Finance Stoch (2017) 21:397–425 DOI 10.1007/s00780-016-0318-y Risk- and ambiguity-averse portfolio optimization with quasiconcave utility functionals Sigrid Källblad1 Received: 25 November 2014 / Accepted: 15 February 2016 / Published online: 15 March 2017 © The Author(s) 2017. This article is published with open access at Springerlink.com Abstract Motivated by recent axiomatic developments, we study the risk- and ambi- guity-averse investment problem where trading takes place in continuous time over a fixed finite horizon and terminal payoffs are evaluated according to criteria defined in terms of quasiconcave utility functionals. We extend to the present setting certain ex- istence and duality results established for so-called variational preferences by Schied (Finance Stoch. 11:107–129, 2007). The results are proved by building on existing re- sults for the classical utility maximization problem, combined with a careful analysis of the involved quasiconvex and semicontinuous functions. Keywords Model uncertainty · Ambiguity aversion · Quasiconvex risk measures · Optimal investment · Robust portfolio selection · Duality theory Mathematics Subject Classification (2010) 49N15 · 62C20 · 91B06 · 91B16 · 91G10 · 91G80 JEL Classification G11 · C61 · D81 1 Introduction The optimal investment problem of choosing the best way to allocate investors’ cap- ital is often formulated as the problem of maximizing, over admissible investment strategies, the expected utility of terminal wealth. The formulation relies on the ax- iomatic foundation developed by von Neumann and Morgenstern [77] and Savage B S. Källblad
[email protected] 1 Institut für Stochastik und Wirtschaftsmathematik, Technische Universität Wien, Wiedner Hauptstrasse 8-10, 1040 Vienna, Austria 398 S. Källblad [70]. In continuous-time optimal portfolio selection, the study dates back to the sem- inal contributions of Merton [60, 61].