The Common Swift Apus Apus—A New Bird for Sri Lanka
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Cali Types of the Common Swift Apus Apus: Aduit Cali Given at the Nest
Avocetta W 17: 141-146 (1993) Cali types of the Common Swift Apus apus: aduIt cali given at the nest VrNCENT BRETAGNOLLE CEBC-CNRS,F-79360-Beauvoirsur Niort, France Abstract - Vocalizations of the Common Swifts were studi ed during two consecutive springs in southern France. I found that three cali types were given by the adults at the nest, and these are described quantitatively. Significant differences in the acoustic parameters of the calls are highlighted, as well as. a probable sexual dimorphism. This, together with the precise signification of the different cali types, rernam however to be critically assessed by playback experiments. Introduction France), where a large colony is easily accessible for field studies (for further details, see Gory, this Swifts (Order Apodiformes) are unusual among birds volume).A sample of 22 accessible nests was because many of their Iife history traits (i.e. longevity, selected, for which extensive data on breeding biology delayed maturity, large egg size) make them atypical and breeding success were also available dating from compared to similar-sized birds (Lack 1956, Gaillard 1978 (Gory et Jeantet 1986). The birds were tape et al. 1989), and convergent evolution of life histories recorded by Uher 4400 or Nagra IV at a speed of 19.5 with, e.g., long lived seabirds such as cmJs, on Agfa PE43 tapes, and with a Seinnheiser Procellariiformes, have been suggested repeatedly omnidirectional microphone MD421 placed within, or (e.g. Lack and Lack 1951, Malacarne et al. 1991). at the entrance of, the nesting cavity. Calls were Although investigations have been carried out on the analysed on a Real Time Spectrograph, which Common Swift Apus apus with regard to demography performs a fast Fourier transform (Richard 1991) at a (Lack 1956, Perrins 1971, Lebreton et al. -
"Official Gazette of RM", No. 28/04 and 37/07), the Government of the Republic of Montenegro, at Its Meeting Held on ______2007, Enacted This
In accordance with Article 6 paragraph 3 of the FT Law ("Official Gazette of RM", No. 28/04 and 37/07), the Government of the Republic of Montenegro, at its meeting held on ____________ 2007, enacted this DECISION ON CONTROL LIST FOR EXPORT, IMPORT AND TRANSIT OF GOODS Article 1 The goods that are being exported, imported and goods in transit procedure, shall be classified into the forms of export, import and transit, specifically: free export, import and transit and export, import and transit based on a license. The goods referred to in paragraph 1 of this Article were identified in the Control List for Export, Import and Transit of Goods that has been printed together with this Decision and constitutes an integral part hereof (Exhibit 1). Article 2 In the Control List, the goods for which export, import and transit is based on a license, were designated by the abbreviation: “D”, and automatic license were designated by abbreviation “AD”. The goods for which export, import and transit is based on a license designated by the abbreviation “D” and specific number, license is issued by following state authorities: - D1: the goods for which export, import and transit is based on a license issued by the state authority competent for protection of human health - D2: the goods for which export, import and transit is based on a license issued by the state authority competent for animal and plant health protection, if goods are imported, exported or in transit for veterinary or phyto-sanitary purposes - D3: the goods for which export, import and transit is based on a license issued by the state authority competent for environment protection - D4: the goods for which export, import and transit is based on a license issued by the state authority competent for culture. -
Tinamiformes – Falconiformes
LIST OF THE 2,008 BIRD SPECIES (WITH SCIENTIFIC AND ENGLISH NAMES) KNOWN FROM THE A.O.U. CHECK-LIST AREA. Notes: "(A)" = accidental/casualin A.O.U. area; "(H)" -- recordedin A.O.U. area only from Hawaii; "(I)" = introducedinto A.O.U. area; "(N)" = has not bred in A.O.U. area but occursregularly as nonbreedingvisitor; "?" precedingname = extinct. TINAMIFORMES TINAMIDAE Tinamus major Great Tinamou. Nothocercusbonapartei Highland Tinamou. Crypturellus soui Little Tinamou. Crypturelluscinnamomeus Thicket Tinamou. Crypturellusboucardi Slaty-breastedTinamou. Crypturellus kerriae Choco Tinamou. GAVIIFORMES GAVIIDAE Gavia stellata Red-throated Loon. Gavia arctica Arctic Loon. Gavia pacifica Pacific Loon. Gavia immer Common Loon. Gavia adamsii Yellow-billed Loon. PODICIPEDIFORMES PODICIPEDIDAE Tachybaptusdominicus Least Grebe. Podilymbuspodiceps Pied-billed Grebe. ?Podilymbusgigas Atitlan Grebe. Podicepsauritus Horned Grebe. Podicepsgrisegena Red-neckedGrebe. Podicepsnigricollis Eared Grebe. Aechmophorusoccidentalis Western Grebe. Aechmophorusclarkii Clark's Grebe. PROCELLARIIFORMES DIOMEDEIDAE Thalassarchechlororhynchos Yellow-nosed Albatross. (A) Thalassarchecauta Shy Albatross.(A) Thalassarchemelanophris Black-browed Albatross. (A) Phoebetriapalpebrata Light-mantled Albatross. (A) Diomedea exulans WanderingAlbatross. (A) Phoebastriaimmutabilis Laysan Albatross. Phoebastrianigripes Black-lootedAlbatross. Phoebastriaalbatrus Short-tailedAlbatross. (N) PROCELLARIIDAE Fulmarus glacialis Northern Fulmar. Pterodroma neglecta KermadecPetrel. (A) Pterodroma -
Avifauna of the Northern Myeik Archipelago, Taninthryi Region
Tanintharyi Conservation Programme (TCP) AVIFAUNA OF THE NORTHERN MYEIK ARCHIPELAGO, TANINTHRYI REGION REPORT ON HISTORIC AND NEW SURVEYS ALONG THE COAST OF SOUTHERN MYANMAR SAW MOSES & CHRISTOPH ZÖCKLER August 2015 TCP Report No. 18 This is a report of the FFI Myanmar “Tanintharyi Conservation Programme” With funding from: FFI Myanmar, Tanintharyi Conservation Programme The The Tanintharyi Conservation Programme is an initiative of Fauna and Flora program International (FFI) Myanmar Programme. It is implemented by FFI in collaboration with the Myanmar Forest Department and a number of local, national and international collaborators and stakeholders, notably for this survey, the Myanmar Biodiversity and Nature Conservation Association (BANCA) and ArcCona Consulting. FFI Myanmar operates the programme under two MoUs with the Forest Department and the Department of Fisheries, specifically for the achievement of shared marine and terrestrial conservation goals in Tanintharyi Region. Funding This document has been produced with the financial assistance of the European Commission, Helmsley Charitable Trust, Segre Foundation, Lighthouse Foundation and the Arcadia Fund. Suggested Saw Moses and Zöckler C., eds (2015). Avifauna of the Northern Myeik citation Archipelago, Tanintharyi: Report on Historic and New Surveys along the coast of Southern Myanmar. Report No.18 of the Tanintharyi Conservation Programme, a joint initiative of Fauna & Flora International (FFI), the Myanmar Forest Department and the Department of Fisheries. FFI, Yangon Author Saw Moses is an independent ornithologist and bird tour guide. Christoph details Zöckler (ArcCona Consulting) is an ornithologist specialising in migratory waterbirds and Asia. Both authors are advisers to FFI in Myanmar. Copyright Reproduction of this report in full or in part is granted for the purposes of education, research or awareness, with the sole provision that the authors and authoring organisations be properly credited. -
Fastest Migration Highest
GO!” Everyone knows birds can fly. ET’S But not everyone knows that “L certain birds are really, really good at it. Meet a few of these champions of the skies. Flying Acby Ellen eLambeth; art sby Dave Clegg! Highest You don’t have to be a lightweight to fly high. Just look at a Ruppell’s griffon vulture (left). One was recorded flying at an altitude of 36,000 feet. That’s as high as passenger planes fly! In fact, it’s so high that you would pass out from lack of oxygen if you weren’t inside a plane. How does the vulture manage? It has Fastest (on the level) Swifts are birds that have that name for good special blood cells that make a small amount reason: They’re speedy! The swiftest bird using its own of oxygen go a long way. flapping-wing power is the common swift of Europe, Asia, and Africa (below). It’s been clocked at nearly 70 miles per hour. That’s the speed limit for cars on some highways. Vroom-vroom! Fastest (in a dive) Fastest Migration With gravity helping out, a bird can pick up extra speed. Imagine taking a trip of about 4,200 And no bird can go faster than a peregrine falcon in a dive miles. Sure, you could easily do it in an airplane. after prey (right). In fact, no other animal on Earth can go as But a great snipe (right) did it on the wing in just fast as a peregrine: more than 200 miles per hour! three and a half days! That means it averaged about 60 miles The prey, by the way, is usually another bird, per hour during its migration between northern which the peregrine strikes in mid-air with its balled-up Europe and central Africa. -
Thailand Invitational 2017
Field Guides Tour Report Thailand Invitational 2017 Feb 25, 2017 to Mar 18, 2017 Dave Stejskal & John Rowlett For our tour description, itinerary, past triplists, dates, fees, and more, please VISIT OUR TOUR PAGE. This shimmering Green-tailed Aethopyga is one of the fanciest sunbirds we saw on the tour! Photo by participant Fred Dalbey. It’s been two months now since our Thailand adventure closed and yet I live with persistent reminders of episodes from that trip that arise almost daily! No doubt, in part, because this was my first tour to this extraordinary country for birds, food, culture, and people (and now we know, butterflies!). And in part because I knew that ours was the last tour, after 21 wonderful years, that our heralded Asia guide Dave Stejskal would lead to Siam. Ouch, bite the man! Having the encounters, as we did, with so many legendary birds--Spoon-billed Sandpiper and Nordmann’s Greenshank, Silver Pheasant and Siamese Fireback, Great Hornbill and Silver-breasted Broadbill, Crested Jay and Ratchet-tailed Treepie, Sultan Tit and Giant Nuthatch, and overwhelming numbers of bulbuls, babblers, leaf warblers, and flycatchers--is enough to assure an exceptional birding tour. But to insure an experience of the highest quality, it was necessary to collect a stellar group of participants under the leadership of a first-rate guide and mix in some fabulous Thai food, some Siamese culture, and Dave’s good friend Wat with the best ground crew in the business in order to produce the kind of trip we in fact enjoyed. It was a humdinger. -
Assessing the Fauna Diversity of Marudu Bay Mangrove Forest, Sabah, Malaysia, for Future Conservation
Diversity 2015, 7, 137-148; doi:10.3390/d7020137 OPEN ACCESS diversity ISSN 1424-2818 www.mdpi.com/journal/diversity Article Assessing the Fauna Diversity of Marudu Bay Mangrove Forest, Sabah, Malaysia, for Future Conservation Mohamed Zakaria 1,* and Muhammad Nawaz Rajpar 2 1 Faculty of Forestry, Universiti Putra Malaysia, UPM International, Serdang 43400, Selangor Darul Ehsan, Malaysia; E-Mail: [email protected] 2 Sindh Wildlife Department, Opposite PIA Reservation Office, Moulana Din Muhammad Road, Saddar, Karachi 77550, Pakistan; E-Mail: [email protected] * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +60-192-690-355; Fax: +60-389-432-514. Academic Editor: Peter Saenger Received: 24 February 2015 / Accepted: 21 April 2015 / Published: 30 April 2015 Abstract: Mangrove is an evergreen, salt tolerant plant community, which grows in inter-tidal coastal zones of tropical and subtropical regions of the world. They are ecologically important for many fauna species and are rich in food resources and consist of many different vegetation structures. They serve as ideal foraging and nursery grounds for a wide array of species such as birds, mammals, reptiles, fishes and aquatic invertebrates. In spite of their crucial role, around 50% of mangrove habitats have been lost and degraded in the past two decades. The fauna diversity of mangrove habitat at Marudu Bay, Sabah, East Malaysia was examined using various methods: i.e. aquatic invertebrates by swap nets, fish by angling rods and cast nets, reptiles, birds, and mammals through direct sighting. The result showed that Marudu Bay mangrove habitats harbored a diversity of fauna species including 22 aquatic invertebrate species (encompassing 11 crustacean species, six mollusk species and four worm species), 36 fish species, 74 bird species, four reptile species, and four mammal species. -
Crustacea, Notostraca) from Iran
Journal of Biological Research -Thessaloniki 19 : 75 – 79 , 20 13 J. Biol. Res. -Thessalon. is available online at http://www.jbr.gr Indexed in: Wos (Web of science, IsI thomson), sCOPUs, CAs (Chemical Abstracts service) and dOAj (directory of Open Access journals) — Short CommuniCation — on the occurrence of Lepidurus apus (Linnaeus, 1758) (Crustacea, notostraca) from iran Behroz AtAshBAr 1,2 *, N aser Agh 2, L ynda BeLAdjAL 1 and johan MerteNs 1 1 Department of Biology , Faculty of Science , Ghent University , K.L. Ledeganckstraat 35 , 9000 Gent , Belgium 2 Department of Biology and Aquaculture , Artemia and Aquatic Animals Research Institute , Urmia University , Urmia-57153 , Iran received: 16 November 2011 Accepted after revision: 18 july 2012 the occurrence of Lepidurus apus in Iran is reported for the first time. this species was found in Aigher goli located in the mountains area, east Azerbaijan province (North east, Iran). details on biogeography, ecology and morphology of this species are provided. Key words: Lepidurus apus , Aigher goli, east Azerbaijan, Iran. INtrOdUCtION their world-wide distribution is due to their anti qu - ity, but possibly also to their passive transport: geo - Notostracan records date back to the Carboniferous graphical barriers are more effective for non-passive - and possibly up to the devonian period (Wallossek, ly distributed animals. From an ecological point of 1993, 1995; Kelber, 1998). In fact, there are Upper view, notostracans, like most branchiopods, are re - triassic Triops fossils from germany -
AOS Classification Committee – North and Middle America Proposal Set 2018-B 17 January 2018
AOS Classification Committee – North and Middle America Proposal Set 2018-B 17 January 2018 No. Page Title 01 02 Split Fork-tailed Swift Apus pacificus into four species 02 05 Restore Canada Jay as the English name of Perisoreus canadensis 03 13 Recognize two genera in Stercorariidae 04 15 Split Red-eyed Vireo (Vireo olivaceus) into two species 05 19 Split Pseudobulweria from Pterodroma 06 25 Add Tadorna tadorna (Common Shelduck) to the Checklist 07 27 Add three species to the U.S. list 08 29 Change the English names of the two species of Gallinula that occur in our area 09 32 Change the English name of Leistes militaris to Red-breasted Meadowlark 10 35 Revise generic assignments of woodpeckers of the genus Picoides 11 39 Split the storm-petrels (Hydrobatidae) into two families 1 2018-B-1 N&MA Classification Committee p. 280 Split Fork-tailed Swift Apus pacificus into four species Effect on NACC: This proposal would change the species circumscription of Fork-tailed Swift Apus pacificus by splitting it into four species. The form that occurs in the NACC area is nominate pacificus, so the current species account would remain unchanged except for the distributional statement and notes. Background: The Fork-tailed Swift Apus pacificus was until recently (e.g., Chantler 1999, 2000) considered to consist of four subspecies: pacificus, kanoi, cooki, and leuconyx. Nominate pacificus is highly migratory, breeding from Siberia south to northern China and Japan, and wintering in Australia, Indonesia, and Malaysia. The other subspecies are either residents or short distance migrants: kanoi, which breeds from Taiwan west to SE Tibet and appears to winter as far south as southeast Asia. -
Partial Migration in the Mediterranean Storm Petrel Hydrobates Pelagicus Melitensis
Lago et al.: Partial migration in Mediterranean Storm Petrel 105 PARTIAL MIGRATION IN THE MEDITERRANEAN STORM PETREL HYDROBATES PELAGICUS MELITENSIS PAULO LAGO*, MARTIN AUSTAD & BENJAMIN METZGER BirdLife Malta, 57/28 Triq Abate Rigord, Ta’ Xbiex XBX 1120, Malta *([email protected]) Received 27 November 2018, accepted 05 February 2019 ABSTRACT LAGO, P., AUSTAD, M. & METZGER, B. 2019. Partial migration in the Mediterranean Storm Petrel Hydrobates pelagicus melitensis. Marine Ornithology 47: 105–113. Studying the migration routes and wintering areas of seabirds is crucial to understanding their ecology and to inform conservation efforts. Here we present results of a tracking study carried out on the little-known Mediterranean Storm Petrel Hydrobates pelagicus melitensis. During the 2016 breeding season, Global Location Sensor (GLS) tags were deployed on birds at the largest Mediterranean colony: the islet of Filfla in the Maltese Archipelago. The devices were retrieved the following season, revealing hitherto unknown movements and wintering areas of this species. Most individuals remained in the Mediterranean throughout the year, with birds shifting westwards or remaining in the central Mediterranean during winter. However, one bird left the Mediterranean through the Strait of Gibraltar and wintered in the North Atlantic. Our results from GLS tracking, which are supported by data from ringed and recovered birds, point toward a system of partial migration with high inter-individual variation. This highlights the importance of trans-boundary marine protection for the conservation of vulnerable seabirds. Key words: Procellariformes, movement, geolocation, wintering, Malta, capture-mark-recovery INTRODUCTION The Mediterranean Storm Petrel has been described as sedentary, because birds are present in their breeding areas throughout the year The Mediterranean Storm Petrel Hydrobates pelagicus melitensis is (Zotier et al. -
An Overview of Apus Apus-And Apus Apus Pekinensis Swifts Have Been Around for About 50 Million Years!
An overview of Apus apus-and Apus apus pekinensis Swifts have been around for about 50 million years! • Eocypselus rowei. • Found in Wyoming. • 12 centimetres from head to tail. • Around 50 million years old • Evolutionary precursor to swifts and hummingbirds. • Scaniacypselus fossil in Senckenberg Museum Frankfurt - Scanish Swift – 49 million years old. Photo Ulrich Tigges. • The story here is more about avian classification rather than details of swift evolution. • Reptiles to birds to modern birds! • Around 100 species of swift. Apus apus and Apus apus pekinensis Very widespread distribution Apus apus ‘HABITAT’ IS “AIR” • IT’S ALL ABOUT FLIGHT! • Look at the length of the wings- • Unlike most birds - e.g. sparrowhawk in woodland - IT’S NOT LIMITED BY SPECIFIC HABITAT REQUIREMENTS! • aerial plankton feeder • A bird of the air! • The Non Stop bird! Adapted at a molecular level. A powerful and finely tuned engine • 100% Type 1 muscle fibres – packed with mitochondria • Energy source is fat – more efficient than high octane fuel! • Same as Humming birds which are also Type 1 • Swifts like Jets refuel in mid air! Non Stop life in the air brings some unavoidable consequences! • Swallow can perch-passerine. • Feeds its fledged young – swift does not. • Builds its nest with mud. Swifts in cavity • Swallow preens when perched. • Can get Calcium and minerals from the ground. • Swallow roosts. Swift sleeps on wing. • Convergent evolution – species are not related. • Swift Torpor. Swallow not. • Totally different ball game. • Very different life strategies! • Researches need to be aware of this! • Many of the characteristics of the swift are the inevitable result of its evolutionary path. -
Monitoring and Population Assessment of Baer's Pochard In
Monitoring An assessment of the wintering popula4on of Baer’s Pochard in central Myanmar Thiri Dae We Aung, Thet Zaw Naing, Saw Moses, Lay Win, Aung Myin Tun, Thiri Sandar Zaw and Simba Chan May 2016 Biodiversity And Nature Conservation Association Page May 2016 Submitted To:Oriental Bird Club P.O.Box 324, Bedford, MK42 0WG, United Kingdom. Submitted By: Thiri Dae We Aung1, Thet Zaw Naing2, Saw Moses3, Lay Win4, Aung Myin Tun5, Thiri Sandar Zaw6, Simba Chan7 1 Biodiversity And Nature Conservation Association, Myanmar 2 Wildlife Conservation Society, Myanmar 3 4 5 6 Biodiversity And Nature Conservation Association, Myanmar 7 BirdLife International, Tokyo, Japan To obtain copies of this report contact: Biodiversity And Nature Conservation Association, No.943(A), 2nd floor, Kyeikwine Pagoda Road, Mayangone Township, Yangon, Myanmar. [email protected] Front Photo Caption: Sighting Baer’s Pochard at Pyu Lake (photo by: Simba Chan) Suggested citation: Aung, T.D, T.Z. Naing, S. Moses, L. Win, A.M. Tun, T.S. Zaw & S. Chan. 2016. An assessment of the wintering population of Baer’s Pochard in central Myanmar. Unpublished report, Biodiversity And Nature Conservation Association: ?? pp. Biodiversity And Nature Conservation Association Page Table of Contents ABSTRACT..............................................................................................................................................3 INTRODUCTION.....................................................................................................................................4