati- texana (Banks), 1905 Sauria North America Sceloporus poinsettii Baird et Girard, 1852 dae Sceloporus clarkii Baird et Girard, 1852 Sceloporus horridus Wiegmann, 1834 Scloporus occidentalis bocourtii Boulenger 1885 Sceloporus occidentalis occidentalis Baird et Girard, 1852 126 Acari (Chelicerata) — parasites of reptiles

Sceloporus orcutti Stejneger, 1893 Sceloporus pyrocephalus Cope, 1864 Sceloporus cupreus Bocourt, 1873 Sceloporus siniferus Cope, 1870 Sceloporus acanthinus Bocourt, 1873 Phrynosomati- texana (Banks), 1905 North America Sceloporus ornatus Baird, 1859 dae Sauria Sceloporus formosus Wiegmann, 1834 Sceloporus variabilis Wiegmann, 1834 Sceloporus utiformis Cope, 1864 Sceloporus jarrowi Cope, 1875 harrisi Plica plica (Linnaeus, 1758) Tropiduridae South America Davidson, 1958 Tequisistlana Hoffmann et Sanchez (1980) oaxacensis Hoffmann Lepidophyma flavimaculatum tehuanae Xantusiidae Sauria North America et Sanchez (1980) Smith, 1942 Zanurobia Lawrence, 1935 circularis Platysaurus guttatus Smith, 1849 Lawrence, 1935 var. latior Cordylus vittifer (Reichenow, 1887) Lawrence, 1935 var. spiniventer Platysaurus minor Fitzsimons, 1930 Lawrence, 1935 var. capensis Platysaurus capensis Smith, 1844 Lawrence, 1935 var. longipilis Platysaurus guttatus Smith, 1849 Lawrence, 1935 var. transvaalensis Platysaurus intermedium Matschie, 1891 Lawrence, 1935 cordylensis Cordylus cordylus (Linnaeus, 1758) Lawrence, 1935 polyzonensis Karusasaurus polyzonus (Smith, 1838) Lawrence, 1935 Namazonurus piersi (Hewitt, 1932) Cordylidae Sauria Africa semilunaris Pseudocordylus microlepidotus (Cuvier, 1829) Lawrence, 1935 debilipes Smaug warreni (Boulenger, 1908) Lawrence, 1935 debilipes Smaug warreni (Boulenger, 1908) Lawrence, 1935 spp. mossambica Smaug warreni (Boulenger, 1908) Lawrence, 1959 transvaalensis Smaug vandami (Fitzsimons, 1930) Lawrence, 1935 sanguinea Ninurta coeruleopunctatus Lawrence 1935 (Hewitt et Methuen, 1913) subquadrata Hemicordylus capensis (Smith, 1838) Lawrence, 1935 montana Namazonurus namaquensis Lawrence, 1935 (Methuen et Hewitt, 1914) Scaphorix Lawrence, 1935 Karusasaurus polyzonus (Smith, 1838) convexa Namazonurus peersi (Hewitt, 1932) Cordylidae Sauria Africa Lawrence, 1935 Cordylus cordylus (Linnaeus, 1758) Ixoderma Lawrence, 1935

127 M. Fajfer inverta Pseudocordylus subviridis (Smith, 1838) Lawrence, 1935 Pseudocordylus microlepidotus (Cuvier, 1829) Cordylidae Pseudocordylus subviridis (Smith, 1838) pilosa Lawrence, 1935 Gerrhosaurus major Duméril, 1851 Sauria Africa Scapteira depressa Merrem, 1820 lacerate Pedioplanis inornata Roux, 1907 Lacertidae Lawrence, 1935 Pedioplanis undata (Smith, 1838) Tropidosaura gularis Hewitt, 1927 HARPIRHYNCHIDAE Ophioptes Sambon, 1928 Erythrolamprus aesculapii (Linnaeus, 1758) Liophis poecilogyrus poecilogyrus parkeri Sambon, 1928 (Wied-Neuwied, 1825) Lygophis anomalus (Günther, 1858) Clelia rustica (Cope, 1878) tropicalis Ewing, 1933 Chironius carinatus (Linnaeus, 1758) Oxyrhopus trigeminus longipilis Duméril, Bibron et Duméril, 1854 South America Lizaso, 1981 Liophis poecilogyrus (Wied-Neuwied, 1825) Oxyrhopus petolarius (Linnaeus, 1758) Philodryas olfersii (Lichtenstein, 1823) Colubridae Mastigodryas bifossatus (Raddi, 1820) brevipilis Lizaso, 1981 Lygophis meridionalis (Schenkel, 1902) Liophis poecilogyrus (Wied-Neuwied, 1825) Chironius flavolineatus (Boettger, 1885) Ophidia coluber Radford, 1947 Coelognathus radiatus (Boie, 1827) southcotti Fain, 1962 Macropisthodon rhodomelas (Boie, 1827) Asia lycodontis Fain, 1964 Lycodon subcinctus Boie, 1827 Caraiba andreae orientalis dromicus Allred, 1958 (Barbour et Ramsden, 1919) North America Caraiba andreae (Reinhardt et Lütken, 1862) beshkovi Beron, 1974 Platyceps najadum (Eichwald, 1831) Europe samboni Simoselaps fasciolatus (Günther, 1872) Australia Southcott, 1956 congolensis Elapidae Philothamnus hoplogaster (Günther, 1863) Fain, 1962 najae Fain, 1962 Naja melanoleuca Hallowell, 1857 Africa boaedoni Fain, 1962 Boaedon fuliginosus (Boie, 1827) schoutedeni Boaedon lineatus Lamprophiidae Fain, 1962 Duméril, Bibron et Duméril, 1854 Afrophioptes Fain, 1962 whartoni Fain, 1962 Psammophis sibilans (Linnaeus, 1758) rhodesiensis Psammophylax tritaeniatus tritaeniatus Lamprophiidae Ophidia Africa Fain, 1962 (Günther, 1868) CLOACARIDAE Cloacarus Camin et Singer, 1967 faini Chelydra serpentina (Linnaeus, 1758) Chelydridae Camin et Singer, 1967 Testudines North America beeri Chrysemys picta (Schneiderm 1783) Emydidae Camin et Oliver, 1967 Caminacarus Fain, 1968

128 Acari (Chelicerata) — parasites of reptiles

theodori Fain, 1968 Clemmys caspica (Wagler, 1830) Geoemydidae costai Fain, 1968 Clemmys caspica (Wagler, 1830) Asia sinensis Fain, 1968 Trinyx sinensis Boulenger 1889 Trionychidae pelusios Fain, 1968 Pelusios castaneus (Schweigger, 1812) pelomedusae Pelomedusidae Africa Pelomedusa subrufa (Bonnaterre, 1789) Fain, 1968 deirochelys Fain, 1968 Deirochelys reticularia (Latreille, 1801) Testudines chrysemys Chrysemys scripta elegans Boulenger, 1889 Pence et Casto, 1975 terrapenae Emydidae North America Terrapene carolina (Linnaeus, 1758) Pence et Casto, 1975 dawsoni Bochkov et Graptemys pseudogeographica (Gray, 1831) OConnor 2008 Emyduracarus Fain, 1968 australis Fain 1968 Emydura latisternum Boulenger, 1889 Chelidae Testudines Australia Theodoracarus Fain, 1968 testudinis Fain, 1968 Testudo graeca ibera Pallas, 1814 Testudinidae Testudines Asia Chelonacarus Pence et Wright, 1998 elongatus Pence et Chelonia mydas Linnaeus, 1758 Cheloniidae Testudines Central America Wright, 1998

Table 3. Host-specificity among permanent parasites of reptiles. Number of mites specific to host order, family, genus and species, respectively.

Host specificity No. species To order To family To genus To species PARASITIFORMES Omentolaelapidae 1 0 0 1 0 Ixodorhynchidae 31 1 11 2 17 Entonyssidae 24 0 4 6 14 ACARIFORMES Pterygosomatidae 154* 0 12 30 112 Harpirhynchidae 16 0 3 1 12 Cloacaridae 14 0 0 0 14

*2 mite species not included (unknown hosts)

129