Journal of Threatened Taxa

Total Page:16

File Type:pdf, Size:1020Kb

Journal of Threatened Taxa The Journal of Threatened Taxa (JoTT) is dedicated to building evidence for conservaton globally by publishing peer-reviewed artcles OPEN ACCESS online every month at a reasonably rapid rate at www.threatenedtaxa.org. All artcles published in JoTT are registered under Creatve Commons Atributon 4.0 Internatonal License unless otherwise mentoned. JoTT allows unrestricted use, reproducton, and distributon of artcles in any medium by providing adequate credit to the author(s) and the source of publicaton. Journal of Threatened Taxa Building evidence for conservaton globally www.threatenedtaxa.org ISSN 0974-7907 (Online) | ISSN 0974-7893 (Print) Short Communication Diversity of ants in Aarey Milk Colony, Mumbai, India Akshay Gawade & Amol P. Patwardhan 26 July 2021 | Vol. 13 | No. 8 | Pages: 19108–19117 DOI: 10.11609/jot.6375.13.8.19108-19117 For Focus, Scope, Aims, and Policies, visit htps://threatenedtaxa.org/index.php/JoTT/aims_scope For Artcle Submission Guidelines, visit htps://threatenedtaxa.org/index.php/JoTT/about/submissions For Policies against Scientfc Misconduct, visit htps://threatenedtaxa.org/index.php/JoTT/policies_various For reprints, contact <[email protected]> The opinions expressed by the authors do not refect the views of the Journal of Threatened Taxa, Wildlife Informaton Liaison Development Society, Zoo Outreach Organizaton, or any of the partners. The journal, the publisher, the host, and the part- Publisher & Host ners are not responsible for the accuracy of the politcal boundaries shown in the maps by the authors. Threatened Taxa Journal of Threatened Taxa | www.threatenedtaxa.org | 26 July 2021 | 13(8): 19108–19117 ISSN 0974-7907 (Online) | ISSN 0974-7893 (Print) OPEN ACCESS htps://doi.org/10.11609/jot.6375.13.8.19108-19117 #6375 | Received 08 July 2020 | Final received 21 January 2021 | Finally accepted 07 July 2021 SHORT COMMUNICATION Diversity of ants in Aarey Milk Colony, Mumbai, India Akshay Gawade 1 & Amol P. Patwardhan 2 1 B.N. Bandodkar College of Science, Thane 400601. Maharashtra. India. 2 Department of Zoology, K.J. Somaiya College of Science and Commerce, Mumbai, Maharashtra 400077, India. 1 [email protected], 2 [email protected] (corresponding author) Abstract: Aarey Milk Colony (AMC) is 16km2 of forested area, acts as units. a bufer to the Sanjay Gandhi Natonal Park, Mumbai. It has gardens, Among invertebrates, insects are the most abundant lakes, recreaton spots, and a nursery. It also harbors 32 catle farms, animal husbandry centers. Apart from urbanizaton and forest and diverse organisms on Earth, as most of the insects degradaton, this forest harbors great biodiversity which includes are highly mobile, their presence in an ecosystem the leopard as a top predator and also lesser-known species of amphibians, reptles, and arthropods. Considering ants as important may be temporary which limits their use to detect bio indicators and the vulnerability of AMC to development plans, a environmental changes (Khot et al. 2013). On the other study on the diversity of ants was conducted from January 2016 to hand, the ants being more local than other insects they May 2016. Four methods were used for data collecton of ants—pitall trap, line-transect, quadrate, and all-out search. A total of 35 species can be efciently used as a bio-indicator (Stephens & under 24 genera under six subfamilies– Myrmicinae, Formicinae, Wagner 2006; Underwood & Fisher 2006; Jonathan et Ponerinae, Dolichoderinae, Pseudomyrmecinae, and Cerapachyinae al. 2007; Abril & Gomez 2013). were recorded during this study. The Simpson’s diversity index (0.88) for the pit fall trap indicates that the diversity of ants in the AMC is Andersen et al. (2002) suggested that ants can fairly high. This increases the importance of this forest land which is provide valuable informaton about the environment presently facing a mass destructon of trees. in which they occur and considerably more than could Keywords: Bio indicator, data collecton, Maharashtra, Sanjay Gandhi traditonal wildlife (vertebrate) surveys. According to Natonal Park. Wilson (1990) and Gadagkar et al. (1993), the biomass of ants is approximately four tmes greater than the biomass of all of the vertebrates. Due to their abundance, high Aarey Milk Colony (AMC) was notfed in 1949 species richness, occupancy of high topographic level which covers an area of 16km2. It is situated on the and being highly responsive to environmental changes southwestern boundary of Sanjay Gandhi Natonal ants are considered as excellent bio-indicators (Jonathan Park, Mumbai. The colony acts as a bufer zone for the 1983). According to Bhart (2011), there are 652 species/ densely forested natonal park. The colony faces heavy subspecies that are known to occur in India. Khot et al. anthropogenic pressure such as illegal encroachment, (2012) recorded 28 species representng six subfamilies change in land use, which converted it into a garden, from Maharashtra Nature Park and Quadros et al. (2009) nursery, picnic spots, restaurants, and milk processing recorded 19 species of ants from IIT Bombay campus; Editor: Anonymity requested. Date of publicaton: 26 July 2021 (online & print) Citaton: Gawade, A. & A.P. Patwardhan (2021). Diversity of ants in Aarey Milk Colony, Mumbai, India. Journal of Threatened Taxa 13(8): 19108–19117. htps:// doi.org/10.11609/jot.6375.13.8.19108-19117 Copyright: © Gawade & Patwardhan 2021. Creatve Commons Atributon 4.0 Internatonal License. JoTT allows unrestricted use, reproducton, and distributon of this artcle in any medium by providing adequate credit to the author(s) and the source of publicaton. Funding: None. Competng interests: The authors declare no competng interests. Acknowledgements: We gratefully thank the C.E.O. of Aarey Milk Dairy Pvt. Ltd, Aarey Milk Colony, Goregaon, Mumbai and senior police inspector, Aarey Police Staton, AMC Goregaon, Mumbai for giving AG permission to carry out the research project in AMC and for supportng throughout the study. We would like to thank Dr. Poonam Kurve and Ashutosh Joshi of the Department of Environmental science of B.N. Bandodkar College of Science, Thane, for there valuable inputs. AG is grateful to Anand Pendharkar for suggestng the topic, valuable inputs, and help rendered during the pilot study. 19108 Diversity of ants in Aarey Milk Colony Gawade & Patwardhan J TT 163 species of ants, in 52 genera, were reported by Material and Methods Mathew & Tiwari (2000) from Meghalaya. Kharbani & The survey was carried out from January 2016 to Hajong (2009) recorded 28 species from 18 genera from May 2016. the West Khasi hills, Meghalaya. Bhart et al. (2009) Four sampling methods were deployed as follows. recorded 40 species of ants from eight genera from 1. Pitall trap (n= 52): Transparent plastc glasses Punjab Shivalik. having 7.5 cm diameter and 7.5 cm height were used The forest of AMC is of mixed moist deciduous type for pitall traps buried at ground level. In each trap and is dominated by Tectona grandis, Bombax ceiba, four plastc glasses were kept at the corner of 4 x 4 m Butea monosperma, Pongamia pinnata, Cassia fstula, quadrate. The traps were set up for 24 hr. The total area Ziziphus sp., heavily intermixed with exotc/invasive covered was 832 m2. The trap was observed regularly to species such as Eucalyptus, Gliricidia sepium as well as avoid predaton on ants, if any. Ants were released from Delonix regia and Lantana sp. (Mirza & Sanap 2010). the trap afer photo documentaton. According to Mirza & Sanap (2010) the faunal diversity 2. Line transect (n= 9): Line transects of 100 m of AMC includes 13 species of amphibians, 46 species of were ploted in the study site so that maximum area and reptles, 76 species of avifauna, 16 species of mammals, diferent habitats were covered. This method was used 86 species of buterfies, fve species of scorpions, and three tmes a day (morning, afernoon, and evening). 19 families of spiders. There is no reported work on the The total area covered by line transects was 1,800 m. ants of this area. 3. Quadrat method (n= 13): Four quadrates of 4 x AMC (Image 1) is under immense anthropogenic 4 m were placed in the selected study site. Each quadrat pressure. Hence the study on ants might be helpful in was observed for 10 min. throwing some light on the diversity of invertebrates 4. All-out search method (n= 30): This method that are about to get lost or displaced. was used to collect data opportunistcally. Image 1. Locaton of Aarey Milk Colony highlighted. (Courtsey: Google) Journal of Threatened Taxa | www.threatenedtaxa.org | 26 July 2021 | 13(8): 19108–19117 19109 J TT Diversity of ants in Aarey Milk Colony Gawade & Patwardhan All the individuals recorded by the above four Table 1. Ant diversity in Aarey Milk Colony, Mumbai, Maharashtra. methods were photographed using Canon 600D camera Figure Species Subfamily body with a 90mm macro lens and identfed using number Bingham (1903), Narendra & Kumar (2006), antweb 1 Aphaenogaster beccarii Myrmicinae 2 (htp://antweb.org/), and antwiki (htp://www.antwiki. 2 Cardiocondyla nuda Myrmicinae 3 org/wiki/). 3 Cataulacus taprobanae Myrmicinae 4 To have a basic idea of richness, pit fall trap data was 4 Crematogaster ransonnet Myrmicinae 5 utlized for calculatng Simpson’s diversity index. 5 Crematogaster subnuda Myrmicinae 6 6 Meranoplus bicolor Myrmicinae 7 Results 7 Monomorium criniceps Myrmicinae 8 A total of 35 species under 24 genera and six 8 Monomorium pharaonis Myrmicinae 9 subfamilies were recorded from the study area (Table 9 Myrmicaria brunnea Myrmicinae 10 1). Table 2 represents the dominance of the subfamilies. 10 Pheidole watsoni Myrmicinae 11 Myrmicinae (9 genera and 13 species) and Formicinae 11 Solenopsis geminata Myrmicinae 12 (6 genera and 11 species) were the most dominant 12 Tetramorium smithi Myrmicinae 13 subfamilies followed by Poneriane (5 genera and 6 13 Tetramorium walshi Myrmicinae 14 species); Dolichoderinae (2 genera and 2 species), 14 Camponotus angustcollis Formicinae 15 Pseudomyrmicinae (1 genus and 2 species), and 15 Camponotus compressus Formicinae 16 Cerapachynae (1 species).
Recommended publications
  • Nutritional Ecology of the Carpenter Ant Camponotus Pennsylvanicus (De Geer): Macronutrient Preference and Particle Consumption
    Nutritional Ecology of the Carpenter Ant Camponotus pennsylvanicus (De Geer): Macronutrient Preference and Particle Consumption Colleen A. Cannon Dissertation submitted to the Faculty of the Virginia Polytechnic Institute and State University in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Entomology Richard D. Fell, Chairman Jeffrey R. Bloomquist Richard E. Keyel Charles Kugler Donald E. Mullins June 12, 1998 Blacksburg, Virginia Keywords: diet, feeding behavior, food, foraging, Formicidae Copyright 1998, Colleen A. Cannon Nutritional Ecology of the Carpenter Ant Camponotus pennsylvanicus (De Geer): Macronutrient Preference and Particle Consumption Colleen A. Cannon (ABSTRACT) The nutritional ecology of the black carpenter ant, Camponotus pennsylvanicus (De Geer) was investigated by examining macronutrient preference and particle consumption in foraging workers. The crops of foragers collected in the field were analyzed for macronutrient content at two-week intervals through the active season. Choice tests were conducted at similar intervals during the active season to determine preference within and between macronutrient groups. Isolated individuals and small social groups were fed fluorescent microspheres in the laboratory to establish the fate of particles ingested by workers of both castes. Under natural conditions, foragers chiefly collected carbohydrate and nitrogenous material. Carbohydrate predominated in the crop and consisted largely of simple sugars. A small amount of glycogen was present. Carbohydrate levels did not vary with time. Lipid levels in the crop were quite low. The level of nitrogen compounds in the crop was approximately half that of carbohydrate, and exhibited seasonal dependence. Peaks in nitrogen foraging occurred in June and September, months associated with the completion of brood rearing in Camponotus.
    [Show full text]
  • List of Indian Ants (Hymenoptera: Formicidae) Himender Bharti
    List of Indian Ants (Hymenoptera: Formicidae) Himender Bharti Department of Zoology, Punjabi University, Patiala, India - 147002. (email: [email protected]/[email protected]) (www.antdiversityindia.com) Abstract Ants of India are enlisted herewith. This has been carried due to major changes in terms of synonymies, addition of new taxa, recent shufflings etc. Currently, Indian ants are represented by 652 valid species/subspecies falling under 87 genera grouped into 12 subfamilies. Keywords: Ants, India, Hymenoptera, Formicidae. Introduction The following 652 valid species/subspecies of myrmecology. This species list is based upon the ants are known to occur in India. Since Bingham’s effort of many ant collectors as well as Fauna of 1903, ant taxonomy has undergone major myrmecologists who have published on the taxonomy changes in terms of synonymies, discovery of new of Indian ants and from inputs provided by taxa, shuffling of taxa etc. This has lead to chaotic myrmecologists from other parts of world. However, state of affairs in Indian scenario, many lists appeared the other running/dynamic list continues to appear on web without looking into voluminous literature on http://www.antweb.org/india.jsp, which is which has surfaced in last many years and currently periodically updated and contains information about the pace at which new publications are appearing in new/unconfirmed taxa, still to be published or verified. Subfamily Genus Species and subspecies Aenictinae Aenictus 28 Amblyoponinae Amblyopone 3 Myopopone
    [Show full text]
  • Download Download
    Behavioral Ecology Symposium ’96: Cushing 165 MYRMECOMORPHY AND MYRMECOPHILY IN SPIDERS: A REVIEW PAULA E. CUSHING The College of Wooster Biology Department 931 College Street Wooster, Ohio 44691 ABSTRACT Myrmecomorphs are arthropods that have evolved a morphological resemblance to ants. Myrmecophiles are arthropods that live in or near ant nests and are considered true symbionts. The literature and natural history information about spider myrme- comorphs and myrmecophiles are reviewed. Myrmecomorphy in spiders is generally considered a type of Batesian mimicry in which spiders are gaining protection from predators through their resemblance to aggressive or unpalatable ants. Selection pressure from spider predators and eggsac parasites may trigger greater integration into ant colonies among myrmecophilic spiders. Key Words: Araneae, symbiont, ant-mimicry, ant-associates RESUMEN Los mirmecomorfos son artrópodos que han evolucionado desarrollando una seme- janza morfológica a las hormigas. Los Myrmecófilos son artrópodos que viven dentro o cerca de nidos de hormigas y se consideran verdaderos simbiontes. Ha sido evaluado la literatura e información de historia natural acerca de las arañas mirmecomorfas y mirmecófilas . El myrmecomorfismo en las arañas es generalmente considerado un tipo de mimetismo Batesiano en el cual las arañas están protegiéndose de sus depre- dadores a través de su semejanza con hormigas agresivas o no apetecibles. La presión de selección de los depredadores de arañas y de parásitos de su saco ovopositor pueden inducir una mayor integración de las arañas mirmecófílas hacia las colonias de hor- migas. Myrmecomorphs and myrmecophiles are arthropods that have evolved some level of association with ants. Myrmecomorphs were originally referred to as myrmecoids by Donisthorpe (1927) and are defined as arthropods that mimic ants morphologically and/or behaviorally.
    [Show full text]
  • Evolution of Central Complex Development: Cellular and Genetic Mechanisms
    Evolution of central complex development: cellular and genetic mechanisms Dissertation for the award of the degree “Doctor rerum naturalium” of the Georg-August-Universität Göttingen within the doctoral program Genes and Development of the Georg-August University School of Science (GAUSS) submitted by Max Stephen Farnworth from Hanau, Germany Göttingen, 2019 Thesis Advisory Committee Prof. Dr. Gregor Bucher (advisor) (University of Göttingen; Department of Evolutionary Developmental Genetics) Prof. Dr. Halyna Shcherbata (Hannover Medical School; Institute for Cell Biochemistry) Prof. Dr. André Fiala (University of Göttingen; Department of Molecular Neurobiology of Behavior) Members of the Examination Board First reviewer: Prof. Dr. Gregor Bucher (University of Göttingen; Department of Evolutionary Developmental Genetics) Second reviewer: Prof. Dr. Halyna Shcherbata (Hannover Medical School; Institute for Cell Biochemistry) Further Members of the Examination Board Prof. Dr. André Fiala (University of Göttingen; Department of Molecular Neurobiology of Behavior) Prof. Dr. Christoph Bleidorn (University of Göttingen, Department of Animal Evolution and Biodiversity) PD Dr. Roland Dosch (University Medical Center Göttingen, Department of Developmental Biochemistry) Prof. Dr. Ralf Heinrich (University of Göttingen, Department of Cellular Neurobiology) Date of Oral Examination: September 30th, 2019 i DECLARATION I hereby declare that the doctoral thesis entitled "Evolution of central complex development: cellular and genetic mechanisms" has been written independently and with no other sources and aids than quoted. ______________________ Göttingen, July 11th, 2019 ii For my family iii Acknowledgements First of all, I want to thank Prof. Gregor Bucher for the opportunity of a doctoral thesis as well as his optimism and patience. During a period of life with a lot of changes, you have helped and supported me with a good mixture of kindness and firm guidance.
    [Show full text]
  • 150 KADU SEEMA G. Nagpur Full Length
    STUDIES ON THE DEVELOPMENTAL STAGES OF HOUSEHOLD PEST CARPENTER ANT, CAMPONOTUS COMPRESSUS (FABRICIUS) (HYMENOPTERA: FORMICIDAE) SEEMA G. KADU Department of Zoology, Shri Shivaji Education Society Amravati's Science College, Nagpur Corresponding Author: [email protected] ABSTRACT: The carpenter ant, Camponotus compressus, (Fabricius) is the polyphagous household pest responsible for damaging the utility poles, shade trees and lawns and also attacks sugar, molasses, sweet, stored grains and all kind of human food. It is a social polymorphic insect forming a large colony consisting of reproductive and sterile castes. The fertile queen and male are concealed together in the royal chamber with numerous sterile workers and soldiers. The development of carpenter ant, Camponotus compressus passes through the stages like eggs, larvae, pupae and adult stages. The pre-adult stages were recognized as the three larval instars and four pupal stages as pre, early, mid and late pupae. The time period for pre-adult development under the natural conditions ranges from one to two months while, the adults are produced around the same time of the year during late summer or early winter. Being polymorphic, the adults are of three forms, reproductive castes the queen (fertile female), the king (fertile male) and the workers (sterile caste). The workers differentiated into three types such as small workers, the minims or nanitics; medium size workers, the foragers and major workers, the soldiers in the colony. Key words: Camponotus compressus, polyphagous, pre-adult, polymorphic, nanitics, forager INTRODUCTION: MATERIALS AND METHODS: The carpenter ant, Camponotus compressus is a social The adults undertake mating flights in the months of April- insect forming a large colony consisting of reproductive and May-June.
    [Show full text]
  • Of Sri Lanka: a Taxonomic Research Summary and Updated Checklist
    ZooKeys 967: 1–142 (2020) A peer-reviewed open-access journal doi: 10.3897/zookeys.967.54432 CHECKLIST https://zookeys.pensoft.net Launched to accelerate biodiversity research The Ants (Hymenoptera, Formicidae) of Sri Lanka: a taxonomic research summary and updated checklist Ratnayake Kaluarachchige Sriyani Dias1, Benoit Guénard2, Shahid Ali Akbar3, Evan P. Economo4, Warnakulasuriyage Sudesh Udayakantha1, Aijaz Ahmad Wachkoo5 1 Department of Zoology and Environmental Management, University of Kelaniya, Sri Lanka 2 School of Biological Sciences, The University of Hong Kong, Hong Kong SAR, China3 Central Institute of Temperate Horticulture, Srinagar, Jammu and Kashmir, 191132, India 4 Biodiversity and Biocomplexity Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, Japan 5 Department of Zoology, Government Degree College, Shopian, Jammu and Kashmir, 190006, India Corresponding author: Aijaz Ahmad Wachkoo ([email protected]) Academic editor: Marek Borowiec | Received 18 May 2020 | Accepted 16 July 2020 | Published 14 September 2020 http://zoobank.org/61FBCC3D-10F3-496E-B26E-2483F5A508CD Citation: Dias RKS, Guénard B, Akbar SA, Economo EP, Udayakantha WS, Wachkoo AA (2020) The Ants (Hymenoptera, Formicidae) of Sri Lanka: a taxonomic research summary and updated checklist. ZooKeys 967: 1–142. https://doi.org/10.3897/zookeys.967.54432 Abstract An updated checklist of the ants (Hymenoptera: Formicidae) of Sri Lanka is presented. These include representatives of eleven of the 17 known extant subfamilies with 341 valid ant species in 79 genera. Lio- ponera longitarsus Mayr, 1879 is reported as a new species country record for Sri Lanka. Notes about type localities, depositories, and relevant references to each species record are given.
    [Show full text]
  • Mouthparts Sensilla of the Worker Ant Leptogenys Dentilobis (Hymenoptera: Formicidae) D
    Hislopia Journal 10 (1) 2017 ISSN: 0976-2124 99-103 MOUTHPARTS SENSILLA OF THE WORKER ANT LEPTOGENYS DENTILOBIS (HYMENOPTERA: FORMICIDAE) D. D. BARSAGADE, M. P. THAKRE, J. R. KIRSAN, S. B. NAGOSE, D. A. NAGARKAR & A. M. BODELE PGTD Zoology, MJF Educational Campus, RTM Nagpur University, Nagpur (MS), INDIA Corresponding author: [email protected] Abstract: The mouthparts of the worker cast in the ant, Leptogenys dentilobis are directed forward and adopted for biting and cutting type. The mouth parts consist of broad lobulated labrum, mandible with sclerotized incisors and molar cups, palped laterally placed maxillae, and the labium which forms the lower lip. Scanning electron microscopic (SEM) studies of the mouthparts revealed the presence of two major types of sensilla. i.e. sensilla trichoidea and sensilla trichoidea curvata. These sensillae though present in all the mouth parts, exhibit variation in their morphology, density and number and are site specific. Keywords: mouth parts, SEM, sensilla, Leptogenys dentilobis. Introduction The genus, Leptogenys mandibular elongated masticatory dentilobis, has attracted attention margin with noticeable sharp due to its wide variety of social pointed curved apical and pre- organization and colony structure apical teeth and a prominent basal as well as its remarkably diverse angle (CAPINERA, 2008). In the range of behaviors. In ants the adult ants the mouth parts are mouth parts consists of pair of equipped with mechano and mandibles, maxilla and labium. chemoreceptors (GOTWALD, 1969; The labium is formed due to fusion WHEELER & WHEELER, 1970; of paired structure the second pair PAUL et al., 2002). Mandible is of maxillae (RICHARDS & DAVIS, modified as defensive organ and 1987).
    [Show full text]
  • Camponotus Compressus) Mandibular Extracts Against Selective Gram Staining Bacteria
    International Journal of Zoology and Applied Biosciences ISSN: 2455-9571 Volume 3, Issue 3, pp: 269 -274, 2018 http://www.ijzab.com https://doi.org/10.5281/zenodo.1315457 Research Article ASSEMBLAGE OF NEST SOIL BACTERIA AND EVALUATE THE ANTIBACTERIAL ACTIVITY OF CARPENTER ANT (CAMPONOTUS COMPRESSUS) MANDIBULAR EXTRACTS AGAINST SELECTIVE GRAM STAINING BACTERIA P. Mohana*1, C. Gunasekaran2 and P. Selvarasu2 1Department of Zoology, Vivekanandha College of Arts and Sciences for Women (Autonomous), Elayampalayam, Tiruchengode – 637 205, Tamil Nadu, India. 2Conservation Biology laboratory, Department of Zoology, School of Life Sciences, Bharathiar University, Coimbatore – 641 046, Tamil Nadu, India. Article History: Received 2nd April 2018; Accepted 25th April 2018; Published 25th June 2018 ABSTRACT The present study was under taken to explore the assemblage of ant nest soil microbes and potential of mandibular gland extraction of carpenter ant Camponotus compressus. The microbial assemblages in nest soil from different habitats like Grasslands, Shola forest, Wattle plantation, Pine and Tea plantations were investigated. Among the isolated microbes from the nest soil bacteria, Staphylococcus aeureus was robust in three sites of the study area. Disc diffusion method was used to evaluate the antimicrobial activity of mandibular gland extraction against two robust microbial strains like S. aeureus and Escherichia coli. The result revealed that the maximum zone of inhibition was observed against the S. aeureus in both 10 µl and 20 µl of the mandibular sample and the minimum in gram negative bacteria Escherichia coli. The presences of mandibular gland proved have good capability more than commercially available antimicrobial products to kill or inhibit the growth of microbes inside the nests.
    [Show full text]
  • Facultative Associations of Two Sympatric Lycaenid Butterflies with Camponotus Compressus – Field Study and Larval Surface Ultrastructure
    ISSN 0973-1555(Print) ISSN 2348-7372(Online) HALTERES, Volume 11, 44-55, 2020 PRIYA ARADHYA EKKA, SUDHA KUMARI AND NEELKAMAL RASTOGI doi: 10.5281/zenodo.4043261 Facultative associations of two sympatric lycaenid butterflies with Camponotus compressus – field study and larval surface ultrastructure Priya Aradhya Ekka, Sudha Kumari and Neelkamal Rastogi* Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi-221005, Uttar Pradesh, India. (Email: [email protected]) Abstract The present study focused on the associations of two sympatric lycaenid species, Chilades pandava Horsfield, 1829 and Euchrysops cnejus Fabricius, 1798 with their respective host plants and the lycaenid tending Camponotus compressus Fabricius, 1787 ants by conduction of field studies and by examination of the ultrastructure of the larval myrmecophilous organs. The study revealed two facultative association complexes: ants - the defoliating Cl. pandava larvae - Cycas revoluta (Thunb.) plants and ants - the pod-boring E. cnejus larvae - cowpea plant, Vigna unguiculata (L.) Walp. The association of Cl. pandava was strongly synchronized with its host plant phenology and relatively less strongly with its late-arriving ant partner since the young, curled up leaves provided resources only to the caterpillars. The provision of resources to both the ants and the lycaenids by the cowpea plants contributed to the synchronization of E. cnejus association with the early arriving ants as well as the host plant. Presence of a single type of setae in Cl. pandava and of two types of setae in E. cnejus larvae indicates their facultative adaptations for resisting attack by their host ants. Ultrastructural similarity in the dorsal nectary, pore cupola and tentacle organs suggest that the basic myrmecophilous organs are conserved in these two lycaenid species.
    [Show full text]
  • Caste-Specific Morphological Modularity in the Ant Tribe Camponotini (Hymenoptera, Formicidae) A
    Laciny et al. BMC Zoology (2019) 4:9 https://doi.org/10.1186/s40850-019-0048-7 BMC Zoology RESEARCH ARTICLE Open Access Caste-specific morphological modularity in the ant tribe Camponotini (Hymenoptera, Formicidae) A. Laciny1,2* , H. L. Nemeschkal1, H. Zettel2, B. Metscher1 and I. S. Druzhinina3,4 Abstract Background: The morphological structures of organisms form tightly integrated but mutually independent character complexes (modules) linked through common development and function. Even though their abundance, diversity, and complex caste systems make camponotine ants ideal subjects to research developmental modularity and phenotypic integration, no studies investigating these phenomena have been conducted in this taxonomic group. This study attempts to identify and visualize integrated character complexes in 14 taxa from the genera Camponotus and Colobopsis using statistical analyses of morphometry. Results: The identified modules differ between castes: Minor workers have small heads and long extremities, while major workers have enlarged heads modified for defence, and short, thick appendages; extremities (legs and antennae) are strongly correlated in both worker castes. Gynes show weaker integration of extremities, but a strong correlation of mesosoma and eyes, and highly variable median ocellus size. Gynes infested by mermithid nematodes exhibit reduction of gyne-specific characters and altered patterns of phenotypic integration. Conclusion: The integrated character complexes described herein can largely be interpreted as functional, caste- specific modules related to behavioural ecology and task allocation within ant colonies. This modular nature of the body plan is hypothesized to facilitate the evolution of novel phenotypes and thus contributes to the tremendous evolutionary success of ants. The study of these modules can help to further elucidate the evolution and ontogeny of castes in camponotine ants, as well as the effects of parasite infestation on the phenotype.
    [Show full text]
  • The Various Means by Which Nature Prevents an Excessiveincrease Of
    111.-THE PREDACEOUS ENEMIES OF ASTS BY J. BEQUAERT The various means by which Nature prevents an excessiveincrease of the species not only forms in itself an interesting chapter of ecology, but its study is also of great importance in an understanding of the true meaning of Natural Selection. In the case of ants it has been contended that they are better defended than other insects against the attacks of predatory animals. Poulton‘ evidently takes this for granted when he considers that ants, together with wasps, are among the favorite models for “mimicking” insects and other arthropods. These ant-like arthro- pods, having acquired by Natural Selection their resemblance “to the aggressive, abundant, and well-defended ants,” would according to this theory escape many of the attacks of their deceived and disgusted predaceous enemies. Though the evidence presented in the following pages is still very fragmentary, I trust the readsr may easily conclude for himself to what extent such resemblances, which, in some casesat least, can hardly be doubted, have a real protective value. There is certainly little or no evidence to show that, as the theory is often expressed, ants are unpalatable to most insectivorous animals and are merely eaten accidentally or “during the time in which young birds or other animals are learning what to eat with impunity and what to reject.’’2 Another consideration of interest is the relative efficacy of parasitism and predatism in acting as a check on the reproductive power of the species. This point has been profusely discussed, and the argument has frequently been made that parasitism is in this respect of foremost importance.
    [Show full text]
  • Foraging and Predatory Activities of Ants
    DOI: 10.5772/intechopen.78011 ProvisionalChapter chapter 3 Foraging and Predatory Activities of Ants Ganesh GathalkarGanesh Gathalkar and Avalokiteswar SenAvalokiteswar Sen Additional information is available at the end of the chapter http://dx.doi.org/10.5772/intechopen.78011 Abstract Ants are a ubiquitous component of insect biodiversity and well known for its eusocial behavior. They are active foragers, scavengers, and predators that are prevalent in the vicinity of several plantations and crops. They (workers) prey on many insect species and feed on nectar exudates from plants as well as sticky secretions produced by Homopteran and Lepidopteran insects. As ferocious foragers with an aggressive attacking habit (e.g., Oecophylla smaragdina), they have often been used as biological control agents against various crop pests. However, some economically important insect species like the wild silkworm, Antheraea mylitta, are also affected by these foragers, namely, O. smaragdina, Myrmicaria brunnea, Monomorium destructor, Monomorium minutum, etc., which leads to the loss in crop outcome. In addition, some of them are known to destroy several plant species including domesticated fruit trees, particularly at the seedling stage. In this chap- ter, the foraging habit and the predation biology of these foragers are explored, in which the sequence of attack, their interactions, and invasion caused are discussed. It may also serve as a primary source of information on the foraging and its invasive impact, which may help to protect and/or take counteractive actions against the foragers which are harmful to commercial cultivations. Keywords: aggressive predator, biological invasions, crop damage, foraging behavior, Tasar culture 1. Introduction Ants (Hymenoptera: Formicidae) are eusocial cosmopolitan insects with about 13,262 species and 1941 subspecies, classified into 333 genera and 17 subfamilies 1[ ].
    [Show full text]