Isolation and Characterization of Conotoxins from the Venom

Total Page:16

File Type:pdf, Size:1020Kb

Isolation and Characterization of Conotoxins from the Venom ISOLATION AND CHARACTERIZATION OF CONOTOXINS FROM THE VENOM OF CONUS PLANORBIS AND CONUS FERRUGINEUS by Adriana Pak A Thesis Submitted to the Faculty of Charles E. Schmidt College of Science in Partial Fulfillment of the Requirements for the degree of Master of Science Florida Atlantic University Boca Raton, Florida ISOLATION AND CHARACTERIZATION OF CONOTOXINS FROM THE VENOM OF C. PLANORBIS AND C. FERRUGINEUS by AdrianaPak This thesis was prepared under the direction of the candidate's thesis advisor, Dr. Frank Mari, Department of Chemistry and Biochemistry, and has been approved the members of her supelVisory committee. It was submitted to the faculty of the Charles E. Schmidt College of Science and was accepted in partial fulfillment of the requirements for the degree of Master of Science. SUPERVISORY COMMITTEE: Fran , --,....,...,·hesis Advisor ~vr/~-- L~ Deguo Du, Ph.D Jer e E. Haky, Ph.D. Chair, Department of emistry and Biochemistry us ell Ivy, Ph.D. Interim Dean, The Charles E. Schmidt College of Science ~~r2?r--~ , P~~.JDate 11 ACKNOWLEDGEMENTS I would like to thank Dr. Frank Mari for all his guidance, time, and the opportunity to work with him. I would also like to thank Dr. Lyndon West and Dr. Deguo Du for their guidance and for serving on my committee. Furthermore, I would like to thank Dr. Katarzyna Pisarewicz for friendship and guiding me in the beginning. Thank you also Dr. Jose Riveira-Ortiz, Dr. Vered Marks, Dr. Herminsul Cano and Alberto Padilla, for being great friends and lab mates. Thank you also to Pam Mongkhonsri, Tanya T. Kelley for friendship and helping me several challenge tasks. I also want to thank Dr. Carolina Moller for guiding me and giving me a good example of being mom and scientist at same time. Thank to all members of Dr. Mari’s lab for a nice and warm environment in the lab. Finally I would like to thank my husband Pedro, my daughters Alexis and Michelle, my parents and my brother for all love and patience during this course of my life. And most important to God, my strength and my Savior. iii ABSTRACT Author: Adriana Pak Title: Isolation and Characterization of Conotoxins from the Venom of Conus planorbis and Conus ferrugineus Institution: Florida Atlantic University Thesis Advisor: Dr. Frank Mari Degree: Master’s of Science Year: 2014 The venom of marine gastropods belonging to the genus Conus has yielded numerous structurally and functionally diverse peptidic components. The increase variety of bioactive peptides identified in cone snail venoms is the product of the variety of molecular adaptations taken by Conus species in evolving neuroactive molecules to suit their diverse biological purposes. Toxins from cone snails are classified into two major groups. One group consists of disulfide-rich peptides commonly termed conotoxins; the second group comprises peptides with only one disulfide bond or none. In this work, we present the discovery and characterization from the marine snails C. planorbis and C. ferrugineus. Both species are commonly found in the Indo-Pacific iv region and are very similar and is not distinguishable by size and shape of the shell. Novel P and T-Supefamiles were found in both species along with small linear peptides with have a high frequency of tyrosine residues. Each chapter contains a detailed look at the discovery process for the isolation and characterization of C. planorbis and C. ferrugineus. At discussion part, we also compared the peptides isolated in this work with other peptides from the literature. v ISOLATION AND CHARACTERIZATION OF CONOTOXINS FROM THE VENOM OF CONUS PLANORBIS AND CONUS FERRUGINEUS LIST OF FIGURES .........................................................................................................viii LIST OF TABLES............................................................................................................. xi CHAPTER I - INTRODUCTION ...................................................................................... 1 1.1 Conus planorbis and Conus ferrugineus .................................................................. 5 1.2 Post Translational Modifications of Peptides ........................................................... 6 1.3 Biology of Conus species.......................................................................................... 7 CHAPTER II - MATERIAL AND METHODS............................................................... 10 2.1 Crude Venom Extraction ........................................................................................ 10 2.2 Purification and Isolation of a Peptide.................................................................... 11 2.2.1 Size-Exclusion Superdex Peptide HR 10/30 High Performance Liquid Chromatography (SE-HPLC).................................................................................... 11 2.2.2 Size-Exclusion High Liquid Chromatography (SE-HPLC)............................. 11 2.2.3 Analytical Reverse Phase HPLC ..................................................................... 12 2.3 Mass Spectrometry.................................................................................................. 12 2.3.1 AB QSTAR XL MS/MS System ..................................................................... 12 2.3.2 Voyager-DE STR............................................................................................. 12 vi 2.4 Nuclear Magnetic Resonance ................................................................................. 13 2.5 Reduction and Alkylation of Cysteyl Residues ...................................................... 14 2.6 Peptide Sequencing................................................................................................. 14 2.7 Nomenclature.......................................................................................................... 15 CHAPTER III - RESULTS............................................................................................... 16 3.1 Isolation and characterization of the venom of C. ferrugineus............................... 16 3.1.1 Purification of fraction Fer_B03g.................................................................... 16 3.1.2 Purification of fraction Fer_B05p................................................................... 21 3.1.3 Purification of fraction Fer_D04ij ................................................................... 24 3.1.4 Purification of fraction Fer_D05r .................................................................... 34 3.1.5 Purification of fraction Fer_F06k .................................................................... 37 3.1.6 Purification of fraction Fer_F07i ..................................................................... 42 3.2 Isolation and characterization of the venom of C. planorbis.................................. 45 3.2.1 Purification of Pla_A06j .................................................................................. 45 3.2.2 Purification of Pla_A06k ................................................................................. 46 3.2.3 Purification of Pla_A06l .................................................................................. 46 3.2.4 Purification of fraction Pla_A04j..................................................................... 55 3.2.5 Purification of fraction Pla_A04u.................................................................... 59 3.2.6 Purification of fraction Pla_B04f..................................................................... 62 3.2.7 Purification of fraction Pla_B05g .................................................................... 66 CHAPTER IV - DISCUSSION AND CONCLUSION.................................................... 72 REFERENCES ................................................................................................................. 77 vii LIST OF FIGURES Figure 1. 1: C. planorbis (left) and C. ferrugineus (right).................................................. 5 Figure 1. 2: Conus ferrugineus and Conus planorbis range map ....................................... 6 Figure 3. 1: Size Exclusion chromatogram of the venom from C. ferrugineus (Fer_B) in Superdex-Peptide Column ................................................................................ 17 Figure 3. 2: Analytical RP-HPLC chromatogram of Fer_B 03 ........................................ 18 Figure 3. 4: MALDI-TOF MS of reduced and alkylated of Fer_B03g ............................ 20 Figure 3. 5: Analytical RP-HPLC chromatogram of Fer_B 05p ...................................... 22 Figure 3. 6: TOF MS Spectrum of Fer_B05p................................................................... 23 Figure 3. 7: Size Exclusion Chromatogram for C. ferrugineus (Fer_D) .......................... 26 Figure 3. 8: Analytical RP-HPLC chromatogram of Fer_D 04........................................ 27 Figure 3. 9: Purification of peak i on Analytical RP-HPLC chromatogram of Fer_D04 . 28 Figure 3. 10: MALDI TOF MS Spectrum of Fer_D04ij before and after reduction and alkylation............................................................................................................... 30 Figure 3. 11: 1D NMR Spectrum of Fer_D04ij................................................................ 32 Figure 3. 12: 2D NMR TOCSY Spectrum of Fer_D04ij.................................................. 33 Figure 3. 13: Analytical RP-HPLC chromatogram of Fer_D........................................... 34 Figure 3. 14: QSTAR TOF MS Spectrum of native Fer_D05.........................................
Recommended publications
  • BAST1986050004005.Pdf
    BASTERIA, 50: 93-150, 1986 Alphabetical revision of the (sub)species in recent Conidae. 9. ebraeus to extraordinarius with the description of Conus elegans ramalhoi, nov. subspecies H.E. Coomans R.G. Moolenbeek& E. Wils Institute of Taxonomic Zoology (Zoological Museum) University of Amsterdam INTRODUCTION In this ninth part of the revision all names of recent Conus taxa beginning with the letter e are discussed. Amongst these are several nominal species of tent-cones with a C.of close-set lines, the shell a darker pattern consisting very giving appearance (e.g. C. C. The elisae, euetrios, eumitus). phenomenon was also mentioned for C. castaneo- fasciatus, C. cholmondeleyi and C. dactylosus in former issues. This occurs in populations where with normal also that consider them specimens a tent-pattern are found, so we as colour formae. The effect is known shells in which of white opposite too, areas are present, leaving 'islands' with the tent-pattern (e.g. C. bitleri, C. castrensis, C. concatenatus and C. episco- These colour formae. patus). are also art. Because of a change in the rules of the ICZN (3rd edition, 1985: 73-74), there has risen a disagreement about the concept of the "type series". In cases where a museum type-lot consists of more than one specimen, although the original author(s) did not indicate that more than one shell was used for the description, we will designate the single originally mentioned and/or figured specimen as the "lectotype". Never- theless a number of taxonomists will consider that "lectotype" as the holotype, and disregard the remaining shells in the lot as type material.
    [Show full text]
  • A Transcriptomic Survey of Ion Channel-Based Conotoxins in the Chinese Tubular Cone Snail (Conus Betulinus)
    marine drugs Article A Transcriptomic Survey of Ion Channel-Based Conotoxins in the Chinese Tubular Cone Snail (Conus betulinus) Yu Huang 1,2,†, Chao Peng 2,†, Yunhai Yi 1,2, Bingmiao Gao 3 and Qiong Shi 1,2,4,* 1 BGI Education Center, University of Chinese Academy of Sciences, Shenzhen 518083, China; [email protected] (Y.H.); [email protected] (Y.Y.) 2 Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, BGI, Shenzhen 518083, China; [email protected] 3 Hainan Provincial Key Laboratory of Research and Development of Tropical Medicinal Plants, Hainan Medical University, Haikou 571199, China; [email protected] 4 Laboratory of Aquatic Genomics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China * Correspondence: [email protected]; Tel.: +86-185-6627-9826 † These authors contributed equally to this work. Received: 31 May 2017; Accepted: 13 July 2017; Published: 18 July 2017 Abstract: Conotoxins in the venom of cone snails (Conus spp.) are a mixture of active peptides that work as blockers, agonists, antagonists, or inactivators of various ion channels. Recently we reported a high-throughput method to identify 215 conotoxin transcripts from the Chinese tubular cone snail, C. betulinus. Here, based on the previous datasets of four transcriptomes from three venom ducts and one venom bulb, we explored ion channel-based conotoxins and predicted their related ion channel receptors. Homologous analysis was also performed for the most abundant ion channel protein, voltage-gated potassium (Kv; with Kv1.1 as the representative), and the most studied ion channel receptor, nicotinic acetylcholine receptor (nAChR; with α2-nAChR as the representative), in different animals.
    [Show full text]
  • Recent Advances in Chiral Analysis of Proteins and Peptides
    separations Review Recent Advances in Chiral Analysis of Proteins and Peptides Marine Morvan 1,2,* and Ivan Mikšík 1,2,* 1 Institute of Physiology of the Czech Academy of Sciences, Vídeˇnská 1083, 142 20 Prague, Czech Republic 2 Department of Analytical Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentská 573, 532 10 Pardubice, Czech Republic * Correspondence: [email protected] (M.M.); [email protected] (I.M.) Abstract: Like many biological compounds, proteins are found primarily in their homochiral form. However, homochirality is not guaranteed throughout life. Determining their chiral proteinogenic sequence is a complex analytical challenge. This is because certain D-amino acids contained in proteins play a role in human health and disease. This is the case, for example, with D-Asp in elastin, b-amyloid and a-crystallin which, respectively, have an action on arteriosclerosis, Alzheimer’s disease and cataracts. Sequence-dependent and sequence-independent are the two strategies for detecting the presence and position of D-amino acids in proteins. These methods rely on enzymatic digestion by a site-specific enzyme and acid hydrolysis in a deuterium or tritium environment to limit the natural racemization of amino acids. In this review, chromatographic and electrophoretic techniques, such as LC, SFC, GC and CE, will be recently developed (2018–2020) for the enantioseparation of amino acids and peptides. For future work, the discovery and development of new chiral stationary phases and derivatization reagents could increase the resolution of chiral separations. Keywords: chiral separation; proteins; peptides; D-amino acids Citation: Morvan, M.; Mikšík, I. Recent Advances in Chiral Analysis of Proteins and Peptides.
    [Show full text]
  • Thesis Reference
    Thesis Bioinformatics tools to assist drug candidate discovery in venom gland transcriptomes KOUA, Dominique Kadio Abstract Current pharmaceutical research is actively exploring the field of natural peptides. Venomics addresses this issue with the study of toxins. The concomitant development of sequencing techniques is opening new perspectives of understanding biological mechanisms. Transcriptome sequencing of specific tissues is undertaken to better understand and characterize the context of gene expression. In this framework, transcriptomic data made available require automated processing workflows and user-friendly interfaces for data exploitation and comprehension. We present TATools, a bioinformatic platform that provides a unique management environment for understanding transcriptome data by merging results of diverse classical sequence analysis. Additional features and dedicated viewer pages makes TATools a valuable solution for highlighting novelty in a single transcriptome as well as cross-analysis of several transcriptomes in the same environment. TATools is validated in the context of venomics. This thesis reports the genesis of the design of TATools as exposed in two published articles and a manuscript (at this stage under [...] Reference KOUA, Dominique Kadio. Bioinformatics tools to assist drug candidate discovery in venom gland transcriptomes. Thèse de doctorat : Univ. Genève, 2012, no. Sc. 4471 URN : urn:nbn:ch:unige-239511 DOI : 10.13097/archive-ouverte/unige:23951 Available at: http://archive-ouverte.unige.ch/unige:23951 Disclaimer: layout of this document may differ from the published version. 1 / 1 UNIVERSITE DE GENEVE FACULTE DES SCIENCES Département d'informatique Professeur Ron D. Appel Institut Suisse de Bioinformatique Dr. Frédérique Lisacek LABORATOIRES ATHERIS Dr. Reto Stöcklin Bioinformatics tools to assist drug candidate discovery in venom gland transcriptomes.
    [Show full text]
  • Contryphan Is a D-Tryptophan-Containing Conus
    THE JOURNAL OF BIOLOGICAL CHEMISTRY Vol. 271, No. 45, Issue of November 8, pp. 28002–28005, 1996 Communication © 1996 by The American Society for Biochemistry and Molecular Biology, Inc. Printed in U.S.A. Contryphan Is a D-Tryptophan- cently, the post-translational inversion of an amino acid was demonstrated in vitro for ␻-agatoxin-IVB (also termed ␻-aga- containing Conus Peptide* toxin-TK), a calcium channel inhibitor from funnel web spider (9). The peptide isomerase that preferentially acts on Ser46 of (Received for publication, August 19, 1996, and in revised form, the 48-amino acid peptide has been isolated and characterized. September 18, 1996) The small peptides which appear to be post-translationally Elsie C. Jimene´z‡§, Baldomero M. Olivera§¶, modified to convert an L-toaD-amino acid from a variety of William R. Gray§, and Lourdes J. Cruz‡§ phylogenetic systems are shown in Table I. Although there is From the ‡Marine Science Institute, University of the no homology between vertebrate and invertebrate peptides Philippines, Diliman, Quezon City 1101, Philippines (and the three molluscan peptides exhibit no sequence similar- and the §Department of Biology, University of Utah, ity), in every case the D-amino acid is found in the second Salt Lake City, Utah 84112 position. This suggests that for small D-amino acid-containing In this report, we document for the first time the oc- peptides, the proteolytic event that generates the mature pep- currence of D-tryptophan in a normally translated tide and the post-translational enzymatic system that converts polypeptide, contryphan. The peptide, isolated from the an L-toaD-amino acid work in combination to always generate venom of the fish-hunting marine snail Conus radiatus, the D-amino acid at position 2.
    [Show full text]
  • High Throughput Identification of Novel Conotoxins from the Vermivorous Oak Cone Snail (Conus Quercinus) by Transcriptome Sequencing
    Article High Throughput Identification of Novel Conotoxins from the Vermivorous Oak Cone Snail (Conus quercinus) by Transcriptome Sequencing Bingmiao Gao 1,2,3,†, Chao Peng 2,†, Yabing Zhu 4,†, Yuhui Sun 4,5, Tian Zhao 6, Yu Huang 2,7,* and Qiong Shi 2,7,* 1 Hainan Provincial Key Laboratory of Research and Development of Herbs, College of Pharmacy, Hainan Medical University, Haikou 571199, China; [email protected] 2 Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, BGI, Shenzhen 518083, China; [email protected] 3 Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia 4 BGI Genomics, BGI-Shenzhen, Shenzhen 518083, China; [email protected] (Y.Z.); [email protected] (Y.S.) 5 Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA 6 Chemistry Department, College of Art and Science, Boston University, Boston, MA 02215, USA; [email protected] 7 BGI Education Center, University of Chinese Academy of Sciences, Shenzhen 518083, China * Correspondence: [email protected] (Y.H.); [email protected] (Q.S.); Tel.: +86-755-3630 7807 (Q.S.) † These authors contributed equally to this work. Received: 2 November 2018; Accepted: 3 December 2018; Published: 5 December 2018 Abstract: The primary objective of this study was to realize the large-scale discovery of conotoxin sequences from different organs (including the venom duct, venom bulb and salivary gland) of the vermivorous Oak cone snail, Conus quercinus. Using high-throughput transcriptome sequencing, we identified 133 putative conotoxins that belong to 34 known superfamilies, of which nine were previously reported while the remaining 124 were novel conotoxins, with 17 in new and unassigned conotoxin groups.
    [Show full text]
  • Radular Morphology of Conus (Gastropoda: Caenogastropoda: Conidae) from India
    Molluscan Research 27(3): 111–122 ISSN 1323-5818 http://www.mapress.com/mr/ Magnolia Press Radular morphology of Conus (Gastropoda: Caenogastropoda: Conidae) from India J. BENJAMIN FRANKLIN, 1, 3 S. ANTONY FERNANDO, 1 B. A. CHALKE, 2 K. S. KRISHNAN. 2, 3* 1.Centre of Advanced Study in Marine Biology, Annamalai University, Parangipettai-608 502, Cuddalore, Tamilnadu, India. 2.Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai-400 005, India. 3.National Centre for Biological Sciences, TIFR, Old Bellary Road, Bangalore-560 065, India.* Corresponding author E-mail: (K. S. Krishnan): [email protected]. Abstract Radular morphologies of 22 species of the genus Conus from Indian coastal waters were analyzed by optical and scanning elec- tron microscopy. Although the majority of species in the present study are vermivorous, all three feeding modes known to occur in the genus are represented. Specific radular-tooth structures consistently define feeding modes. Species showing simi- lar feeding modes also show fine differences in radular structures. We propose that these structures will be of value in species identification in cases of ambiguity in other characteristics. Examination of eight discrete radular-tooth components has allowed us to classify the studied species of Conus into three groups. We see much greater inter-specific differences amongst vermivorous than amongst molluscivorous and piscivorous species. We have used these differences to provide a formula for species identification. The radular teeth of Conus araneosus, C. augur, C. bayani, C. biliosus, C. hyaena, C. lentiginosus, C. loroisii, and C. malacanus are illustrated for the first time. In a few cases our study has also enabled the correction of some erroneous descriptions in the literature.
    [Show full text]
  • Pdf 439.15 K
    Egyptian Journal of Aquatic Biology & Fisheries Zoology Department, Faculty of Science, Ain Shams University, Cairo, Egypt. ISSN 1110 – 6131 Vol. 25(3): 23 – 38 (2021) www.ejabf.journals.ekb.eg Marine, freshwater, and terrestrial snails as models in the biomedical applications Amina M. Ibrahim 1, Ahmed A. Hamed 2 , Mosad A. Ghareeb 3* 1Environmental Research and Medical Malacology Department, Theodor Bilharz Research Institute, Giza, 12411, Egypt 2Microbial Chemistry Department, National Research Centre, Dokki, Egypt 3Medicinal Chemistry Department, Theodor Bilharz Research Institute, Giza, 12411, Egypt *Corresponding Author: [email protected] ARTICLE INFO ABSTRACT Article History: A snail is a member of the molluscan gastropods that has a cosmopolitan Received: March 15, 2021 distribution, inhabiting marine, freshwater and terrestrial habitats. The present Accepted: April 27, 2021 review highlights the importance of the snails as they have medical and Online: May 25, 2021 veterinary applications, besides being considered as excellent indicators of _______________ ecosystem health like Biomphalaria sp., and Lymnaea stagnalis freshwater snails. Also, snails have been proved to be excellent models in neurophysiology, Keywords: especially on learning and memory formation like Aplysia californica marine Snails, snail and Lymnaea stagnalis freshwater snails. Marine snails produce Molluscan gastropods, antimicrobial secondary metabolites that exhibit anticancer, antibiotic, antiviral, Marine snails, neurotoxic, or anti-inflammatory properties. These materials can be obtained Freshwater snails, from the extracts of Babylonia spirata, Buccinulum corneum, Buccinum Terrestrial snails, undatum, Littorina littorea “called littorerin”, Haliotis laevigata or H. rubra, Secondary metabolites Murex pectin, Tegula gallina, conotoxins released from Conus magus, and hemocyanins of Rapana venosa snails. Freshwater snails have many bioactive compounds that have antimicrobial activity.
    [Show full text]
  • Conopeptide Production Through Biosustainable Snail Farming A
    Conopeptide Production through Biosustainable Snail Farming A THESIS SUBMITTED TO THE GRADUATE DIVISION OF THE UNIVERSITY OF HAWAI‘I AT MĀNOA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE IN MOLECULAR BIOSCIENCES AND BIOENGINEERING DECEMBER 2012 By Jeffrey W. Milisen Thesis Committee: Jon-Paul Bingham (Chairperson) Harry Ako Cynthia Hunter Keywords: Conus striatus venom variability Student: Jeffrey W. Milisen Student ID#: 1702-1176 Degree: MS Field: Molecular Biosciences and Bioengineering Graduation Date: December 2012 Title: Conopeptide Production through Biosustainable Snail Farming We certify that we have read this Thesis and that, in our opinion, it is satisfactory in scope and quality as a Thesis for the degree of Master of Science in Molecular Biosciences and Bioengineering. Thesis Committee: Names Signatures Jon-Paul Bingham (Chair) ___________________________ Harry Ako ___________________________ Cynthia Hunter ___________________________ ii Acknowledgements The author would like to take a moment to appreciate a notable few out of the army of supporters who came out during this arduously long scholastic process without whom this work would never have been. First and foremost, a “thank you” is owed to the USDA TSTAR program whose funds kept the snails alive and solvents flowing through the RP-HPLC. Likewise, the infrastructure, teachings and financial support from the University of Hawai‘i and more specifically the College of Tropical Agriculture and Human Resources provided a fertile environment conducive to cutting edge science. Through the 3 years over which this study took place, I found myself indebted to two distinct groups of students from Dr. Bingham’s lab. Those who worked primarily in the biochemical laboratory saved countless weekend RP-HPLC runs from disaster through due diligence while patiently schooling me on my deficiencies in biochemical processes and techniques.
    [Show full text]
  • Discovery and Characterization of Nav Modulatory Venom Peptides
    Discovery and characterization of NaV modulatory venom peptides Joshua Seth Wingerd B.Sc. of Molecular Biology A thesis submitted for the degree of Doctor of Philosophy at The University of Queensland in 2013 Institute for Molecular Biosciences Abstract Voltage-gated sodium channels (NaV) are integral membrane proteins that are responsible for the increase in sodium permeability that initiates and propagates the rising phase of action potentials, carrying electrical signals along nerve fibers and through excitable cells. NaV channels play a diverse role in neurophysiology and neurotransmission, as well as serving as molecular targets for several groups of neurotoxins that bind to different receptor sites and alter voltage-dependent activation, inactivation and conductance. There are nine NaV channel isoforms so far discovered, each of which display distinct functional profiles and tissue-specific expression patterns. The modulation of specific isoforms for therapeutic purposes has become an important research objective for the treatment of conductance diseases exhibiting phenotypes of chronic pain, epilepsy, myotonia, seizure, and cardiac arrhythmia. However, because of the high sequence similarity and structural homology between NaV channel isoforms, many current therapeutics that target NaV channels – the vast majority of which are small molecules – lack specificity between isoforms, or even other voltage-gated ion channels. The current push for greater selectivity while maintaining a relevant degree of potency has led the focus away from small molecules and towards the discovery and development of peptidic ligands for therapeutic use. Venom derived peptides have proven to be naturally potent and selective bioactive molecules, exhibiting inherent secondary structures that add stability through the formation of disulfide bonds.
    [Show full text]
  • Thesis-Laffy-2011.Pdf
    Evolution, gene expression and enzymatic production of Tyrian purple: A molecular study of the Australian muricid Dicathais orbita (Neogastropoda: Muricidae) Patrick Laffy Faculty of Science and Engineering School of Biological Sciences Flinders University November 2011 Declaration I certify that this thesis does not incorporate, without acknowledgment, any material previously submitted for a degree or diploma in any university; and that to the best of my knowledge it does not contain any material previously published or written by another person except where due reference is made in the text ………………………. ………………………. Patrick William Laffy Date I Acknowledgements Where to begin? First and foremost I would like to thank my supervisors Associate Professor Cathy Abbott and Dr Kirsten Benkendorff for their guidance and support throughout this project and the last 5 years of work. Your feedback, musing of ideas and scientific knowledge has made me into a much better writer and scientist than I was 5 years ago. Not only did you conceptualize this project before I started my candidature, but you provided the financial funding to make it all possible. I also need to thank several people who were lent their scientific knowledge and support to me. To Dr Melissa Pitman, Dr Melanie Sulda, Dr Ana Glavinic, Dr Chantel Westley and Associate Professor Michael Schwarz, I have appreciated your feedback, advice and your tireless support to the work that I have produced. I wouldn’t have been able to complete this thesis without you. Special thanks to Melissa, Melanie, and Ana for the friendship you offered at the same time. And another thank you to Melissa (my, she is popular!) and Dr Simon Schmidt, who over the last year or so have turned Thursday night dinner into much needed impromptu lab meetings.
    [Show full text]
  • RED SEA MOLLUSCA Contribution to the Knowledge of Conus
    27 Gloria Mans 49(2) 27 45 Antwerpen, June 2010 RED SEA MOLLUSCA 214003 Contribution to the knowledge of Conus (Pionoconus) nigropunctatus G.B. Sowerby II, 1858 Jan A BUIJSE (1) & Gilbert VERBINNEN (2) (1) Beukenstraat 69,4462 TR Goes, The Netherlands, buijse@zeelandnet nl (2) Boskant 31, 2350 Vosselaar, Belgium, g verbinneni(§itelenet be Keywords: GASTROPODA, CONIDAE, Coninae, Conns Pionoconus, Red Sea, Arabian Sea Abbreviations: BMNH The Natural History Museum, London, UK DZB Dautzenberg Collection in KBIN, Reg no IG 10591 EW E Wils, Belgium GV G Verbinnen, Belgium ICZN International Commission on Zoological Nomenclature JB J A Buijse, The Netherlands KBIN Koninklijk Belgisch Instituut voor Natuurwetenschappen, Brussels, Belgium MHNG Muséum d'histoire naturelle de la Ville de Geneve, Switzerland ZMA Zoologisch Museum, University of Amsterdam, The Netherlands Abstract: In the opinion of several authors (Wils et al , 1969, Bosch et al , 1995 162, Rusmore-Villaume, 2008) Conus nigiopunctatw, Sowerby II, 1858 is a valid species Others consider it a form (Rockel et al, 1995 103) or a synonym (Hon, 2000 593) of C catus Hwass in Bruguière, 1792 To clarify the situation, a summary of evidence for 28 the first opinion from literature will be repeated. On top of this, every hue in the paint­ box of the first species will be depicted, and compared with the most similar species. Translation into Dutcli: Sommige auteurs (Wils et al., 1969; Bosch et al., 1995; 162; Rusmore-Villaume, 2008) zijn van mening dat Conus nigropunctatus Sowerby II, 1858 een valide soort is. Anderen beschouwen dit als een vorm (Röckel et al, 1995: 103) of als een synoniem (Hori, 2000: 593) van C.
    [Show full text]