WO 2014/184553 Al 20 November 2014 (20.11.2014) P O P C T

Total Page:16

File Type:pdf, Size:1020Kb

WO 2014/184553 Al 20 November 2014 (20.11.2014) P O P C T (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2014/184553 Al 20 November 2014 (20.11.2014) P O P C T (51) International Patent Classification: (81) Designated States (unless otherwise indicated, for every A61K 31/34 (2006.01) A61K 31/535 (2006.01) kind of national protection available): AE, AG, AL, AM, A61K 31/427 (2006.01) A61P 31/18 (2006.01) AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, A61K 31/513 (2006.01) BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, (21) International Application Number: HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, PCT/GB20 14/05 1478 KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, (22) International Filing Date: MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, 14 May 2014 (14.05.2014) OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, (25) Filing Language: English TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, (26) Publication Language: English ZW. (30) Priority Data: (84) Designated States (unless otherwise indicated, for every 1749/MUM/2013 15 May 2013 (15.05.2013) IN kind of regional protection available): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ, (71) Applicant: CIPLA LIMITED [—/IN]; Cipla House, Pen UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, insula Business Park, Ganpatrao Kadam Marg, Lower TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, Parel, Mumbai-400 013 (IN). EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, (71) Applicant (for M W only): TURNER, Craig Robert TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, [GB/GB]; 235 High Holborn, London Greater London KM, ML, MR, NE, SN, TD, TG). WC1V 7LE (GB). Published: (72) Inventors: PURANDARE, Shrinivas Madhukar; B/25, Naperol Towers, Opposite R.A., Kidwai Road, Opposite — with international search report (Art. 21(3)) Gyaneshwar Vidyalaya, Wadala, Maharashtra, Mumbai — before the expiration of the time limit for amending the 400 031 (IN). MALHOTRA, Geena; 4 Anderson House, claims and to be republished in the event of receipt of Opposite Mazgaon Post Office, Mazgaon, Maharashtra, amendments (Rule 48.2(h)) Mumbai 400 010 (IN). (74) Agent: A. A. THORNTON & CO; 10 Old Bailey, Lon don EC4M 7NG (GB). (54) Title: PHARMACEUTICAL ANTIRETROVIRAL COMPOSITIONS (57) Abstract: The present invention relates to pharmaceutical antiretroviral compositions comprising a combination of antiretrovir - al agents, the manufacturing process thereof and use of the said compositions for the prevention, treatment or prophylaxis of diseases caused by retroviruses, specifically acquired immune deficiency syndrome or an HIV infection. PHARMACEUTICAL ANTIRETROVIRAL COMPOSITIONS FIELD OF INVENTION The present invention relates to pharmaceutical antiretroviral compositions comprising a combination of antiretroviral agents, the manufacturing process thereof and use of the said compositions for the prevention, treatment or prophylaxis of diseases caused by retroviruses, specifically acquired immune deficiency syndrome or an HIV infection. BACKGROUND AND PRIOR ART Demographically the second largest country in the world, India also has the third largest number of people living with HIV/AIDS. The total number of people living with HIV (PLHIV) in India is estimated at 2.4 million with uncertainty bounds of 1.93 to 3.04 million in 2009. Children under 15 years of age account for 4.4% of all infections, whilst people aged 15 to 49 years account for 82.4% of all infections. Thirty-nine percent of all HIV infections are estimated to be among women. This amounts to 0.93 million women with HIV in India. Acquired Immune Deficiency Syndrome (AIDS) causes a gradual breakdown of the body's immune system as well as progressive deterioration of the central and peripheral nervous systems. Since its initial recognition in the early 1980's, AIDS has spread rapidly and has now reached epidemic proportions within a relatively limited segment of the population. Intensive research has led to the discovery of the responsible agent, human T- lymphotropic retrovirus 111 (HTLV-1 11), now more commonly referred to as the human immunodeficiency viruses or HIV. Human immunodeficiency virus (HIV) is the etiological agent of Acquired Immune Deficiency Syndrome (AIDS) that has created a major health care problem not only in India but also globally. HIV is a member of the class of viruses known as retroviruses. The retroviral genome is composed of RNA, which is converted to DNA by reverse transcription. This retroviral DNA is then stably integrated into a host cell's chromosome and, employing the replicative processes of the host cells, produces new retroviral particles and advances the infection to other cells. HIV appears to have a particular affinity for the human T- 4 lymphocyte cell which plays a vital role in the body's immune system. HIV infection of these white blood cells depletes this white cell population. Eventually, the immune system is rendered inoperative and ineffective against various opportunistic diseases. The current strategy recommended for the treatment of HIV infection is Highly Active Antiretroviral Therapy (HAART). HAART normally consists of a combination of three or more antiretroviral drugs (ARV) taken together. Currently available antiretroviral drugs for the treatment of HIV include nucleoside reverse transcriptase inhibitors (NRTI) or approved single pill combinations: zidovudine or AZT (Retrovir®), didanosine or DDI (Videx®), stavudine or D4T (Zenith®), lamivudine or 3TC (Epivir®), zalcitabine or DDC (Hivid®), abacavir sulphate (Ziagen®), tenofovir disoproxil fumarate salt (Viread®), emtricitabine (Emtriva®), Combivir® (contains 3TC and AZT), Trizivir® (contains abacavir, 3TC and AZT); non-nucleoside reverse transcriptase inhibitors (NNRTI): nevirapine (Viramune®), delavirdine (Rescriptor®) and efavirenz (Sustiva®), peptidomimetic protease inhibitors or approved formulations: saquinavir (Invirase®, Fortovase®), indinavir (Crixivan®), ritonavir (Norvir®), nelfinavir (Viracept®), amprenavir (Agenerase®), atazanavir (Reyataz®), fosamprenavir (Lexiva®), Kaletra® (contains lopinavir and ritonavir), one fusion inhibitor enfuvirtide (T-20, Fuzeon®), Truvada® (contains Tenofovir and Emtricitabine) and Atripla® (contains fixed- dose triple combination of tenofovir, emtricitabine and efavirenz). The goal of HAART therapy is to maximize viral suppression thus limiting and reversing damage to the immune system, leading to decline of opportunistic infections. The durability of response depends on various factors such as viral, drug and patient related factors. However, the most important patient related factor is adherence, to ensure the success of HAART therapy. The HIV therapy is a life-long therapy coupled with high levels of adherence to the same. This is rather a demanding task for HIV infected patients due to various reasons such as low morale, social stigma, low immunity attributed to the disease. Further, the therapy may involve use of different drug combinations, which are difficult to adhere, because of the different dosage forms for administering each such as antiretroviral drug separately. This is particularly of importance in case of elderly patients. Further some studies have shown that adherence to prescribed drugs over long treatment periods is generally poor. (Jintanat A . et al. Swiss HIV Cohort Study. Failures of 1 week on, 1 week off antiretroviral therapies in a randomized trial AIDS, 2003; 17:F33-F37). Hence, such non-adherence to HAART can lead to rebound in viral replication and, in presence of sub-optimal drug concentration may lead to rapid development of drug resistance. This development of drug resistance can be disastrous because of the complexity and cost associated with second line regimens and the potential for transmission of drug resistant virus in the community. For most of the therapeutic agents, to produce systemic effects, the oral route still represents the preferred way of administration, owing to its several advantages and high patient compliance as compared to any other routes of administration. Tablets and hard gelatin capsules still constitute a major portion of drug delivery systems that are currently available. However, many patient groups such as the elderly, children, and patients who are mentally retarded, uncooperative, nauseated, or on reduced liquid-intake/diets have difficulties swallowing the dosage forms such as tablets and hard gelatin capsules. Further, those who are traveling or have little access to water are similarly affected. Also, the route of drug administration, appearance, color, taste, tablet size and dosing regimen are most important parameters that govern patient compliance. Especially, the geriatric and pediatric patients experience difficulty in swallowing larger sized tablets wherein large size tablet may result in esophageal damage due to its physical characteristics if it is not swallowed properly, which ultimately leads to poor patient compliance. Also, oral administration of bitter drugs with an acceptable degree of palatability is a key issue for health care providers, especially for pediatric patients. Further, there has been an enhanced demand for dosage forms that are more patient- friendly and patient compliant. Since the development cost of a new drug molecule is very high, efforts are now being made to focus on the development of new drug dosage forms for existing drugs with improved safety and efficacy together with reduced dosing frequency as well as which are cost-effective. Although, different treatment methods and dosage regimens have been framed in order to increase the patient adherence for treatment of HIV, there still remains a critical need for developing improved dosage forms such as a kit composition or dosage form by which a patient is encouraged to adhere to his daily dosage regimen.
Recommended publications
  • Download Article PDF/Slides
    Kan Lu, PharmD New Antiretrovirals for Based on a presentation at prn by Roy M. Gulick, md, mph the Treatment of HIV: Kan Lu, PharmD | Drug Development Fellow University of North Carolina School of Pharmacy Chapel Hill, North Carolina The View in 2006 Roy M. Gulick, md, mph Reprinted from The prn Notebook® | october 2006 | Dr. James F. Braun, Editor-in-Chief Director, Cornell Clinical Trials Unit | Associate Professor of Medicine, Meri D. Pozo, PhD, Managing Editor. Published in New York City by the Physicians’ Research Network, Inc.® Weill Medical College of Cornell University | New York, New York John Graham Brown, Executive Director. For further information and other articles available online, visit http://www.prn.org | All rights reserved. ©october 2006 substantial progress continues to be made in the arena of cokinetics and a long extracellular half-life of approximately 10 hours antiretroviral drug development. prn is again proud to present its annual (Zhu, 2003). During apricitabine’s development, a serious drug interac- review of the experimental agents to watch for in the coming months and tion with lamivudine (Epivir) was noted. Although the plasma years. This year’s review is based on a lecture by Dr. Roy M. Gulick, a long- concentrations of apricitabine were unaffected by coadministration of time friend of prn, and no stranger to the antiretroviral development lamivudine, the intracellular concentrations of apricitabine were reduced pipeline. by approximately sixfold. Additionally, the 50% inhibitory concentration To date, twenty-two antiretrovirals have been approved by the Food (ic50) of apricitabine against hiv with the M184V mutation was increased and Drug Administration (fda) for the treatment of hiv infection.
    [Show full text]
  • Ep 2531027 B1
    (19) TZZ ¥_Z _T (11) EP 2 531 027 B1 (12) EUROPEAN PATENT SPECIFICATION (45) Date of publication and mention (51) Int Cl.: of the grant of the patent: A61K 31/4985 (2006.01) A61K 31/52 (2006.01) 06.05.2015 Bulletin 2015/19 A61K 31/536 (2006.01) A61K 31/513 (2006.01) A61K 38/55 (2006.01) A61P 31/18 (2006.01) (21) Application number: 11737484.3 (86) International application number: (22) Date of filing: 24.01.2011 PCT/US2011/022219 (87) International publication number: WO 2011/094150 (04.08.2011 Gazette 2011/31) (54) Therapeutic combination comprising dolutegravir, abacavir and lamivudine Therapeutische Zusammensetzung enthaltend Dolutegravir, Abacavir und Lamivudine Combinaison thérapeutique comprenant du dolutégravir, de l’abacavir et de la lamivudine (84) Designated Contracting States: (74) Representative: Gladwin, Amanda Rachel AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GlaxoSmithKline GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO Global Patents (CN925.1) PL PT RO RS SE SI SK SM TR 980 Great West Road Designated Extension States: Brentford, Middlesex TW8 9GS (GB) BA ME (56) References cited: (30) Priority: 27.01.2010 US 298589 P WO-A1-2010/011812 WO-A2-2009/148600 US-A1- 2006 084 627 US-A1- 2006 084 627 (43) Date of publication of application: US-A1- 2008 076 738 US-A1- 2009 318 421 12.12.2012 Bulletin 2012/50 US-A1- 2009 318 421 US-B1- 6 544 961 (73) Proprietor: VIIV Healthcare Company • SONG1 et al: "The Effect of Ritonavir-Boosted Research Triangle Park, NC 27709 (US) ProteaseInhibitors on the HIV Integrase Inhibitor, S/GSK1349572,in Healthy Subjects", INTERNET , (72) Inventor: UNDERWOOD, Mark, Richard 15 September 2009 (2009-09-15), XP002697436, Research Triangle Park Retrieved from the Internet: URL:http: North Carolina 27709 (US) //www.natap.org/2009/ICCAC/ICCAC_ 52.htm [retrieved on 2013-05-21] Note: Within nine months of the publication of the mention of the grant of the European patent in the European Patent Bulletin, any person may give notice to the European Patent Office of opposition to that patent, in accordance with the Implementing Regulations.
    [Show full text]
  • Nnrtis – MK1439 New Classes • Maturation Inhibitors, LEDGINS, Etc
    New Antiretrovirals and New Strategies Saye Khoo HIV Pharmacology Group Declaration of Interests •www.hiv-druginteractions.org & www.hep-druginteractions.org sponsorship from Janssen, ViiV, Abbott, Merck, BMS, Gilead, Boehringer, Vertex. Editorial content remains independent. •Research Grants: Merck, ViiV •Speakers bureau: Merck, Janssen, Abbott, Roche •Travel grants: Gilead, ViiV, BMS, Janssen •TaiLor trial (NIHR-funded) Antiretroviral Stewardship Myocardial Infarction Stroke Cancer Congnitive impairment Liver, renal etc Plan Now For Then • what to give ? • Minimise resistance • when to start ? • Minimise toxicity • how to manage ? • Preserve options • Normalise Immunity • Equip for future co-morbidity New Drugs, New Formulations, New Strategies Improvements on existing classes • TAF • dolutegravir and other integrases • new NNRTIs – MK1439 New Classes • Maturation inhibitors, LEDGINS, etc New Formulations • nanoformulations • mono- or dual therapy • LA injections or implants • targeting latent reservoirs New Strategies • NRTI-sparing, PI monotherapy • targeting latent reservoirs • targeting immune activation, cardiovascular risk • etc INSTIs NRTIs PIs NNRTIs Other Approved Dolutegravir Phase 3 TAF DRVc Doravirine TAF/FTC/EVGc (MK1349) Cenicriviroc RPV-LA BMS663068 Phase 2 GSK126744 Racivir ABC/3TC/DTG Amodoxovir TAF/FTC/DRVc Elvucitabine Doravirine (MK-1439) • Pharmacology – Potent - IC95 ~19 nM (50% human serum) – Once-daily dosing; T½ 10-16h – P450 metabolism (CYP3A4/5) • No significant inhibition/induction of CYP P450s • No significant
    [Show full text]
  • Trends in Antiretroviral Treatment in Australia
    AUSTRALIAN HIV OBSERVATIONAL DATABASE (AHOD) ANNUAL REPORT (Volume 20, Number 1: December 2020) 2020 Clinical characteristics of overseas-born men who have sex with men (MSM) in the AHOD cohort and implications for clinical practice In Australia HIV notifications are increasing among overseas-born men who have sex with men (MSM), particularly among Asian-born MSM. Australian evidence suggests that culturally and/or linguistically diverse populations are less likely to start treatment early irrespective of CD4 cell count at diagnosis, but little is known about response once in care. Using data from AHOD, Jolie L Hutchinson and colleagues (2020) compared treatment response in overseas-born MSM from non-English-speaking countries with Australian-born MSM, further categorised based on participation in the Australian Temporary Residents Access Study (ATRAS) which provide temporary residents ineligible for Medicare, access to HIV treatment. ATRAS patients were chosen as the closest surrogate to identifying newly arrived overseas-born MSM. The authors explored the time to first virological suppression (VS) (viral load (VL) <400 copies/mL) and time to virological failure (VF) (>400 copies/mL after suppression). CD4 cell counts and VL measurements were taken at treatment initiation. Adjusted Hazard Ratios (HR) are reported with 95% CI. Results, as shown in figure 1, indicate that overseas-born MSM did not differ significantly in the rate of VS or in the rate of first VF after suppression. This result is different from findings in other settings, and differences may, in part, be explained by the nature of healthcare provision. In Australia, all residents can access ART for free or with a small co-payment; those ineligible for Medicare can get pharmaceutical company-provided ART which is not necessarily straightforward for non-English speakers.
    [Show full text]
  • HIV/AIDS Technologies: a Review of Progress to Date and Current Prospects
    Working Paper No.6 HIV/AIDS Technologies: A review of progress to date and current prospects COMMISSIONED BY: aids2031 Science and Technology Working Group AUTHORED BY: KEITH ALCORN NAM Publications Disclaimer: The views expressed in this paper are those of the author(s) and do not necessarily reflect the official policy, position, or opinions of the wider aids2031 initiative or partner organizations aids2031 Science and Technology working group A review of progress to date and current prospects October 2008 Acronyms 3TC lamivudine ANRS Agènce Nationale de Récherche sur la Sida ART Antiretroviral therapy ARV Antiretroviral AZT azidothymidine or zidovudine bDNA branched DNA CDC US Centers for Disease Control CHER Children with HIV Early Antiretroviral therapy (study) CTL Cytotoxic T-lymphocyte D4T stavudine DSMB Data and Safety Monitoring Board EFV Efavirenz ELISA Enzyme Linked Immunosorbent Assay FDC Fixed-dose combination FTC Emtricitabine HAART Highly Active Antiretroviral Therapy HBAC Home-based AIDS care HCV Hepatitis C virus HPTN HIV Prevention Trials Network HSV-2 Herpes simplex virus type 2 IAVI International AIDS Vaccine Initiative IL-2 Interleukin-2 LED Light-emitting diode LPV/r Lopinavir/ritonavir MIRA Methods for Improving Reproductive Health in Africa trial MSF Médecins sans Frontières MSM Men who have sex with men MVA Modified vaccinia Ankara NIH US National Institutes of Health NRTI Nucleoside reverse transcriptase inhibitor NNRTI Non-nucleoside reverse transcriptase inhibitor OBT Optimised background therapy PCR Polymerase
    [Show full text]
  • WO 2013/164559 Al 7 November 2013 (07.11.2013) P O P C T
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2013/164559 Al 7 November 2013 (07.11.2013) P O P C T (51) International Patent Classification: (74) Agent: TURNER, Craig; A.A. Thornton & Co, 235 High A61K 9/16 (2006.01) A61K 31/427 (2006.01) Holborn, London WC1V 7LE (GB). A61K 9/20 (2006.01) A61K 31/513 (2006.01) (81) Designated States (unless otherwise indicated, for every (21) International Application Number: kind of national protection available): AE, AG, AL, AM, PCT/GB20 13/000 193 AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, (22) Date: International Filing DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, 3 May 20 13 (03.05.2013) HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, (25) Filing Language: English KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, (26) Publication Language: English NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, (30) Priority Data: RW, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, 1380/MUM/2012 3 May 2012 (03.05.2012) IN TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, 2590/MUM/2012 6 September 2012 (06.09.2012) IN ZM, ZW.
    [Show full text]
  • Synthesis and Development of Long-Acting Abacavir Prodrug Nanoformulations
    University of Nebraska Medical Center DigitalCommons@UNMC Theses & Dissertations Graduate Studies Summer 8-19-2016 Synthesis and Development of Long-Acting Abacavir Prodrug Nanoformulations Dhirender Singh University of Nebraska Medical Center Follow this and additional works at: https://digitalcommons.unmc.edu/etd Part of the Pharmaceutical Preparations Commons, and the Virus Diseases Commons Recommended Citation Singh, Dhirender, "Synthesis and Development of Long-Acting Abacavir Prodrug Nanoformulations" (2016). Theses & Dissertations. 140. https://digitalcommons.unmc.edu/etd/140 This Dissertation is brought to you for free and open access by the Graduate Studies at DigitalCommons@UNMC. It has been accepted for inclusion in Theses & Dissertations by an authorized administrator of DigitalCommons@UNMC. For more information, please contact [email protected]. SYNTHESIS AND DEVELOPMENT OF LONG-ACTING ABACAVIR PRODRUG NANOFORMULATIONS by Dhirender Singh A DISSERTATION Presented to the Faculty of the Graduate School in the University of Nebraska Medical Center in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy Department of Pharmaceutical Science Under the Supervision of Dr. Howard E. Gendelman University of Nebraska Medical Center, Omaha, Nebraska August 2016 Supervisory Committee: Howard E. Gendelman, M.D. Ram Mahato, Ph.D JoEllyn M. McMillan, Ph.D. David Oupicky, Ph.D SYNTHESIS AND DEVELOPMENT OF LONG-ACTING ABACAVIR PRODRUG NANOFORMULATIONS Dhirender Singh, Ph.D. University of Nebraska Medical Center, 2016 Supervisor: Howard E Gendelman, M.D. Over the past decade, work from our laboratory has demonstrated the potential of targeted nanoformulated antiretroviral therapy (nanoART) to produce sustained high plasma and tissue drug concentrations for weeks following a single intramuscular (IM) administration that can suppress ongoing viral replication and mitigate dose associated viral resistance.
    [Show full text]
  • Multi-Class Immune-Based Therap I Es Co Combination Drugs AZ T
    m- IMMUNE-BASED THERAP o /R) c VIR, A LPV ) MULTI-CLASSA NFV VIR, A S T N (INDIN COMBINATION DRUGSA VIR, REZIST AZ R 754) P A ) AVX C + Inhibitors Protease RTV VIR/RITON ) CRIXIV AB A OM (KIVEXA, COMBIVIR (ZIDOVUDINE + LAMIVUDINE, AZT + 3TC) EMTRIVA Protease754, Inhibitors C VIR, (EMTRICITABINE, FTC) EPIVIR (LAMIVUDINE, 3TC) EPZICOM (KIVEXA, TPV T A PZI HE EPT (NELFIN SPD OVIR DISOPROXIL ABACAVIR + LAMIVUDINE, ABC + 3TC) RETROVIR (ZIDOVUDINE, AZT, E HIBITO F VIR, , LOPIN ZDV) TRIZIVIR (ABACAVIR + ZIDOVUDINE + LAMIVUDINE, ABC + AC A A S IR N IN TRUGGLE FOR AZT + 3TC) TRUVADA (TENOFOVIR DF + EMTRICITABINE, TDF + V ENO A ) T ABINE ( ABINE FTC) VIDEX & VIDEX EC (DIDANOSINE, DDI) VIREAD (TENOFOVIR T TV I THE (ALUVI C DISOPROXIL FUMARATE, TDF) ZERIT (STAVUDINE, D4T) ZIAGEN A (ABACAVIR, ABC) RACIVIR (RCV) AMDOXOVIR (AMDX, DAPD) ORVIR (RITON N PRI VIR, A ) IREAD ( A A V APRICITABINE (SPD754, AVX754)ELVUCITABINE (ACH- TORS ) LETR N ) A I 126,443, BETA-L-FD4C) COMBIVIR (ZIDOVUDINE + FPV A Z I LAMIVUDINE, AZT + 3TC) EMTRIVA (EMTRICITABINE, ) K A ) APTIVUS (TIPR DAPD T VIR, IPTASE IPTASE , A FTC) EPIVIR (LAMIVUDINE, 3TC) EPZICOM (KIVEXA, A PV A SQV CCESS TO ABACAVIR + LAMIVUDINE, ABC + 3TC) RETROVIR R Z ( PIVIR (LAMIVUDINE, 3TC) B A This book documents the struggle that has been faced by those E (ZIDOVUDINE, AZT, ZDV) TRIZIVIR (ABACAVIR + T AMDX VIR, VIR, A A A I STRUGGLEA requiring treatment for HIV/AIDS in India, and those affected ZIDOVUDINE + LAMIVUDINE, ABC + AZT + 3TC) MPREN AVIR + ZIDOVUDINE + LAMIVUDINE, SC EY A C TRUVADA (TENOFOVIR DF + EMTRICITABINE, by HIV/AIDS, since the first recorded incidence of HIV/AIDS in FOR R N ) TDF + FTC) VIDEX & VIDEX EC (DIDANOSINE, QUIN India in 1986.
    [Show full text]
  • AVCC Figure Template
    Schinazi 11/2/08 14:00 Page 343 Antiviral Chemistry & Chemotherapy 18:343–346 Short communication Cellular pharmacology of 9-(β-D-1,3-dioxolan-4-yl) guanine and its lack of drug interactions with zidovudine in primary human lymphocytes Brenda I Hernandez-Santiago, Aleksandr Obikhod, Emilie Fromentin, Selwyn J Hurwitz and Raymond F Schinazi* Center for AIDS Research, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, and Veterans Affairs Medical Center, Decatur, GA 30033, USA *Corresponding author: Tel: 404 728 7711; Fax: 404 728 7726; E-mail: [email protected] Amdoxovir, currently in Phase II clinical trials, is different resistance mutations, co-formulation of rapidly converted to 9-(β-D-1,3-dioxolan-4- the these two drugs is an attractive proposition. A yl)guanine (DXG) by adenosine deaminase in vitro combination study between DXG and ZDV and in humans. The cellular pharmacology of DXG showed no reduction of DXG-TP or ZDV-TP. Taken in primary human lymphocytes, including together, these results suggest that an appropri- dose–response relationships, intracellular half-life ately designed DXG prodrug could be given once of DXG triphosphate (DXG-TP), and combination a day and that co-formulation with ZDV might be studies were determined. DXG produced high a possibility. levels of DXG-TP with a long half-life (16 h) in acti- vated human peripheral blood mononuclear cells. Keywords: cellular pharmacology, DXG, nucleoside Since zidovudine (ZDV) and DXG select for analogues, NRTI The emergence of resistant HIV strains during therapy has inhibitor of HIV-1, HIV-2 and hepatitis B virus (HBV) made it a major challenge to develop drugs that delay, in human cell lines.
    [Show full text]
  • Screening of Clinically Approved and Investigation
    Screening of Clinically Approved and Investigation Drugs as Potential Inhibitors of SARS-CoV-2 Main Protease and Spike Receptor- Binding Domain Bound with ACE2 COVID19 Target Proteins: A Virtual Drug Repurposing Study Serdar Durdagi1,*, Busecan Aksoydan1,2, Berna Dogan1, Kader Sahin1, Aida Shahraki1,3, Necla Birgul-Iyison3 1Computational Biology and Molecular Simulations Laboratory, Department of Biophysics, School of Medicine, Bahcesehir University, Istanbul, Turkey 2Neuroscience Program, Graduate School of Health Sciences, Bahçeşehir University, Istanbul, Turkey 3Department of Molecular Biology and Genetics, Bogazici University, Istanbul, Turkey Abstract There is an urgent need for new drugs against COVID-19. Since designing a new drug and testing its pharmacokinetics and pharmacodynamics properties may take years, here we used a physics-driven high throughput virtual screening drug re-purposing approach to identify new compounds against COVID- 19. As the molecules considered in repurposing studies passed through several stages and have well- defined profiles, they would not require prolonged pre-clinical studies and hence, they would be excellent candidates in the cases of disease emergencies or outbreaks. While the Spike Protein is the key for the virus to enter the cell through the interaction with ACE2, enzymes such as main protease are crucial for the life cycle of the virus. These proteins are the most attractive targets for the development of new drugs against COVID-19 due to their pivotal roles in the fusion, replication and transcription of the virus. We used 7922 FDA approved small molecule drugs as well as compounds in clinical investigation from NIH Chemical Genomics Center (NCGC) Pharmaceutical Collection (NPC) database in our drug repurposing study.
    [Show full text]
  • 14-258 Phrma HIV/AIDS2014 0819.Indd
    2014 MEDICINES IN DEVELOPMENT REPORT HIV/AIDS PRESENTED BY AMERICA’S BIOPHARMACEUTICAL RESEARCH COMPANIES Biopharmaceutical Company Researchers Are Developing More Than 40 Medicines and Vaccines For HIV Infection Treatment and Prevention Medicines and Vaccines in Globally, approximately 35 million people effective therapies, and preventative Development for HIV Infection are infected with human immunodefi - vaccines. These medicines and vaccines ciency virus (HIV), the virus that causes are either in clinical trials or awaiting Application acquired immune defi ciency syndrome review by the U.S. Food and Drug Submitted (AIDS). However, new infections have Administration (FDA). Phase III dropped by 38 percent since 2001, Phase II The 44 medicines and vaccines in the according to UNAIDS, the Joint United Phase I development pipeline include: Nations Programme on HIV/AIDS. • A fi rst-in-class medicine intended to In the United States, more than 25 prevent HIV from breaking through 1.1 million people are living with HIV the cell membrane. and 15.8 percent of those are unaware they are infected, according to the • A cell therapy that modifi es a U.S. Centers for Disease Control and patient’s own cells in an attempt to Prevention (CDC). Although the U.S. make them resistant to HIV. HIV/AIDS-related death rate has fallen 16 by more than 80 percent since the introduction of antiretroviral therapies in Contents 1995, new HIV infections have stabilized HIV Medicines and Vaccines in at approximately 50,000 each year, Development ......................................2 according to the CDC. Incremental Innovation in HIV/AIDS Treatment .......................... 4 Since AIDS was fi rst reported in 1981, Access to HIV/AIDS Medicines in nearly 40 medicines have been approved Exchange Plans ...................................5 to treat HIV infection in the United Facts About HIV/AIDS ........................7 States.
    [Show full text]
  • HIV-1 Antiretroviral Drug Therapy
    Downloaded from http://perspectivesinmedicine.cshlp.org/ on October 2, 2021 - Published by Cold Spring Harbor Laboratory Press HIV-1 Antiretroviral Drug Therapy Eric J. Arts1 and Daria J. Hazuda2 1Ugandan CFAR Laboratories, Division of Infectious Diseases, Department of Medicine, Case Western Reserve University, Cleveland, Ohio 44106 2Merck Research Laboratories, West Point, Pennsylvania 19486 Correspondence: [email protected]; [email protected] The most significant advance in the medical management of HIV-1 infection has been the treatment of patients with antiviral drugs, which can suppress HIV-1 replication to undetect- able levels. The discovery of HIV-1 as the causative agent of AIDS together with an ever- increasing understanding of the virus replication cycle have been instrumental in this effort by providing researchers with the knowledge and tools required to prosecute drug discovery efforts focused on targeted inhibition with specific pharmacological agents. To date, an arsenal of 24 Food and Drug Administration (FDA)-approved drugs are available for treatment of HIV-1 infections. These drugs are distributed into six distinct classes based on their molecular mechanism and resistance profiles: (1) nucleoside-analog reverse tran- scriptase inhibitors (NNRTIs), (2) non–nucleoside reverse transcriptase inhibitors (NNRTIs), (3) integrase inhibitors, (4) protease inhibitors (PIs), (5) fusion inhibitors, and (6) coreceptor antagonists. In this article, we will review the basic principles of antiretroviral drug therapy, the mode of drug action, and the factors leading to treatment failure (i.e., drug resistance). BASIC PRINCIPLES OF ANTIRETROVIRAL development and approval for human use is THERAPY described in Figure 1. Since the first HIV-1 specific antiviral drugs efore 1996, few antiretroviral treatment were given as monotherapy in the early 1990s, Boptions for HIV-1 infection existed.
    [Show full text]