<<

Introduction to with accelerated beams O. Sorlin (GANIL)

What are limits of stability ?

Which new phenomena emerge at the drip lines (halo, clustering, breaking mirror symetry… ) ?

How do nuclear structure and shape evolve along the chart of nuclides ?

How does nuclear structure change with Temperature and Spin value ?

How to unify nuclear structure and reaction approaches ?

How to probe the density and isospin dependence of the nuclear equation of state ?

What are nuclear processes that drive the evolution of and galaxies in the universe ?

How / where are nuclei synthesized in the universe ?

Find a universal interaction, based on fundamental principles, that can model nuclear structure and reactions in nuclei and in stars (i.e. from the fm to 104 km, over 1022 orders of )

Scientific council IN2P3- June 26th Accelerators, reactions and instrumentation

Detectors: Charged particles: GRIT, ACTAR-TPC g-rays: AGATA, nu-ball, PARIS Facilities: spectrometer GANIL, GSI, Dubna, RIKEN, Licorne wall Stable / radioactive beams EXPAND 5 - 500 MeV/A Reactions: Fusion, transfer, Fission, knockout...

A wide variety of phenemona to understand

Magic nuclei Fission, pear shapes GDR Soft GMR n p Implantation Residual nuclei b, a-decay, isomeric decay

Exotic decays 2n halo molecular cluster rotation- deformation

Scientific council IN2P3- June 26th Nuclear physics impact many astrophysical processes X-ray bursts

normal H surface

Neutron star merger

Price & Rossworg ) r s r s Abundance ( solar

Sneden & Cowan 2003 Log Mass Number H. Schatz (2016) Energy profile of X-ray burst and nuclear physics

X-ray bursts X-ray burst normal star

Neutron star

10s

(p,g) (a,p) b-

3a Departure from Hot CNO cycle depends crucially on 15O(a,g)19Ne reaction It is followed by (a,p), (p,g) reactions and b-decays World Recoil g Tritons in 15 Use Cyburt - O (4.7 MeV/A)O (4.7 rays (x 1038 erg/s) 15 O ( - in high in 19 leading et al. et al. Ne at Ne focalof plane 7 Diget Li,t) segmented ApJ efficiency 19 et To al., time(s) experience 830 (2016)830 Ne beam Determination transfer charged be at 10 / resolution performed in reaction 7 VAMOS pps charged particle from 15 (AGATA) at GANIL/VAMOSat 2019July O+ spectrometer to - particle SPIRAL1 detector G of the a simulate a 19 arrays Ne (MUGAST) 15 G a g O( capture S 1/2 - a 3/2 > GRIT a,g + + ) 19 Branching 1 N 5 A O + Ne < wg s v = (2J a > reaction   wg 19 r +1)/2(2J G Ne + MUGASTAGATA / a [MeV] and and g rate mainly T G +1) x +1) exp g are ( - 11.6 G See needed through a G g E talk array /( a [MeV]/T G a Beaumel + 3/2 G g ) + 9 ) Magic nuclei and shell evolution far from stabilty Magic numbers in the

The neutron numbers 8, 20 and 28 were considered as magic over several decades

-> large gap between occupied and valence states

68Ni 40 Increase of 2+ energy at N= 8, 20,28 40 Ca 4000 3500 48 48 Ca Ca 8O 3500 6000 3000 3000

16 ) O 2500 2500 keV 4000 2000 ) ( )

+ 2000 6C Ca 1500 20 Ca E(2 14Si 1500 20 2000 1000 16S 1000 500 500 0 0 0 4 6 8 10 12 12 16 20 24 22 24 26 28 30 Neutron Number Neutron Number Neutron Number Assuming our world was more neutron-rich

While removing , the same loss of magicity occurs for all magic numbers

role of -neutron interactions, poorly known far from stability 78Ni While deformation appears at relatively low energy, the measured 2+ of 78Ni reveals that magicity is kept at N=50 64Cr Taniuchi et al. Nature 569 (2019) 40 No sign of shell closure and magic nuclei 42 4000 Si 3500 3500 32Mg 6000 3000 3000 12Be ) 2500 8O 2500 keV 4000 2000 ) ( )

+ 2000 1500

E(2 4Be 1500 2000 1000 10Ne 1000 500 12Mg 14Si 500 0 0 4 6 8 10 12 12 16 20 24 0 Neutron Number Neutron Number 22 24 26 28 30 Neutron Number Shell evolution and transfer reactions

The change of magicity comes from the reduction of shell gaps and increase of correlations

Probe the evolution of proton and neutron orbits far from stability using various transfer reactions

132Sn

r process Shell gap Shell gap

Understand shell evolution at N=82 below 132Sn for the building of the r process peak

Need of charged particle detectors, gamma-arrays, as well as cryogenic targets in same cases

See talk Beaumel Super Heavy Elements Motivation for studying super-heavy elements

Discover the heaviest elements whose location is likely connected to spherical shell gaps whose location is unknown (Z=114, 120, 126 ?)

Study their decay properties: a & fission competition

Study the structure of the heavy nuclei: - Ascertain the discovery of SHE - Confront experiment to models for better predictivility of shell structure in the region Motivation for studying super-heavy elements Identify orbits in deformed nuclei to trace back to the amplitudes of the spherical shell gaps

protons

126

120 7/2-[514]

f5/2

(MeV) 114 108 1/2-[521]

f7/2

energy 102 i13/2 100 3/2-[521] h 9/2 96 particle

- 7/2+[633] 82 Single

254No 254No

Quadrupole deformation Spectroscopy of the very heavy nucleus 254No

g e- 208Pb(48Ca,2n)254No g g e-  at the target Two isomers discovered (study at the focal plane)

254No recoil-gated254No recoil-gated et al., PRL. 97 PRL. al., et (2006) Herzberg et al., Nature442 al., et Herzberg (2006) Tandel

unpublished, see also: S.Eeckhaudt,P.T.Greenlees et al.,EPJA 26 (2005) 227

254No 266 ms decay 184 ms decay 266ms isomer-gated

Combine in-beam and delayed spectroscopy C. Gray-Jones, PhD theis (2008) Spectroscopy of very heavy nuclei at Dubna Spectroscopy of very heavy nuclei at Dubna

K=8 8- 1293 KeV 266 ms

Band on top of 8- isomer not observed in g-ray spectrum p2 or n2 state ? H.L. Liu et al., PRC 89 PRC (2014)al., et Liu H.L. Spectroscopy of very heavy nuclei at Dubna

K=8 8- 1293 KeV 266 ms

Band on top of 8- isomer not observed in g-ray spectrum p2 or n2 state ? H.L. Liu et al., PRC 89 PRC (2014)al., et Liu H.L.

See talk Hauschild

Hyperfine splitting in 253No: I(253No)=9/2

gK=-0.22(5) (confirming results from prompt & decay spectroscopy of 253No)

Laser spectroscopy of the long-lived 8- isomer foreseen in 2020 @ GSI/SHIP S. Raeder et la., PRL 120 (2018) (2018) 120 PRL la., et Raeder S. See talk Jurado / Lescene Spectroscopy of very heavy nuclei at Dubna

K=(16) Experiment planned end of 2019 @ Dubna (16+) 2.5 MeV 184 ms -> shed light on nature of the short-lived isomer

K=8 8- 1293 KeV 266 ms

Band on top of 8- isomer not observed in g-ray spectrum p2 or n2 state ? H.L. Liu et al., PRC 89 PRC (2014)al., et Liu H.L.

See talk Hauschild

Hyperfine splitting in 253No: I(253No)=9/2

gK=-0.22(5) (confirming results from prompt & decay spectroscopy of 253No)

Laser spectroscopy of the long-lived 8- isomer foreseen in 2020 @ GSI/SHIP S. Raeder et la., PRL 120 (2018) (2018) 120 PRL la., et Raeder S. See talk Jurado / Lescene

Licorne (nu-ball), SOFIA & Cryring@GSI, GANIL/VAMOS Selected features related to fission Fission yields needed for societal applications Fission allows to produce neutron-rich nuclei at high J

Fission competes with the synthesis of the heaviest and hyperdeformed nuclei (see talk Hauschild) prep

et al.et in Evolution of fission yields show that: - Fission is mostly asymmetric

Vassh - No yield enhancement at (magic) Z=50 - One fragment keeps the same Z ! Amount of Lanthanide produced in Binary Neutron Stars depends on the fission yields of very heavy nuclei No fully microscopic description so far The dynamics of nuclear fission

Fission barriers probability energy Atomic number Z Fission

238U(3He,4He) n-induced JEFF Potential n-induced JENDL n-induced ENDF Elongation E* 237U (MeV)

Mass number A

Fission probabilities Fission-fragment yields -Sensitive to structural -Sensitive to evolution from the evolution to fission barrier barrier to scission

-Most direct way to determine Nature , 564 (2018) -Role of shell effects and pairing at fission barriers extreme deformation

-Neutron-induced fission cross Cimenel -The decay of the fission sections are highly important , fragments determine the residual for societal applications power of a in an

Scamps accidental configuration. High-precision decay-probability measurements at CRYRING

Fission- Target-like fragments Dipole Beam: 107-108 stored 238 92+ 20° U at 10 A MeV

Dipole Gas-jet 13 2 Target D2 10 /cm

• Beam cooling & ultra-thin gas-jet target  Excellent energy and position resolution of the beam, negligible straggling effects Unreacted beam Beam • Pure targets & beams 10 A •E* resolution ~200 keV, ≈100% efficiency Beam-like MeV nuclei • Simultaneous measurement of fission, g- and n- emission probabilities of many short-lived nuclei

see talk Jurado High-precision fission-fragment yields with SOFIA

A. Chatillon et al. Phys. Rev. C 99 (2019) 054628 E. Pellereau et al. Phys. Rev.C 95 (2017) 054603

Average neutron multiplicity • Outstanding Z and A resolution

• Full identification of both fragments event-by-even • Measurement of prompt neutron mult. with Z & N UNIQUE • Access to a wide range of exotic fissioning systems

See talk Jurado Nuclear deformation

> Shell evolution > Hyperdeformation Nuclear shapes and deformation at N=60

Zr rotor spherical

Energy (eV)

98Zr et et al., PRL 117 (2016) 110Zr Energy (meV) 100

Togashi Zr

Energy (keV)

GANIL/ VAMOS Does deformation persist at N=60 at Z=36 ?

Zr rotor spherical

Energy (eV) et et al., PRL 117 (2016)

Energy (meV) Togashi

Specific role of the tensor g9/2 - g7/2 pn interactions to induce deformation

Energy (keV) et et al, PRL 117 (2017) Dudouet 100 200 300 400 500 600 700 800 900 Energy (keV) See Grévy Search for hyperdeformation in atomic nuclei

Find the best way to produce a maximally elongated nucleus -> high angular

Competition between hyperdeformation / Jacobi shapes / fission

Find a needle in a haystack -> requires extremely high sensitivity

Expected gain in sensitivity with AGATA 4p

See talk Lopez-Martens Soft and giant excitations in nuclei

> Symmetry energy > Nuclear matter incompressibility core Inakura et al. PRC 84 (2011) 021302 PDR Excitation n skin n Pigmy energy n GDR and (MeV) p giant dipole Challenges: total E1 Determine Probes using Study Prove Prove with capture PDR star’s Informationthe size on neutronskin of in General may large E1 Nuclear radii its its the strength nucleosythesis configuration E1 interest considerably excitationsneutronin appearance and the EOS the and of %EWSRthe of character strengths and Coulomb and in the PDRin : . of PDRat largeof (few N/Z cases speed ). (if present asymmetric - up neutron up capturesin Summed PDR (MeV fm2) at suitable V. etBaran al. PRC 88(2013) nuclear Neutronskin nuclei - rich energies matter , on neutronon , nuclei thickness so rapid and and far) Pigmy and giant dipole excitations in 34Si @ GANIL/LISE

34 4 Use a radioactive beam of Si at 5.10 pps in CH2, C and Pb targets -> Use of Nuclear and Coulomb probes to study the E1 response to both excitations

PARIS : 8 modules of Phoswich NaI & LaBr3

Calc. Grasso, Gambacurta High-efficiency up to 30 MeV 34 Si20 14 Good granularity (≈ 4.5 cm x 4.5 cm)

Good energy resolution (4%)

Excellent timing resolution (≈ 150ps) Soft and giant monopole modes in exotic nuclei

Incompressibility modulus of nuclear matter

0.02 0.04 34 0.01 Si n 0.02 protons n r 2 0 r r 2 0 -0.01 r E=11 MeV -0.02 E=22 MeV PRC to -0.02 -0.04 10 0 5 10 r (fm) 0 5 r (fm) 34Si(soft mode) submitted et al. et Grasso M.

Low-energy modes involve only neutrons over the entire volume of the nucleus Soft GMR -> Incompressibility modulus of almost pure neutron matter -> CC Supernovae -> Experimental evidence and characterization of this mode (M. Vandebrouck PRL (2014)) Physics at the drip line

Mild changes / almost same models applied Drastics change / new models and concepts needed

OR Evolution of nuclear pairing close and beyond the drip line at RIKEN Study of 1n and 2n decays of unbound B nuclei at RIKEN allows rather accurate determinations of S values beyond the drip line

n ] 18B Virtual state counts N [

18B 17B 19B 21B 14 Be unbound ] n 19 11Li B keV /100 /100 counts N [

13 Theory (SM) S. al. Leblond PRL et (2019) B exp 5 15B 21 17B 19 B B 21B

(MeV) 0 n Gapless S superconductivity? -5 J. Gibelin, J. Bonnard

6 8 10 12 14 16 Neutrons Exotic decay of borromean systems: the 19B case

18B Virtual state

19B a <-100 fm 17 s B 18B Sequential decay of 19B through the virtual state in18B J. Gibelin, M. Marques et al.

19B

Other systems under study, e.g. 16Be decay B. Monteagudo, M. Marques

See talk N. Orr Study of 2n and 4n correlations in atomic nuclei at FAIR/GSI Planned studies 2020 (core+4n, haloes, drip-line) Program: Use of quasi-free proton knockout mechanism to promote 1n, 2n or 4n in the continuum

-1n Spectroscopy of drip-line nuclei with excellent 17B energy resolution -> shell evolution 14Be unbound -1p 11Li Study of 2n or 4n correlations as a function of nuclear structure and the proximity of the drip line -> Evolution of nuclear superfluidity

Means: Study of all step of the reaction with full kinematics for ions and neutrons

Very good neutron energy resolution (NEULAND) Highest efficiency worldwide

Good g energy resolution and efficiency (CALIFA)

See talk Jurado / Sorlin Direct 1p or 2p radioactivity at the proton drip line with ACTAR-TPC

2.6 MeV TPC -

54 ∆t Ni 1.3 MeV ACTAR p

1p emission with L=5 & L=7! LISE/GANIL (2019) With

Known 2p emitters

Understanding the 1p & 2p radioactivity processes require proper modeling of the nuclear structure and the dynamics See talk Jurado/Giovinazzo The end – backup slides after Study of 2n correlations in atomic nuclei at GSI/R3B Use quasi-free proton knockout reaction from to suddenly promote neutron pairs in the continuum Ed

doorway state FSI

S2n

p n p n p n 2 m nn

2 m fn 19N(-p) 18C* 16C+2n

n n 16C C

19N 400 MeV/A Study of 2n correlations in atomic nuclei at GSI/R3B Use quasi-free proton knockout reaction from to suddenly promote neutron pairs in the continuum Ed

doorway state FSI

S2n

p n p n p n 2 m nn

2 m fn 19N(-p) 18C* 16C+2n

Small relative n-n 50% direct n 85% direct momentum -> rnn ≈ 4 fm n rnn ≈ 4fm rnn ≈ 4fm 16C Neutrons decay by pair in 85% cases, even up to C isotopes Ed=12 MeV

Revel et al. PRL120 (2019) 19N 400 MeV/A core

Inakura et al. PRC 84 (2011) 021302 PDR Excitation n skin n Pigmy energy n GDR and (MeV) p giant dipole excitationsneutronin r L: J: Symetry Nuclear a = D Symmetry Slope r = n ∑ + r B(E1)/E B(E1)/E p , EOS. : at the saturationat the energy d=(r energy n - : r dipole S( E/A ( p )/ r ) = J+ L/(3 J+ = ) at saturation ( r r,d n polarizability + r ) = E/A() energy p ) r - 0 rich ) x ( ) r density ,0) + S( + ,0) r - r nuclei 0 ) + ... ) r ) d 2 Roca-Maza PRC 88 (2013) 024316 G. Scamps and C. Cimenel, Nature 564 (2018)

Evolution to fission Maximum fission Atscission point, the Microsocopic yield octupole around 240 Pu Z=52 shapes - modelling 56 are where preferred octupole Z=56 of fission forthe fragment of one - deformed nuclei are found . core

Inakura et al. PRC 84 (2011) 021302 PDR Excitation n skin n Pigmy energy n GDR and (MeV) p giant dipole excitationsneutronin L: J: Symetry Nuclear Symmetry Slope r EOS : EOS parameter energy = r n energy + r p : , S( E/A ( d=(r r ) = J + L/(3 J + = ) at saturation r,d n - r ) = E/A() p )/ ( r J r n + (MeV) 0 r ) x ( ) r - density ,0) + S( + ,0) p rich ) r - r 0 r ) + ... + ) nuclei

Tsang et al.PRC 86 (2012) ) d 2 core

Inakura et al. PRC 84 (2011) 021302 PDR Excitation n skin n Pigmy energy n GDR and (MeV) p giant dipole L: J: Symetry Nuclear excitationsneutronin Symmetry Slope r EOS: parameter energy = Carbone et al., PRC 81(2010) PRCet al., Carbone r n energy + r p : , S( E/A ( d=(r r ) = ) at saturation r,d n - J r + ) = E/A() p )/ L /(3 ( r r n + 0 r ) x ( ) r density ,0) + S( + ,0) p - ) rich r - r 0 r ) + ... + ) ) nuclei d 2 Pigmy and giant dipole excitations in neutron-rich nuclei

Link between slope parameter and Neutron Star radius

Radius of 1 Alam et et al.94 Alam(2016)

Ling between the energy and strength of the PDR and rates

GDR PDR can enhance the neutron capture rate for PDR the r process by orders of magnitude S (A.C. Larsen et al., PPNP in press) A E1 n

A+1 Introduction to nuclear physics with accelerated beams O. Sorlin (GANIL) - Structure nucléaire  Comment évoluent les effets de couches (nombres magiques, formes) ? Quelles sont les limites d’existence des noyaux en isospin et masse - Astrophysique nucléaire  Comment sont synthétisés les éléments chimique dans l'Univers Quelle est l’équation d’état de la matière nucléaire ? (lien avec explosions stellaires, étoiles à neutrons, NSM …) - Mécanismes de réaction  Comment parvenir à une description microscopique des processus de fusion, fission et collisions nucléaires rapprochées ? - Interactions fondamentales  Peut-on trouver des indices de la physique BSM ? Fission dynamics

Equation of state Super Heavies

p-n pairing 2p radioactivity

Coupling to Lattice Effective continuum Field Theory

New magic numbers

Clusters Shape coexistence Exotic Shapes Neutron halos Tendances actuelles en physique théorique Interdisciplinarité Théorie Fonctionnelles

Transitions de phase Petit supra. Modèle en couche

Ab-initio

-Appariement et superfluidité Condensation -Bosonisation/clusterization Structure -Phénomène de condensation des systèmes -Symétrie et brisure de symétrie quantiques

Transition -Théorie de fonctionnelles Cold atoms ordre-désordre en densité, théorie des champs effectifs, modèles ab-inito Dynamique Thermodynamique Des systèmes Structures moléculaires mésoscopiques Du microscopique Système quantique ouvert Au macroscopique

Chaos quantique (Courtesy D. Lacroix) Motivations for studying 36Ca Influence of the rapid rates

L =0 3045 + p 2 Er,Gp 3/2+ 35K+p Gg

0 0+ 36Ca

Breaking of mirror symmetry at the drip line 1+ 3346 0+ Study of 36Ca using 37Ca(p,d) and 38Ca(p,t) reactions 3290 2+ S3045 2+2+ 2pS 37,38Ca beams produced with LISE spectrometer at p ?00++ ? 50MeV/A

0 0+ 0 0+ 36Ca 36S Detection of the charged particles with MUST2 20 16 16 20 Experimental set up to study 36Ca – Preliminary results ∆E,E,x,y IC+DC+plast x,y,t x,y,t ∆E XY E,t ∆E Liq H t 37Ca 2 5000 pps 50 A.MeV 22m 7mg.cm-2 ± 1.45 % LISE CHIO CATS IC MUST2 ∆E HF - CATS2 T 0+ 2+ T CATS1-HF T MUST2 array (8 modules) Kinematics in MUST2 Ar CATS1-Plast

(MeV) gated on outgoing Z K Gated on Ca d E Ca Gated on K 1+

+ 4+ 0+ 2

qd (deg.) E*36Ca (MeV) Nuclear shapes and deformation at N=60

Zr rotor spherical

Energy (eV)

98Zr et et al., PRL 117 (2016) 110Zr Energy (meV) 1O0

Togashi Zr

Energy (keV)

Specific role of the tensor attractive g9/2 - g7/2 and repulsive g9/2 - d5/2 proton-neutron interactions to cluster the neutron orbits and induce deformation Assuming our world was more neutron-rich

While removing protons, the same loss of magicity occurs for all magic numbers

role of proton-neutron interactions, poorly known far from stability

No sign of shell closure and magic nuclei 64Cr (no increase of 2+ energy at N=8, 20, 40) 40 3500 2000 6000 3000

32 ) Mg 2500 1500 12 8O Be keV 4000 2000 ) ( ) + 1500 1000

E(2 4Be 2000 1000 26Fe 10Ne 500 500 12Mg 24Cr 0 0 0 4 6 8 10 12 12 16 20 24 32 36 40 44 N=40 Neutron Number Neutron Number Neutron Number Hannawald PRL 82 (1999), Sorlin, EPJA16 (2003), Aoi, PRL 102 (2009), Gade PRC 81 (2010) W. Rother PRL106 (2011), Lenzi PRC82 (2010), Santamaria PRL 115 (2015), … Magic numbers in the valley of stability

The neutron numbers 8, 20 and 28 were

68Ni Increase of 2+ energy at N=8, 20, 40 40 40Ca 3500 8O 2000 6000 3000 ) 2500 1500 16O 28Ni keV 4000 2000 ) ( ) + 6C 1500 20Ca 1000

E(2 14Si 2000 1000 16S 500 500 0 0 0 4 6 8 10 12 12 16 20 24 32 36 40 44 Neutron Number Neutron Number Neutron Number