Oracle Nosql Database
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Combined Documents V2
Outline: Combining Brainstorming Deliverables Table of Contents 1. Introduction and Definition 2. Reference Architecture and Taxonomy 3. Requirements, Gap Analysis, and Suggested Best Practices 4. Future Directions and Roadmap 5. Security and Privacy - 10 Top Challenges 6. Conclusions and General Advice Appendix A. Terminology Glossary Appendix B. Solutions Glossary Appendix C. Use Case Examples Appendix D. Actors and Roles 1. Introduction and Definition The purpose of this outline is to illustrate how some initial brainstorming documents might be pulled together into an integrated deliverable. The outline will follow the diagram below. Section 1 introduces a definition of Big Data. An extended terminology Glossary is found in Appendix A. In section 2, a Reference Architecture diagram is presented followed by a taxonomy describing and extending the elements of the Reference Architecture. Section 3 maps requirements from use case building blocks to the Reference Architecture. A description of the requirement, a gap analysis, and suggested best practice is included with each mapping. In Section 4 future improvements in Big Data technology are mapped to the Reference Architecture. An initial Technology Roadmap is created on the requirements and gap analysis in Section 3 and the expected future improvements from Section 4. Section 5 is a placeholder for an extended discussion of Security and Privacy. Section 6 gives an example of some general advice. The Appendices provide Big Data terminology and solutions glossaries, Use Case Examples, and some possible Actors and Roles. Big Data Definition - “Big Data refers to the new technologies and applications introduced to handle increasing Volumes of data while enhancing data utilization capabilities such as Variety, Velocity, Variability, Veracity, and Value.” The key attribute is the large Volume of data available that forces horizontal scalability of storage and processing and has implications for all the other V-attributes. -
Let's Talk About Storage & Recovery Methods for Non-Volatile Memory
Let’s Talk About Storage & Recovery Methods for Non-Volatile Memory Database Systems Joy Arulraj Andrew Pavlo Subramanya R. Dulloor [email protected] [email protected] [email protected] Carnegie Mellon University Carnegie Mellon University Intel Labs ABSTRACT of power, the DBMS must write that data to a non-volatile device, The advent of non-volatile memory (NVM) will fundamentally such as a SSD or HDD. Such devices only support slow, bulk data change the dichotomy between memory and durable storage in transfers as blocks. Contrast this with volatile DRAM, where a database management systems (DBMSs). These new NVM devices DBMS can quickly read and write a single byte from these devices, are almost as fast as DRAM, but all writes to it are potentially but all data is lost once power is lost. persistent even after power loss. Existing DBMSs are unable to take In addition, there are inherent physical limitations that prevent full advantage of this technology because their internal architectures DRAM from scaling to capacities beyond today’s levels [46]. Using are predicated on the assumption that memory is volatile. With a large amount of DRAM also consumes a lot of energy since it NVM, many of the components of legacy DBMSs are unnecessary requires periodic refreshing to preserve data even if it is not actively and will degrade the performance of data intensive applications. used. Studies have shown that DRAM consumes about 40% of the To better understand these issues, we implemented three engines overall power consumed by a server [42]. in a modular DBMS testbed that are based on different storage Although flash-based SSDs have better storage capacities and use management architectures: (1) in-place updates, (2) copy-on-write less energy than DRAM, they have other issues that make them less updates, and (3) log-structured updates. -
Failures in DBMS
Chapter 11 Database Recovery 1 Failures in DBMS Two common kinds of failures StSystem filfailure (t)(e.g. power outage) ‒ affects all transactions currently in progress but does not physically damage the data (soft crash) Media failures (e.g. Head crash on the disk) ‒ damagg()e to the database (hard crash) ‒ need backup data Recoveryyp scheme responsible for handling failures and restoring database to consistent state 2 Recovery Recovering the database itself Recovery algorithm has two parts ‒ Actions taken during normal operation to ensure system can recover from failure (e.g., backup, log file) ‒ Actions taken after a failure to restore database to consistent state We will discuss (briefly) ‒ Transactions/Transaction recovery ‒ System Recovery 3 Transactions A database is updated by processing transactions that result in changes to one or more records. A user’s program may carry out many operations on the data retrieved from the database, but the DBMS is only concerned with data read/written from/to the database. The DBMS’s abstract view of a user program is a sequence of transactions (reads and writes). To understand database recovery, we must first understand the concept of transaction integrity. 4 Transactions A transaction is considered a logical unit of work ‒ START Statement: BEGIN TRANSACTION ‒ END Statement: COMMIT ‒ Execution errors: ROLLBACK Assume we want to transfer $100 from one bank (A) account to another (B): UPDATE Account_A SET Balance= Balance -100; UPDATE Account_B SET Balance= Balance +100; We want these two operations to appear as a single atomic action 5 Transactions We want these two operations to appear as a single atomic action ‒ To avoid inconsistent states of the database in-between the two updates ‒ And obviously we cannot allow the first UPDATE to be executed and the second not or vice versa. -
What Is Nosql? the Only Thing That All Nosql Solutions Providers Generally Agree on Is That the Term “Nosql” Isn’T Perfect, but It Is Catchy
NoSQL GREG SYSADMINBURD Greg Burd is a Developer Choosing between databases used to boil down to examining the differences Advocate for Basho between the available commercial and open source relational databases . The term Technologies, makers of Riak. “database” had become synonymous with SQL, and for a while not much else came Before Basho, Greg spent close to being a viable solution for data storage . But recently there has been a shift nearly ten years as the product manager for in the database landscape . When considering options for data storage, there is a Berkeley DB at Sleepycat Software and then new game in town: NoSQL databases . In this article I’ll introduce this new cat- at Oracle. Previously, Greg worked for NeXT egory of databases, examine where they came from and what they are good for, and Computer, Sun Microsystems, and KnowNow. help you understand whether you, too, should be considering a NoSQL solution in Greg has long been an avid supporter of open place of, or in addition to, your RDBMS database . source software. [email protected] What Is NoSQL? The only thing that all NoSQL solutions providers generally agree on is that the term “NoSQL” isn’t perfect, but it is catchy . Most agree that the “no” stands for “not only”—an admission that the goal is not to reject SQL but, rather, to compensate for the technical limitations shared by the majority of relational database implemen- tations . In fact, NoSQL is more a rejection of a particular software and hardware architecture for databases than of any single technology, language, or product . -
Oracle® Nosql Database Changelog
Oracle® NoSQL Database Changelog Release 20.1 E91819-17 July 2020 Oracle NoSQL Database Changelog, Release 20.1 E91819-17 Copyright © 2011, 2020, Oracle and/or its affiliates. This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited. The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing. If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then the following notice is applicable: U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software, any programs embedded, installed or activated on delivered hardware, and modifications of such programs) and Oracle computer documentation or other Oracle data delivered to or accessed by U.S. Government end users are "commercial computer software" or “commercial computer software documentation” pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, reproduction, duplication, release, display, disclosure, modification, preparation of derivative works, and/or adaptation of i) Oracle programs (including any operating system, integrated software, any programs embedded, installed or activated on delivered hardware, and modifications of such programs), ii) Oracle computer documentation and/or iii) other Oracle data, is subject to the rights and limitations specified in the license contained in the applicable contract. -
The Integration of Database Systems
Purdue University Purdue e-Pubs Department of Computer Science Technical Reports Department of Computer Science 1993 The Integration of Database Systems Tony Schaller Omran A. Bukhres Ahmed K. Elmagarmid Purdue University, [email protected] Xiangning Liu Report Number: 93-046 Schaller, Tony; Bukhres, Omran A.; Elmagarmid, Ahmed K.; and Liu, Xiangning, "The Integration of Database Systems" (1993). Department of Computer Science Technical Reports. Paper 1061. https://docs.lib.purdue.edu/cstech/1061 This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact [email protected] for additional information. The Integration of Database Systems Tony Schaller, Omran A. Bukhres, Ahmed K. Elmagarmid and Xiangning Liu CSD-TR-93-046 July 1993 I I The Integration of Database Systems Tony Schaller Molecular Design Ltd. 2132 Farallon Drive San Leandro, CA 94577 Omran A. Bukhres, Ahmed K. Elmagarmid and Xiangning Liu DeparLment of Computer Sciences Purdue University West Lafayette, IN 47907 eJIlail: {bukhres,ake,xl} .es.purdue.edu 1 Introduction A database system is composed of two elements: a software program, called a database management system, and a set of data, called a database. The data in a database is organized according to some data model, such as the relational model used in a DB2 database [DW88] or the hierarchical model found with IMS databases [Dat77] . Users access the data through an interface (the query language) provided by the database management system. A schema describes the actual data structures and organization within the system. During the decade ofthe nineteen-seventies, centralized databases were predominant, but recent innovations in communications and database technologies have engendered a revolution in data processing, giving rlse to a new generation of decentralized database systems. -
Oracle Database Vault Overview
Oracle Database Vault Oracle Database Vault provides controls to prevent unauthorized privileged users from accessing sensitive data, prevent unauthorized database changes, and helps customers meet industry, regulatory, or corporate security standards. March 23, 2020 Copyright © 2020, Oracle and/or its affiliates Public Purpose Statement This document provides an overview of features and enhancements included in the latest releases of Oracle Database Vault. It is intended solely to help you assess the business benefits of using Oracle Database Vault preventive controls and to plan your Data Security / I.T. projects. Disclaimer This document in any form, software or printed matter, contains proprietary information that is the exclusive property of Oracle. Your access to and use of this confidential material is subject to the terms and conditions of your Oracle software license and service agreement, which has been executed and with which you agree to comply. This document is not part of your license agreement nor can it be incorporated into any contractual agreement with Oracle or its subsidiaries or affiliates. This document is for informational purposes only and is intended solely to assist you in planning for the implementation and upgrade of the product features described. It is not a commitment to deliver any material, code, or functionality, and should not be relied upon in making purchasing decisions. The development, release, and timing of any features or functionality described in this document remains at the sole discretion of -
High-Performance Transaction Processing in SAP HANA
High-Performance Transaction Processing in SAP HANA Juchang Lee1, Michael Muehle1, Norman May1, Franz Faerber1, Vishal Sikka1, Hasso Plattner2, Jens Krueger2, Martin Grund3 1SAP AG 2Hasso Plattner Insitute, Potsdam, Germany, 3eXascale Infolab, University of Fribourg, Switzerland Abstract Modern enterprise applications are currently undergoing a complete paradigm shift away from tradi- tional transactional processing to combined analytical and transactional processing. This challenge of combining two opposing query types in a single database management system results in additional re- quirements for transaction management as well. In this paper, we discuss our approach to achieve high throughput for transactional query processing while allowing concurrent analytical queries. We present our approach to distributed snapshot isolation and optimized two-phase commit protocols. 1 Introduction An efficient and holistic data management infrastructure is one of the key requirements for making the right deci- sions at an operational, tactical, and strategic level and is core to support all kinds of enterprise applications[12]. In contrast to traditional architectures of database systems, the SAP HANA database takes a different approach to provide support for a wide range of data management tasks. The system is organized in a main-memory centric fashion to reflect the shift within the memory hierarchy[2] and to consistently provide high perfor- mance without prohibitively slow disk interactions. Completely transparent for the application, data is orga- nized along its life cycle either in column or row format, providing the best performance for different workload characteristics[11, 1]. Transactional workloads with a high update rate and point queries can be routed against a row store; analytical workloads with range scans over large datasets are supported by column oriented data struc- tures. -
Oracle Nosql Database and Cisco- Collaboration That Produces Results
Oracle NoSQL Database and Cisco- Collaboration that produces results 1 Copyright © 2011, Oracle and/or its affiliates. All rights reserved. What is Big Data? SOCIAL BLOG SMART METER VOLUME VELOCITY VARIETY VALUE 2 Copyright © 2011, Oracle and/or its affiliates. All rights reserved. Why Is It Important? US HEALTH CARE US RETAIL MANUFACTURING GLOBAL PERSONAL EUROPE PUBLIC LOCATION DATA SECTOR ADMIN Increase industry Increase net Decrease dev., Increase service Increase industry value per year by margin by assembly costs by provider revenue by value per year by $300 B 60+% –50% $100 B €250 B “In a big data world, a competitor that fails to sufficiently develop its capabilities will be left behind.” 3 Copyright © 2011, Oracle and/or its affiliates. All rights reserved. Source: * McKinsey Global Institute: Big Data – The next frontier for innovation, competition and productivity (May 2011) Big Data in Action DECIDE ACQUIRE Make Better Decisions Using Big Data ANALYZE ORGANIZE 4 Copyright © 2011, Oracle and/or its affiliates. All rights reserved. Oracle Integrated Solution Stack DATA VARIETY HDFS HADOOP (MapReduce) In-DB Oracle Loader Mining for HADOOP Oracle NoSQL DB Oracle In-DB Exadata ‘R’ In-DB MapReduce OBIEE Oracle Data Analytics Advanced Oracle Database Integrator INFORMATION DENSITY ACQUIRE ORGANIZE ANALYZE DECIDE 5 Copyright © 2011, Oracle and/or its affiliates. All rights reserved. Big Data in Action DECIDE ACQUIRE Acquire all available, schema-based and non- relational data ANALYZE ORGANIZE 6 Copyright © 2011, Oracle and/or its affiliates. All rights reserved. Acquiring Big Data Challenge Process high volume, low- Application changes With sub-millisecond density information frequently Velocity from various data-sets 7 Copyright © 2011, Oracle and/or its affiliates. -
Oracle Big Data SQL Release 4.1
ORACLE DATA SHEET Oracle Big Data SQL Release 4.1 The unprecedented explosion in data that can be made useful to enterprises – from the Internet of Things, to the social streams of global customer bases – has created a tremendous opportunity for businesses. However, with the enormous possibilities of Big Data, there can also be enormous complexity. Integrating Big Data systems to leverage these vast new data resources with existing information estates can be challenging. Valuable data may be stored in a system separate from where the majority of business-critical operations take place. Moreover, accessing this data may require significant investment in re-developing code for analysis and reporting - delaying access to data as well as reducing the ultimate value of the data to the business. Oracle Big Data SQL enables organizations to immediately analyze data across Apache Hadoop, Apache Kafka, NoSQL, object stores and Oracle Database leveraging their existing SQL skills, security policies and applications with extreme performance. From simplifying data science efforts to unlocking data lakes, Big Data SQL makes the benefits of Big Data available to the largest group of end users possible. KEY FEATURES Rich SQL Processing on All Data • Seamlessly query data across Oracle Oracle Big Data SQL is a data virtualization innovation from Oracle. It is a new Database, Hadoop, object stores, architecture and solution for SQL and other data APIs (such as REST and Node.js) on Kafka and NoSQL sources disparate data sets, seamlessly integrating data in Apache Hadoop, Apache Kafka, • Runs all Oracle SQL queries without modification – preserving application object stores and a number of NoSQL databases with data stored in Oracle Database. -
Oracle Database Advanced Application Developer's Guide, 11G Release 2 (11.2) E17125-03
Oracle® Database Advanced Application Developer's Guide 11g Release 2 (11.2) E17125-03 August 2010 Oracle Database Advanced Application Developer's Guide, 11g Release 2 (11.2) E17125-03 Copyright © 1996, 2010, Oracle and/or its affiliates. All rights reserved. Primary Author: Sheila Moore Contributing Authors: D. Adams, L. Ashdown, M. Cowan, J. Melnick, R. Moran, E. Paapanen, J. Russell, R. Strohm, R. Ward Contributors: D. Alpern, G. Arora, C. Barclay, D. Bronnikov, T. Chang, L. Chen, B. Cheng, M. Davidson, R. Day, R. Decker, G. Doherty, D. Elson, A. Ganesh, M. Hartstein, Y. Hu, J. Huang, C. Iyer, N. Jain, R. Jenkins Jr., S. Kotsovolos, V. Krishnaswamy, S. Kumar, C. Lei, B. Llewellyn, D. Lorentz, V. Moore, K. Muthukkaruppan, V. Moore, J. Muller, R. Murthy, R. Pang, B. Sinha, S. Vemuri, W. Wang, D. Wong, A. Yalamanchi, Q. Yu This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited. The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing. If this software or related documentation is delivered to the U.S. -
Oracle Database Sharding Infographic
Oracle Database Sharding Oracle Sharding : Scale-out Rela7onal Database Sharding = Distributed Par77oning + Replica7on One giant database par66oned into many small databases (shards) Built on shared-nothing hardware architecture • Some web-scale OLTP applicaons use database sharding to avoid • Horizontal par66oning of data using a sharding key (e.g. scalability or availability edge cases of a single large database customer_id) across a farm of independent Oracle Databases • Oracle 12cR2 is the first full-featured RDBMS that provides nave • Shards can be hosted on commodity servers or engineered systems database sharding while suppor6ng enterprise capabili6es • Data automacally replicated with Data Guard or Oracle GoldenGate for high availability and disaster recovery Benefits Linear Scalability Fault Isola7on Geographic Distribuon Flexible Deployment 12,000,000 CPU CA On-Premises Hybrid Cloud 10,000,000 CA CA 8,000,000 … TPS 6,000,000 CA Vector Register 4,000,000 … 2,000,000 0 50 100 150 200 # of Shards Add shards online to Shared-nothing Data Sovereignty - for Flexible On-Premises, Cloud or Hybrid linearly scale - architecture. data privacy regulaons. Deployments. transac6ons, users and Fault of one shard Data Proximity - to bring Supports Cloud bursng database capacity has no impact on data closer to the users other shards Salient Features • Auto deployment of up to 1000 shards • Direct Rou6ng – Supports Data Guard and Oracle GoldenGate – Direct fast path SQL access via sharding key from smart topology- • Mul6ple sharding methods aware