Permanent Mold Casting at Eagle Aluminum Tolerances, Capabilities and Design Recommendations

Total Page:16

File Type:pdf, Size:1020Kb

Permanent Mold Casting at Eagle Aluminum Tolerances, Capabilities and Design Recommendations Permanent Mold Casting at Eagle Aluminum Tolerances, Capabilities and Design Recommendations Contents • Casting Characteristics • Mold & Pouring Capabilities • Design Recommendations • Inspection Services at EACP Eagle Aluminum Cast Products, Inc. 2134 Northwoods Drive Muskegon, MI 49442 231-788-4884 www.eaglealuminumcastproducts.com PERMANENT MOLD CASTING AT EAGLE ALUMINUM Tolerances, Capabilities and Design Recommendations Permanent mold casting is a metal casting process involving reusable molds. Compared to casting methods that use disposable molds, permanent mold casting can dramatically reduce per-part costs for high-volume runs, while also improving a variety of casting parameters. Molds for permanent mold casting cost considerably less than for die casting, yet they are capable of producing larger volumes. Characteristics of permanent mold castings at Eagle Aluminum:* Typical tolerance held +/- .015 for first inch; add .02” for every additional inch Wall thickness As low as .125” Typical weight range <1 lb to 50 lbs Largest pattern dimensions Up to 55” in diameter and a 6H Hall Tilt Press Surface finish MIN 300 RMS Typical production quantity 100-5,000 per run Mold and pouring capabilities: Mold material Steel (4140 or H13) or cast iron Mold temperature 600 to 800 degrees F Aluminum Alloys poured 319 and A356 Pouring temperature Between 1350 and 1450 degrees F Design recommendations: • Minimum radius: 1/32” • We recommend designing parts with rounded corners Inspection & quality control services offered by Eagle Aluminum Cast Products, Inc.: • Visual inspections • Gaging • EAGLE ALUMINUM CAST PRODUCTS, INC. IS ISO 9001:2015 CERTIFIED *Tolerances and characteristics based on experience and on the Aluminum Association’s Standards for Aluminum Sand Castings Eagle Aluminum Cast Products, Inc. www.eaglealuminumcastproducts.com 2.
Recommended publications
  • Low-Pressure Casting of Aluminium Alsi7mg03 (A356) in Sand and Permanent Molds
    MATEC Web of Conferences 326, 06001 (2020) https://doi.org/10.1051/matecconf/202032606001 ICAA17 Low-Pressure Casting of Aluminium AlSi7Mg03 (A356) in Sand and Permanent Molds Franco Chiesa1*, Bernard Duchesne2, and Gheorghe Marin1 1Centre de Métallurgie du Québec, 3095 Westinghouse, Trois-Rivières, Qc, Canada G9A 5E1 2Collège de Trois-Rivières, 3500 de Courval, Trois-Rivières, Qc, Canada, G9A 5E6 Abstract. Aluminium A356 (AlSi7Mg03) is the most common foundry alloy poured in sand and permanent molds or lost-wax shells. Because of its magnesium content, this alloy responds to a precipitation hardening treatment. The strength and ductility combination of the alloy can be varied at will by changing the temper treatment that follows the solutionizing and quenching of the part. By feeding the mold from the bottom, the low-pressure process provides a tranquil filling of the cavity. A perfect control of the liquid metal stream is provided by programming the pressure rise applied on the melt surface. It compares favorably to the more common gravity casting where a turbulent filling is governed by the geometry of the gating system. 1 The low-pressure permanent 2) The very efficient feeding achieved via the mold process bottom feeder tube by applying a pressure of up to one atmosphere to the melt; the resulting yield is very high, typically 80-90% versus 50-60% for The low-pressure permanent mold casting gravity casting. However, the low-pressure (LPPM) [1], schematized in Figure 1a and shown process cannot pour any casting geometries. in Figure 1b and 1c, is a common process Low-pressure sand casting (LPS) is much less producing high quality castings resulting from common than LPPM; the sand mold rests on top two main characteristics: of the pressurized enclosure as shown in Figure 1) The perfectly controlled quiescent filling 1d.
    [Show full text]
  • Implementation of Metal Casting Best Practices
    Implementation of Metal Casting Best Practices January 2007 Prepared for ITP Metal Casting Authors: Robert Eppich, Eppich Technologies Robert D. Naranjo, BCS, Incorporated Acknowledgement This project was a collaborative effort by Robert Eppich (Eppich Technologies) and Robert Naranjo (BCS, Incorporated). Mr. Eppich coordinated this project and was the technical lead for this effort. He guided the data collection and analysis. Mr. Naranjo assisted in the data collection and analysis of the results and led the development of the final report. The final report was prepared by Robert Naranjo, Lee Schultz, Rajita Majumdar, Bill Choate, Ellen Glover, and Krista Jones of BCS, Incorporated. The cover was designed by Borys Mararytsya of BCS, Incorporated. We also gratefully acknowledge the support of the U.S. Department of Energy, the Advanced Technology Institute, and the Cast Metals Coalition in conducting this project. Disclaimer This report was prepared as an account of work sponsored by an Agency of the United States Government. Neither the United States Government nor any Agency thereof, nor any of their employees, makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any Agency thereof. The views and opinions expressed by the authors herein do not necessarily state or reflect those of the United States Government or any Agency thereof.
    [Show full text]
  • Foundry Industry SOQ
    STATEMENT OF QUALIFICATIONS Foundry Industry SOQ TRCcompanies.com Foundry Industry SOQ About TRC The world is advancing. We’re advancing how it gets planned and engineered. TRC is a global consulting firm providing environmentally advanced and technology‐powered solutions for industry and government. From solid waste, pipelines to power plants, roadways to reservoirs, schoolyards to security solutions, clients look to TRC for breakthrough thinking backed by the innovative follow‐ through of a 50‐year industry leader. The demands and challenges in industry and government are growing every day. TRC is your partner in providing breakthrough solutions that navigate the evolving market and regulatory environment, while providing dependable, safe service to our customers. We provide end‐to‐end solutions for environmental management. Throughout the decades, the company has been a leader in setting industry standards and establishing innovative program models. TRC was the first company to conduct a major indoor air study related to outdoor air quality standards. We also developed innovative measurements standards for fugitive emissions and ventilation standards for schools and hospitals in the 1960s; managed the monitoring program and sampled for pollutants at EPA’s Love Canal Project in the 1970s; developed the basis for many EPA air and hazardous waste regulations in the 1980s; pioneered guaranteed fixed‐price remediation in the 1990s; and earned an ENERGY STAR Partner of the Year Award for outstanding energy efficiency program services provided to the New York State Energy Research and Development Authority in the 2000s. We are proud to have developed scientific and engineering methodologies that are used in the environmental business today—helping to balance environmental challenges with economic growth.
    [Show full text]
  • High Integrity Die Casting Processes
    HIGH INTEGRITY DIE CASTING PROCESSES EDWARD J. VINARCIK JOHN WILEY & SONS, INC. This book is printed on acid-free paper. ࠗϱ Copyright ᭧ 2003 by John Wiley & Sons, New York. All rights reserved Published by John Wiley & Sons, Inc., Hoboken, New Jersey Published simultaneously in Canada No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Section 107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 750-4470, or on the web at www.copyright.com. Requests to the Publisher for permission should be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, e-mail: [email protected]. Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts in preparing this book, they make no representations or warranties with respect to the accuracy or completeness of the contents of this book and specifically disclaim any implied warranties of merchantability or fitness for a particular purpose. No warranty may be created or extended by sales representatives or written sales materials. The advice and strategies contained herein may not be suitable for your situation. You should consult with a professional where appropriate. Neither the publisher nor author shall be liable for any loss of profit or any other commercial damages, including but not limited to special, in- cidental, consequential, or other damages.
    [Show full text]
  • Metal Casting Terms and Definitions
    Metal Casting Terms and Definitions Table of Contents A .................................................................................................................................................................... 2 B .................................................................................................................................................................... 2 C .................................................................................................................................................................... 2 D .................................................................................................................................................................... 4 E .................................................................................................................................................................... 5 F ..................................................................................................................................................................... 5 G .................................................................................................................................................................... 5 H .................................................................................................................................................................... 6 I ....................................................................................................................................................................
    [Show full text]
  • Manufacturing Technology I Unit I Metal Casting
    MANUFACTURING TECHNOLOGY I UNIT I METAL CASTING PROCESSES Sand casting – Sand moulds - Type of patterns – Pattern materials – Pattern allowances – Types of Moulding sand – Properties – Core making – Methods of Sand testing – Moulding machines – Types of moulding machines - Melting furnaces – Working principle of Special casting processes – Shell – investment casting – Ceramic mould – Lost Wax process – Pressure die casting – Centrifugal casting – CO2 process – Sand Casting defects. UNIT II JOINING PROCESSES Fusion welding processes – Types of Gas welding – Equipments used – Flame characteristics – Filler and Flux materials - Arc welding equipments - Electrodes – Coating and specifications – Principles of Resistance welding – Spot/butt – Seam – Projection welding – Percusion welding – GS metal arc welding – Flux cored – Submerged arc welding – Electro slag welding – TIG welding – Principle and application of special welding processes – Plasma arc welding – Thermit welding – Electron beam welding – Friction welding – Diffusion welding – Weld defects – Brazing – Soldering process – Methods and process capabilities – Filler materials and fluxes – Types of Adhesive bonding. UNIT III BULK DEFORMATION PROCESSES Hot working and cold working of metals – Forging processes – Open impression and closed die forging – Characteristics of the process – Types of Forging Machines – Typical forging operations – Rolling of metals – Types of Rolling mills – Flat strip rolling – Shape rolling operations – Defects in rolled parts – Principle of rod and wire drawing – Tube drawing – Principles of Extrusion – Types of Extrusion – Hot and Cold extrusion – Equipments used. UNIT IV SHEET METAL PROCESSES Sheet metal characteristics – Typical shearing operations – Bending – Drawing operations – Stretch forming operations –– Formability of sheet metal – Test methods – Working principle and application of special forming processes – Hydro forming – Rubber pad forming – Metal spinning – Introduction to Explosive forming – Magnetic pulse forming – Peen forming – Super plastic forming.
    [Show full text]
  • Casting Processes
    2.4_3 Casting Processes • pouring a liquid material (molten metal) into a prepared mold • materials: iron steel aluminum brass bronze magnesium certain zinc alloys • iron is used most often - fluidity, low shrinkage, strength, rigidity, and ease of control Chap 2, Casting – p. 1 • Six factors of the casting process: 1) A mold cavity must be produced. - must have desired shape - must allow for shrinkage of the solidifying metal - a new mold must be made for each casting, or a permanent mold must be made 2) A suitable means must exist to melt the metal. - high temperatures - quality mix - low cost 3) The molten metal must be introduced into the mold so that all air or gases in the mold will escape. The mold must be completely filled so that there are no air holes. 4) The mold must be designed so that it does not impede the shrinkage of the metal upon cooling. 5) It must be possible to remove the casting from the mold. 6) Finishing operations must usually be performed on the part after it is removed from the mold. Chap 2, Casting – p. 2 Seven major casting processes: 1) Sand casting 5) Centrifugal casting 2) Shell-mold casting 6) Plaster-mold casting 3) Permanent-mold casting 7) Investment casting 4) Die casting Sand Casting • sand is used as the mold material • the sand (mixed with other materials) is packed around a pattern that has the shape of the desired part • the mold is made of two parts (drag (bottom) & cope (top)) • a new mold must be made for every part • liquid metal is poured into the mold through a sprue hole • the sprue hole is connected to the cavity by runners • a gate connects the runner with the mold cavity • risers are used to provide "overfill" Chap 2, Casting – p.
    [Show full text]
  • Removal of Oxide Inclusions in Aluminium Scrap Casting Process with Sodium Based Fluxes
    MATEC Web of Conferences 269, 07002 (2019) https://doi.org/10.1051/matecconf/201926907002 IIW 2018 Removal of Oxide Inclusions in Aluminium Scrap Casting Process with Sodium based Fluxes Widyantoro1, Donanta Dhaneswara1, Jaka Fajar Fatriansyah1, Muhammad Reza Firmansyah1, and Yus Prasetyo2 1Department of Metallurgical and Materials Engineering, Faculty of Engineering, Universitas Indonesia, Kampus UI, Depok, Indonesia 16424 2Center for Materials Processing and Failure Analysis, Universitas Indonesia, Depok, Indonesia 16424 Abstract. The investigation of Oxide Inclusions removal in aluminium scrap casting process with sodium based fluxes has been carried out. The purpose of this research is to investigate the effect of Na2SO4 and NaCl based fluxes addition onto the fluidity and microstructure of aluminium product. The alloy which is used in this investigation is Al-Si which mixed with metal scrap using gravity casting method. The variation of melting temperature in this investigation are 700oC, 740oC, and 780oC. In this research, material characterization was determined using DSC, EDAX, XRD, and fluidity test. The results show that the number of oxide inclusions decrease as the addition of 0,2% wt. flux, and completly removed after the addition of 0,4% wt. flux. The highest fluidity and tensile strength was obtained after the addition of 0,4% wt. flux. at 7400C.. 1 Introduction Chemical components that are used in a flux depends on the objective of casting process (alkali removal, Aluminium alloys is widely applied in many industrial cleanliness, dross separation) [15]. In this paper flux product, such as transportation, packaging, construction, based Na2SO4 and NaCl was used to reduce the or houseware product due to its excellent properties, percentage of oxide inclusions inside the molten such as light weight, high corrosion resistance, high aluminium by binding the inclusions into the melt castability, and good conductor [1]-[4].
    [Show full text]
  • Section 02 Tooling for Die Casting
    Tooling for Die Casting SECTION Section Contents NADCA No. Format Page Frequently Asked Questions (FAQ) 2-2 2 1 Introduction 2-3 2 Types of Die Casting Dies 2-4 2.1 Prototyping 2-4 2 2.2 Rapid Tooling Dies 2-4 2.3 Production Dies 2-5 2.4 Unit Dies 2-6 2.5 Trim Dies 2-6 3 Casting Features and Die Considerations 2-7 3.1 Core Slide Requirements 2-8 3.2 Parting Line: Cover & Ejector Die Halves 2-8 3.3 Ejector Pins 2-9 3.4 Cast-in Inserts 2-9 4 Die Materials 2-10 4.1 Die and Cavity Materials 2-10 4.2 Die Cavity Insert Materials 2-10 4.3 Die Steel Heat Treatment 2-11 5 Controlling Die Performance 2 -11 5.1 Porosity Control: Gating, Venting, Vacuum 2-11 5.2 Thermal Balancing 2-12 5.3 Oil Heating Lines 2-12 5.4 Alternate Surface Textures 2-12 5.5 Extended Die Life 2-12 6 Secondary Machining Preplanning 2-14 7 Gaging Considerations 2-14 8 Inherited Tooling 2-15 9 Engineering Consultation 2-15 10 Database Guidelines 2-16 11 New Die/Inherited Die Specifications 2-16 12 Die Life 2-16 13 Checklist for Die Casting Die Specifications T-2-1-12 Checklist 2-17 14 Guidelines to Increase Die Life T-2-2-12 Guideline 2-19 NADCA Product Specification Standards for Die Castings / 2015 2-1 Tooling for Die Casting A-PARTING LINE Surface where two die halves Frequently Asked Questions (FAQ) come together.
    [Show full text]
  • Welding in Toolmaking Industry
    Tailor-Made Protectivity™ WELDING IN TOOLMAKING INDUSTRY voestalpine Böhler Welding www.voestalpine.com/welding UTP MAINTENANCE High-quality industrial-use welding filler metals for maintenance, repair, and overlay welding. By adding the UTP and Soudokay brands to the voestalpine Böhler Welding brand network, the UTP Maintenance can look back on a proud history spanning 60 years as an innovative supplier of welding technology products. UTP Maintenance is the global leader in the repair, maintenance and overlay welding segment. With roots both in Bad Krozingen (Germany) and Seneffe By merging into the UTP Maintenance brand, the collective (Belgium), UTP Maintenance offers the world’s most unique know-how of both brands – gathered over decades in the product portfolio for filler metals from its own production fields of metallurgy, service and applications engineering facilities. The Soudokay brand was established back in – is now united under one umbrella. As a result, a truly 1938, while the UTP brand began operations in 1953. Each unique portfolio of solutions for welding applications has of these brands therefore respectively looks back on a long been created in the fields of repair, maintenance and over- history of international dimension. lay welding. Tailor-Made Protectivity™ UTP Maintenance ensures an optimum combination of protection and productivity with innovative and tailor-made solutions. Everything revolves around the customer and their individual requirements. That is expressed in the central performance promise: Tailor-Made Protectivity™. 2 © voestalpine Böhler Welding Research and Development for Customized Solutions At UTP Maintenance, research and development, conducted in collaboration with cus- tomers, plays a crucial role. Because of our strong commitment to research and develop- ment, combined with our tremendous innovative capacity, we are constantly engineering new products, and improving existing ones on an ongoing basis.
    [Show full text]
  • Special Aspects of Electrodeposition on Zinc Die Castings
    NASF SURFACE TECHNOLOGY WHITE PAPERS 82 (8), 1-9 (May 2018) Special Aspects of Electrodeposition on Zinc Die Castings by Valeriia Reveko1,2* and Per Møller2* 1Collini GmbH, Hohenems, Austria 2Technical University of Denmark, Lyngby, Denmark ABSTRACT Metal die casting has become a popular choice for the manufacturing of different consumer goods. Among the various engineering alloys and other metals, zinc alloys have often been preferred by manufacturers due to their qualities such as castability, dimensional stability and moderate solidification temperature, which provides energy and cost savings. Electroplating is a frequent choice to give zinc die cast components a high quality protective and decorative surface finish. However, applying this kind of treatment for die cast zinc components presents hidden challenges. In order to overcome these issues, a thorough morphology and composition analysis of die cast items was conducted. Special aspects of zinc die cast as a plating substrate are described and linked to the die casting process. Keywords: electrodeposition, zinc die cast, surface finishing, electroplating defects Introduction: why do we need to improve zinc die cast parts? Currently, metal die casting has become a popular choice for the manufacturing of finished products. An increasing number of industrial producers are attracted by this highly economical and efficient process capable of providing near-net shaped components that fully satisfy the geometrical requirements. Zinc, as a basis material, offers a broad range of desirable properties, beginning with hardness, ductility, impact strength, self- lubricating characteristics,1 and exhibits excellent thermal and heat conductivity. Among the various engineering alloys and other metals, zinc alloys have often been preferred by manufacturers because of their castability, dimensional stability and moderate solidification temperatures, which provide significant energy and cost savings.
    [Show full text]
  • Casting Since About 3200 BCE…
    Casting since about 3200 BCE… China circa 3000BCE Casting 2.810 T. Gutowski Lost wax jewelry from Greece Etruscan casting with runners circa 300 BCE 1 circa 500 BCE 2 Bronze age to iron age Cast Parts Iron works in early Europe, Ancient Greece; bronze e.g. cast iron cannons from England circa 1543 statue casting circa 450BCE 3 4 Outline 1. Review:Sand Casting, Investment Casting, Die Casting 2. Basics: Phase Change, Shrinkage, Heat Transfer 3. Pattern Design and New Technologies 4. Environmental Issues 5 6 Casting Casting Methods Readings; 1. Kalpakjian, Chapters 10, 11, 12 2. Booothroyd, “Design for Die Casting” 3. Flemings “Heat Flow in Solidification” 4. Dalquist “LCA of Casting” • Sand Casting • Investment Casting • Die Casting High Temperature Alloy, High Temperature Alloy, High Temperature Alloy, Complex Geometry, Complex Geometry, Moderate Geometry, Rough Surface Finish Moderately Smooth Surface Smooth Surface Note: a good heat transfer reference can be found by Finish Profs John Lienhard online http://web.mit.edu/lienhard/www/ahtt.html 7 8 Sand Casting Sand Casting Description: Tempered sand is packed into wood or metal pattern halves, removed form the pattern, and assembled with or without cores, and metal is poured into resultant cavities. Various core materials can be used. Molds are broken to remove castings. Specialized binders now in use can improve tolerances and surface finish. Metals: Most castable metals. Size Range: Limitation depends on foundry capabilities. Ounces to many tons. Tolerances: Non-Ferrous ± 1/32! to 6! Add ± .003! to 3!, ± 3/64! from 3! to 6!. Across parting line add ± .020! to ± .090! depending on size.
    [Show full text]