IEEE Standard for Boot (Initialization Configuration) Firmware: Core Requirements and Practices
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Beyond BIOS Developing with the Unified Extensible Firmware Interface
Digital Edition Digital Editions of selected Intel Press books are in addition to and complement the printed books. Click the icon to access information on other essential books for Developers and IT Professionals Visit our website at www.intel.com/intelpress Beyond BIOS Developing with the Unified Extensible Firmware Interface Second Edition Vincent Zimmer Michael Rothman Suresh Marisetty Copyright © 2010 Intel Corporation. All rights reserved. ISBN 13 978-1-934053-29-4 This publication is designed to provide accurate and authoritative information in regard to the subject matter covered. It is sold with the understanding that the publisher is not engaged in professional services. If professional advice or other expert assistance is required, the services of a competent professional person should be sought. Intel Corporation may have patents or pending patent applications, trademarks, copyrights, or other intellectual property rights that relate to the presented subject matter. The furnishing of documents and other materials and information does not provide any license, express or implied, by estoppel or otherwise, to any such patents, trademarks, copyrights, or other intellectual property rights. Intel may make changes to specifications, product descriptions, and plans at any time, without notice. Fictitious names of companies, products, people, characters, and/or data mentioned herein are not intended to represent any real individual, company, product, or event. Intel products are not intended for use in medical, life saving, life sustaining, critical control or safety systems, or in nuclear facility applications. Intel, the Intel logo, Celeron, Intel Centrino, Intel NetBurst, Intel Xeon, Itanium, Pentium, MMX, and VTune are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States and other countries. -
AMNESIA 33: How TCP/IP Stacks Breed Critical Vulnerabilities in Iot
AMNESIA:33 | RESEARCH REPORT How TCP/IP Stacks Breed Critical Vulnerabilities in IoT, OT and IT Devices Published by Forescout Research Labs Written by Daniel dos Santos, Stanislav Dashevskyi, Jos Wetzels and Amine Amri RESEARCH REPORT | AMNESIA:33 Contents 1. Executive summary 4 2. About Project Memoria 5 3. AMNESIA:33 – a security analysis of open source TCP/IP stacks 7 3.1. Why focus on open source TCP/IP stacks? 7 3.2. Which open source stacks, exactly? 7 3.3. 33 new findings 9 4. A comparison with similar studies 14 4.1. Which components are typically flawed? 16 4.2. What are the most common vulnerability types? 17 4.3. Common anti-patterns 22 4.4. What about exploitability? 29 4.5. What is the actual danger? 32 5. Estimating the reach of AMNESIA:33 34 5.1. Where you can see AMNESIA:33 – the modern supply chain 34 5.2. The challenge – identifying and patching affected devices 36 5.3. Facing the challenge – estimating numbers 37 5.3.1. How many vendors 39 5.3.2. What device types 39 5.3.3. How many device units 40 6. An attack scenario 41 6.1. Other possible attack scenarios 44 7. Effective IoT risk mitigation 45 8. Conclusion 46 FORESCOUT RESEARCH LABS RESEARCH REPORT | AMNESIA:33 A note on vulnerability disclosure We would like to thank the CERT Coordination Center, the ICS-CERT, the German Federal Office for Information Security (BSI) and the JPCERT Coordination Center for their help in coordinating the disclosure of the AMNESIA:33 vulnerabilities. -
Analysis of Firmware Security in Embedded ARM Environments
Analysis of Firmware Security in Embedded ARM Environments Dane A. Brown Dissertation submitted to the Faculty of the Virginia Polytechnic Institute and State University in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Computer Engineering T. Charles Clancy, Chair Ryan Gerdes Yaling Yang Jonathan Black Patrick Schaumont August 13, 2019 Arlington, Virginia Keywords: Security, Firmware, Embedded Devices, ARM Copyright 2019, Dane A. Brown Analysis of Firmware Security in Embedded ARM Environments Dane A. Brown (ABSTRACT) Modern enterprise-grade systems with virtually unlimited resources have many options when it comes to implementing state of the art intrusion prevention and detection solutions. These solutions are costly in terms of energy, execution time, circuit board area, and capital. Sus- tainable Internet of Things devices and power-constrained embedded systems are thus forced to make suboptimal security trade-offs. One such trade-off is the design of architectures which prevent execution of injected shell code, yet have allowed Return Oriented Program- ming (ROP) to emerge as a more reliable way to execute malicious code following attacks. ROP is a method used to take over the execution of a program by causing the return address of a function to be modified through an exploit vector, then returning to small segments of otherwise innocuous code located in executable memory one after the other to carry out the attacker’s aims. We show that the Tiva TM4C123GH6PM microcontroller, which utilizes an ARM Cortex-M4F processor, can be fully controlled with this technique. Firmware code is pre-loaded into a ROM on Tiva microcontrollers which can be subverted to erase and rewrite the flash memory where the program resides. -
Chapter 3. Booting Operating Systems
Chapter 3. Booting Operating Systems Abstract: Chapter 3 provides a complete coverage on operating systems booting. It explains the booting principle and the booting sequence of various kinds of bootable devices. These include booting from floppy disk, hard disk, CDROM and USB drives. Instead of writing a customized booter to boot up only MTX, it shows how to develop booter programs to boot up real operating systems, such as Linux, from a variety of bootable devices. In particular, it shows how to boot up generic Linux bzImage kernels with initial ramdisk support. It is shown that the hard disk and CDROM booters developed in this book are comparable to GRUB and isolinux in performance. In addition, it demonstrates the booter programs by sample systems. 3.1. Booting Booting, which is short for bootstrap, refers to the process of loading an operating system image into computer memory and starting up the operating system. As such, it is the first step to run an operating system. Despite its importance and widespread interests among computer users, the subject of booting is rarely discussed in operating system books. Information on booting are usually scattered and, in most cases, incomplete. A systematic treatment of the booting process has been lacking. The purpose of this chapter is to try to fill this void. In this chapter, we shall discuss the booting principle and show how to write booter programs to boot up real operating systems. As one might expect, the booting process is highly machine dependent. To be more specific, we shall only consider the booting process of Intel x86 based PCs. -
Designing PCI Cards and Drivers for Power Macintosh Computers
Designing PCI Cards and Drivers for Power Macintosh Computers Revised Edition Revised 3/26/99 Technical Publications © Apple Computer, Inc. 1999 Apple Computer, Inc. Adobe, Acrobat, and PostScript are Even though Apple has reviewed this © 1995, 1996 , 1999 Apple Computer, trademarks of Adobe Systems manual, APPLE MAKES NO Inc. All rights reserved. Incorporated or its subsidiaries and WARRANTY OR REPRESENTATION, EITHER EXPRESS OR IMPLIED, WITH No part of this publication may be may be registered in certain RESPECT TO THIS MANUAL, ITS reproduced, stored in a retrieval jurisdictions. QUALITY, ACCURACY, system, or transmitted, in any form America Online is a service mark of MERCHANTABILITY, OR FITNESS or by any means, mechanical, Quantum Computer Services, Inc. FOR A PARTICULAR PURPOSE. AS A electronic, photocopying, recording, Code Warrior is a trademark of RESULT, THIS MANUAL IS SOLD “AS or otherwise, without prior written Metrowerks. IS,” AND YOU, THE PURCHASER, ARE permission of Apple Computer, Inc., CompuServe is a registered ASSUMING THE ENTIRE RISK AS TO except to make a backup copy of any trademark of CompuServe, Inc. ITS QUALITY AND ACCURACY. documentation provided on Ethernet is a registered trademark of CD-ROM. IN NO EVENT WILL APPLE BE LIABLE Xerox Corporation. The Apple logo is a trademark of FOR DIRECT, INDIRECT, SPECIAL, FrameMaker is a registered Apple Computer, Inc. INCIDENTAL, OR CONSEQUENTIAL trademark of Frame Technology Use of the “keyboard” Apple logo DAMAGES RESULTING FROM ANY Corporation. (Option-Shift-K) for commercial DEFECT OR INACCURACY IN THIS purposes without the prior written Helvetica and Palatino are registered MANUAL, even if advised of the consent of Apple may constitute trademarks of Linotype-Hell AG possibility of such damages. -
Chapter 1. Origins of Mac OS X
1 Chapter 1. Origins of Mac OS X "Most ideas come from previous ideas." Alan Curtis Kay The Mac OS X operating system represents a rather successful coming together of paradigms, ideologies, and technologies that have often resisted each other in the past. A good example is the cordial relationship that exists between the command-line and graphical interfaces in Mac OS X. The system is a result of the trials and tribulations of Apple and NeXT, as well as their user and developer communities. Mac OS X exemplifies how a capable system can result from the direct or indirect efforts of corporations, academic and research communities, the Open Source and Free Software movements, and, of course, individuals. Apple has been around since 1976, and many accounts of its history have been told. If the story of Apple as a company is fascinating, so is the technical history of Apple's operating systems. In this chapter,[1] we will trace the history of Mac OS X, discussing several technologies whose confluence eventually led to the modern-day Apple operating system. [1] This book's accompanying web site (www.osxbook.com) provides a more detailed technical history of all of Apple's operating systems. 1 2 2 1 1.1. Apple's Quest for the[2] Operating System [2] Whereas the word "the" is used here to designate prominence and desirability, it is an interesting coincidence that "THE" was the name of a multiprogramming system described by Edsger W. Dijkstra in a 1968 paper. It was March 1988. The Macintosh had been around for four years. -
University of Cape Town Declaration
The copyright of this thesis vests in the author. No quotation from it or information derived from it is to be published without full acknowledgementTown of the source. The thesis is to be used for private study or non- commercial research purposes only. Cape Published by the University ofof Cape Town (UCT) in terms of the non-exclusive license granted to UCT by the author. University Automated Gateware Discovery Using Open Firmware Shanly Rajan Supervisor: Prof. M.R. Inggs Co-supervisor: Dr M. Welz University of Cape Town Declaration I understand the meaning of plagiarism and declare that all work in the dissertation, save for that which is properly acknowledged, is my own. It is being submitted for the degree of Master of Science in Engineering in the University of Cape Town. It has not been submitted before for any degree or examination in any other university. Signature of Author . Cape Town South Africa May 12, 2013 University of Cape Town i Abstract This dissertation describes the design and implementation of a mechanism that automates gateware1 device detection for reconfigurable hardware. The research facilitates the pro- cess of identifying and operating on gateware images by extending the existing infrastruc- ture of probing devices in traditional software by using the chosen technology. An automated gateware detection mechanism was devised in an effort to build a software system with the goal to improve performance and reduce software development time spent on operating gateware pieces by reusing existing device drivers in the framework of the chosen technology. This dissertation first investigates the system design to see how each of the user specifica- tions set for the KAT (Karoo Array Telescope) project in [28] could be achieved in terms of design decisions, toolchain selection and software modifications. -
Coreboot - the Free firmware
coreboot - the free firmware Linux Club of Peking University April 9th, 2016 . Linux Club of Peking University coreboot - the free firmware April 9th, 2016 1 / 30 1 History 2 Why use coreboot 3 How coreboot works 4 Building and using coreboot 5 Flashing 6 Utilities and Debugging 7 Contribute to coreboot 8 Proprietary Components 9 References . Linux Club of Peking University coreboot - the free firmware April 9th, 2016 2 / 30 History: from LinuxBIOS to coreboot coreboot has a very long history, stretching back more than 15 years to when it was known as LinuxBIOS. While the project has gone through lots of changes over the years, many of the earliest developers still contribute today. Linux Club of Peking University coreboot - the free firmware April 9th, 2016 3 / 30 LinuxBIOS v1: 1999-2000 The coreboot project originally started as LinuxBIOS in 1999 at Los Alamos National Labs (LANL) by Ron Minnich. Ron needed to boot a cluster made up of many x86 mainboards without the hassles that are part of the PC BIOS. The goal was to do minimal hardware initilization in order to boot Linux as fast as possible. Linux already had the drivers and support to initialize the majority of devices. Ron and a number of other key contributors from LANL, Linux NetworkX, and other open source firmware projects successfully booted Linux from flash. From there they were able to discover other nodes in the cluster, load a full kernel and user space, and start the clustering software. Linux Club of Peking University coreboot - the free firmware April 9th, 2016 4 / 30 LinuxBIOS v2: 2000-2005 After the initial success of v1, the design was expanded to support more CPU architectures (x86, Alpha, PPC) and to support developers with increasingly diverse needs. -
Linux Kernel. LTS? LTSI?
ARM Reference Kernel of Tizen 3 MyungJoo Ham, Ph.D. MyungJoo Ham Tizen “System Domain” & System SW Lab “Base Domain” Architect SW Platform Team SWC Samsung Electronics ARM Reference Kernel of Tizen 3 1. What is it? 2. Idea & Principle 3. Design & Updates 4. Discussion What is “Tizen Reference Kernel” • Kernel (& BSP) for Tizen Reference Devices BSP Validated & Tested for the Reference Devices Image from seoz.com 3 What is “Tizen Reference Kernel” • Kernel (& BSP) for Tizen Reference Devices BSP Validated & Tested for the Reference Devices Yet Another BSP? Image from seoz.com 4 Need for “Tizen Reference Kernel” • Distribute reference devices • Tizen-common kernel features & interface • Basis for next-gen Tizen development 1 KDBUS, User PM-QoS, PASS, DMABUF Sync FW, … 2 CMA, DRM-Exynos, Devfreq, Extcon, Charger-manager, LAB/Turboboost … • Support Tizen Vendors! • Well-known and well-written example. • Code basis for vendors. 5 Previous Tizen ARM Reference Kernel (~2.2.1) • Linux 3.0.15 • Obsolete LTS. (Current: 3.4 & 3.10) • Support RD-PQ (Tizen 2) & RD-210 (Tizen 1 & 2) • RD-PQ: Exynos4412 • RD-210: Exynos4210 (Linux 2.6.36 for Tizen 1) • Not Good as Reference • Too many backported features. • Too OLD! No LTS/LTSI support • Many kernel hacks & dirty patches • git history removed. 1. Forked from production kernel. 2. Hard to read 6 Status of Tizen 3 Reference Kernels • Two Reference Kernels: ARM / Intel • ARM (armv7, aarch64) • Linux 3.10.y • 3.10.33 @ 2014/05 • Full git history. • armv6 support (Raspberry Pi) coming soon. (Thanks to Univ. of Warsaw) • Test & validation phase (integration test with userspace) • Intel (x86, x86_64) • Linux 3.14.1 • Recent ATOM SoC support merged @ 3.14 • Test & validation phase (integration test with userspace) 7 ARM Reference Kernel of Tizen 3 1. -
Network Boot and Exotic Root HOWTO
Network Boot and Exotic Root HOWTO Brieuc Jeunhomme frtest [email protected] Logilab S.A. Revision History Revision 0.3 2002−04−28 Revised by: bej Many feedback inclusions, added links to several projects Revision 0.2.2 2001−12−08 Revised by: dcm Licensed GFDL Revision 0.2.1 2001−05−21 Revised by: logilab Fixed bibliography and artheader Revision 0.2 2001−05−19 Revised by: bej Many improvements and included Ken Yap's feedback. Revision 0.1.1 2001−04−09 Revised by: logilab First public draft. Revision 0.1 2000−12−09 Revised by: bej Initial draft. This document explains how to quickly setup a linux server to provide what diskless linux clients require to get up and running, using an IP network. It includes data and partly rewritten text from the Diskless−HOWTO, the Diskless−root−NFS−HOWTO, the linux kernel documentation, the etherboot project's documentation, the linux terminal server project's homepage, and the author's personal experience, acquired when working for Logilab. Eventually this document may end up deprecating the Diskless−HOWTO and Diskless−root−NFS−HOWTO. Please note that you'll also find useful information in the From−PowerUp−to−bash−prompt−HOWTO and the Thin−Client−HOWTO, and the Claus−Justus Heine's page about NFS swapping. Network Boot and Exotic Root HOWTO Table of Contents 1. Introduction.....................................................................................................................................................1 1.1. What is this all about?.......................................................................................................................1 1.2. Thanks...............................................................................................................................................1 1.3. Diskless booting advocacy................................................................................................................1 1.3.1. Buying is cheaper than building.......................................................................................1 1.3.2. -
Project Report - Adding PXE Boot Into Palacios
Project Report - Adding PXE Boot into Palacios Chen Jin Bharath Pattabiraman Patrick Foley EECS Department EECS Department EECS Department Northwestern University Northwestern University Northwestern University chen.jin@eecs. bharath@u. patrickfoley2011@u. northwestern.edu northwestern.edu northwestern.edu ABSTRACT PXE is a standard for booting an OS from the network. Most machines BIOSes support it. But, the BIOS used by Palacios guests did not. In our project, we tried various ways in which PXE network boot capability could be added to Palacios. We used a PXE-capable Etherboot ROM image from ROM-o-matic.net that has support for our emulated network card. We then used this small ISO image to build the guest and let it serve as a replacement PXE-boot ROM for the emulated network card. With passthrough I/O, the requests are handed over directly to the host, which are then sent to the DHCP and Boot servers to initiate the network boot process. The PXE capability will of vital importance in diskless nodes where the node is completely dependent on Figure 1: PXE system configuration the network for booting. 1. INTRODUCTION using PXE protocol and then boots the guest. PXE (Preboot eXecution Environment) allows us to boot Kitten/Palacios (and a test guest) remotely from a network server. Booting Palacios/Kitten over a network server is 2. SYSTEM already possible. In this research effort we have enabled So, as shown in Figure 1, in order to use PXE we need to Palacios to remote boot a guest OS using PXE. setup a PXE-server which can allow client systems to: PXE is defined on a foundation of Internet protocols, namely • TCP/IP, DHCP, and TFTP. -
Powerpc™ Open Firmware Quick Start Guide Release
PowerPC™ Open Firmware Quick Start Guide Release 2.0 PPCOFWQSA/UG2 Notice While reasonable efforts have been made to assure the accuracy of this document, Motorola, Inc. assumes no liability resulting from any omissions in this document, or from the use of the information obtained therein. Motorola reserves the right to revise this document and to make changes from time to time in the content hereof without obligation of Motorola to notify any person of such revision or changes. No part of this material may be reproduced or copied in any tangible medium, or stored in a retrieval system, or transmitted in any form, or by any means, radio, electronic, mechanical, photocopying, recording or facsimile, or otherwise, without the prior written permission of Motorola, Inc. It is possible that this publication may contain reference to, or information about Motorola products (machines and programs), programming, or services that are not announced in your country. Such references or information must not be construed to mean that Motorola intends to announce such Motorola products, programming, or services in your country. Restricted Rights Legend If the documentation contained herein is supplied, directly or indirectly, to the U.S. Government, the following notice shall apply unless otherwise agreed to in writing by Motorola, Inc. Use, duplication, or disclosure by the Government is subject to restrictions as set forth in subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at DFARS 252.227-7013. Motorola, Inc. Computer Group 2900 South Diablo Way Tempe, Arizona 85282 Preface The PowerPC Open Firmware Quick Start Guide provides the general information and procedures required to test and initialize the system hardware, determine the hardware conÞguration, and to boot the operating system.