Microbial Diversity
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Allies and Enemies: How the World Depends on Bacteria
Allies and Enemies This page intentionally left blank Allies and Enemies How the World Depends on Bacteria Anne Maczulak Vice President, Publisher: Tim Moore Associate Publisher and Director of Marketing: Amy Neidlinger Acquisitions Editor: Kirk Jensen Editorial Assistant: Pamela Boland Operations Manager: Gina Kanouse Senior Marketing Manager: Julie Phifer Publicity Manager: Laura Czaja Assistant Marketing Manager: Megan Colvin Cover Designer: Alan Clements Managing Editor: Kristy Hart Senior Project Editor: Lori Lyons Copy Editor: Geneil Breeze Proofreader: Apostrophe Editing Services Senior Indexer: Cheryl Lenser Compositor: Nonie Ratcliff Senior Manufacturing Buyer: Dan Uhrig © 2011 by Pearson Education, Inc. Publishing as FT Press Upper Saddle River, New Jersey 07458 FT Press offers excellent discounts on this book when ordered in quantity for bulk purchases or special sales. For more information, please contact U.S. Corporate and Government Sales, 1-800-382-3419, [email protected]. For sales outside the U.S., please contact International Sales at [email protected]. Company and product names mentioned herein are the trademarks or registered trademarks of their respective owners. All rights reserved. No part of this book may be reproduced, in any form or by any means, without permission in writing from the publisher. Printed in the United States of America First Printing July 2010 ISBN-10: 0-13-701546-1 ISBN-13: 978-0-13-701546-7 Pearson Education LTD. Pearson Education Australia PTY, Limited. Pearson Education Singapore, Pte. Ltd. Pearson Education North Asia, Ltd. Pearson Education Canada, Ltd. Pearson Educación de Mexico, S.A. de C.V. Pearson Education—Japan Pearson Education Malaysia, Pte. Ltd. -
Stadtman Biographies Biographies
Stadtman Biographies Biographies Anfinsen, Christian Boehmer (1916-1995) American biochemist Ames, Bruce N. (1928-) American biochemist and geneticist Barker, Horace Albert (1907-2000) American biochemist Beijerinck, Martinus W. (1851-1931) Dutch microbiologist Berzelius, Jöns Jacob (1779-1848) Swedish chemist Brown, Michael Stuart (1941-) American biochemist and molecular geneticist Hodgkin, Dorothy Crowfoot (1910-1994) British crystallographer Kluyver, Albert Jan (1888-1956) Dutch microbiologist Lipmann, Fritz Albert (1899-1986) German-American biochemist Lynen, Feodor (1911-1979) German biochemist Nirenberg, Marshall (1927-) American biochemist and molecular biologist Prusiner, Stanley B. (1942-) American neurologist Stetten, DeWitt, Jr. (1909-1990) American biochemist and medical educator Vagelos, P. Roy (1929-) American biochemist and businessman Van Niel, Cornelis Bernardus Kees (1897-1985) Dutch microbiologist. Warburg, Otto Heinrich (1883-1970) German biochemist. Winogradsky, Sergey Nikolaevich (1856-1953) (also spelled Vinogradsky) Russian microbiologist Anfinsen, Christian Boehmer (1916-1995) American biochemist Anfinsen was educated at Swarthmore College, the University of Pennsylvania, and Harvard, where he obtained his Ph.D. in 1943. Subsequently he taught at Harvard Medical School until 1950. He then moved to the National Heart Institute at Bethesda, Maryland, where he served as chief of the laboratory of cellular physiology. In 1963 Anfinsen joined the National Institute of Arthritis and Metabolic Diseases, another institute within the National Institutes of Health, as chief of the laboratory of chemical biology. In 1982 he moved to the Johns Hopkins University as professor of biology. By 1960 Stanford Moore and William Stein had determined fully the sequence of the 124 amino acids in ribonuclease, the first enzyme to be so analyzed. Anfinsen, however, was more concerned with the shape and structure of the enzyme and the forces that permitted it always to adopt the same unique configuration. -
Drawing on the Past to Shape the Future of Synthetic Yeast Research
International Journal of Molecular Sciences Review Drawing on the Past to Shape the Future of Synthetic Yeast Research Thomas A. Dixon 1 and Isak S. Pretorius 2,* 1 Department of Modern History, Politics and International Relations, Macquarie University, Sydney, NSW 2109, Australia; [email protected] 2 Chancellery and ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, NSW 2109, Australia * Correspondence: [email protected]; Tel.: +61-2-98508645 Received: 14 August 2020; Accepted: 22 September 2020; Published: 28 September 2020 Abstract: Some years inspire more hindsight reflection and future-gazing than others. This is even more so in 2020 with its evocation of perfect vision and the landmark ring to it. However, no futurist can reliably predict what the world will look like the next time that a year’s first two digits will match the second two digits—a numerical pattern that only occurs once in a century. As we leap into a new decade, amid uncertainties triggered by unforeseen global events—such as the outbreak of a worldwide pandemic, the accompanying economic hardship, and intensifying geopolitical tensions—it is important to note the blistering pace of 21st century technological developments indicate that while hindsight might be 20/20, foresight is 50/50. The history of science shows us that imaginative ideas, research excellence, and collaborative innovation can, for example, significantly contribute to the economic, cultural, social, and environmental recovery of a post-COVID-19 world. This article reflects on a history of yeast research to indicate the potential that arises from advances in science, and how this can contribute to the ongoing recovery and development of human society. -
THE BLACK BOX of BIOLOGY a History of the Molecular Revolution
THE BLACK BOX OF BIOLOGY A History of the Molecular Revolution Michel Morange Translated by Matthew Cobb Cambridge, Massachusetts, and London, England 2020 Copyright © 2020 by Éditions La Découverte, Paris, France This volume is revised and expanded from the first English-language edition, published as A History of Molecular Biology by Harvard University Press. Copyright © 1998 by the President and Fellows of Harvard College First French Edition published as Histoire de la biologie moléculaire Copyright © 1994, 2003 Éditions La Découverte, Paris, France All rights reserved Cover design: Tim Jones Cover artwork: Courtesy of Getty Images 978-0-674-28136-3 (hardcover) 978-0-674-24525-9 (EPUB) 978-0-674-24527-3 (MOBI) 978-0-674-24528-0 (PDF) The Library of Congress has cataloged the printed edition as follows: Names: Morange, Michel, author. | Cobb, Matthew, translator. Title: The black box of biology : a history of the molecular revolution / Michel Morange, translated by Matthew Cobb. Other titles: Histoire de la biologie moléculaire. English Description: Cambridge, Massachusetts : Harvard University Press, 2020. | This volume is revised and expanded from the first English-language edition, published as A History of Molecular Biology by Harvard University Press. Originally published (in French) as Histoire de la biologie moléculaire—Title page verso. | Includes bibliographical references and index. Identifiers: LCCN 2019040562 Subjects: LCSH: Molecular biology—History. Classification: LCC QH506 .M7313 2020 | DDC 572.8—dc23 LC record available -
DISCOVERY and EXPLORATION of the MICROBIAL UNIVERSE
DISCOVERY and EXPLORATION of the MICROBIAL UNIVERSE: 1665 to "MODERN TIMES" by HOWARD GEST Distinguished Professor Emeritus of Microbiology Adjunct Professor, History and Philosophy of Science Indiana University, Bloomington, IN 47405 1 SEQUENCE OF TOPICS Introduction Why study the history of scientific discovery? An orienting timeline Fresh views of discoveries by Robert Hooke and Antoni van Leeuwenhoek Metchnikoff, Elie (1845-1916) Yersin, Alexandre (1863-1943) Avery, Oswald (1887-1955), MacLeod, Colin (1909-1972), McCarty, Maclyn (1911-2005) Fleming, Alexander (1881-1955), Florey, Howard (1898-1968), Chain, Ernst (1906-1979), Heatley, Norman (1911-2004) Robert Hooke, as viewed by J. Desmond Bernal Bassi, Agostino (1733-1856); the doctrine of pathogenic microbes Pasteur, Louis (1822-1895), Koch, Robert (1843-1910), Jenner, Edward (1749-1823) MoIish, Hans (1856-1937) Photosynthetic bacteria Cohn, Ferdinand (1828-1898) Driving force of "modern" microbiology Winogradsky, Sergei (1856-1953) Pioneer microbial ecologist Rediscovering pioneering research in microbial ecology (2009) Thermus aquaticus and "The first Taq man" The Delft "connections": Martinus Beijerinck (1851-1931), Albert Kluyver (1888-1956), and Cornelis van Niel (1897- 1985) Landmark discoveries in bioenergetics Stephenson, Marjory (1885-1948) Wood, Harland (1907-1991) Lederberg, Joshua (1925-2008) Bacteriophage (Frederick Twort and Felix d'Herelle, "Arrowsmith") From "Arrowsmith" to photosynthesis Phosphorus metabolism in photosynthesis and the 32P-decay "suicide" of bacteriophage Bacteriophage and the "gene transfer agent" (GTA) Reflections on scientific lives Valuable references on science and scientists About the author 3 INTRODUCTION These "Historical Adventures" focus on microbiologists, biochemists and others who have contributed significantly to advancing understanding of microbial life and its basic principles (biochemical, biophysical etc.), many during my active years in research. -
Reflections on Leeuwenhoek (1677) ‘Concerning Rstb.Royalsocietypublishing.Org Little Animals’
Downloaded from http://rstb.royalsocietypublishing.org/ on November 16, 2017 The unseen world: reflections on Leeuwenhoek (1677) ‘Concerning rstb.royalsocietypublishing.org little animals’ Nick Lane Review Department of Genetics, Evolution and Environment, University College London, London WC1E 6BT, UK Cite this article: Lane N. 2015 The unseen Leeuwenhoek’s 1677 paper, the famous ‘letter on the protozoa’, gives the first detailed description of protists and bacteria living in a range of environments. world: reflections on Leeuwenhoek (1677) The colloquial, diaristic style conceals the workings of a startlingly original ‘Concerning little animals’. Phil. Trans. R. Soc. B experimental mind. Later scientists could not match the resolution and clarity 370: 20140344. of Leeuwenhoek’s microscopes, so his discoveries were doubted or even dis- http://dx.doi.org/10.1098/rstb.2014.0344 missed over the following centuries, limiting their direct influence on the history of biology; but work in the twentieth century confirmed Leeuwenhoek’s discovery of bacterial cells, with a resolution of less than 1 mm. Leeuwenhoek One contribution of 18 to a theme issue delighted most in the forms, interactions and behaviour of his little ‘animal- ‘Celebrating 350 years of Philosophical cules’, which inhabited a previously unimagined microcosmos. In these Transactions: life sciences papers’. reflections on the scientific reach of Leeuwenhoek’s ideas and observations, I equate his questions with the preoccupations of our genomic era: what Subject Areas: is the nature of Leeuwenhoek’s animalcules, where do they come from, how do they relate to each other? Even with the powerful tools of modern microbiology biology, the answers are far from resolved—these questions still challenge our understanding of microbial evolution. -
Cell and Molecular Biology 3E: What We Know and Biological Sciences How We Found out - All Versions
University of Wisconsin Milwaukee UWM Digital Commons Cell and Molecular Biology 3e: What We Know and Biological Sciences How We Found Out - All Versions 7-25-2016 Cell and Molecular Biology : What We Know & How We Found It (Second Edition, An Annotated iText) Gerald Bergtrom University of Wisconsin - Milwaukee, [email protected] Follow this and additional works at: https://dc.uwm.edu/biosci_facbooks_bergtrom Recommended Citation Bergtrom, Gerald, "Cell and Molecular Biology : What We Know & How We Found It (Second Edition, An Annotated iText)" (2016). Cell and Molecular Biology 3e: What We Know and How We Found Out - All Versions. 5. https://dc.uwm.edu/biosci_facbooks_bergtrom/5 This Book is brought to you for free and open access by UWM Digital Commons. It has been accepted for inclusion in Cell and Molecular Biology 3e: What We Know and How We Found Out - All Versions by an authorized administrator of UWM Digital Commons. For more information, please contact [email protected]. Second Edition AN ANNOTATED iTEXT Cell and Molecular Biology What We Know & How We Found Out Gerald Bergtrom Image Adapted From: Microarray CMB2e i Cell and Molecular Biology What We Know & How We Found Out 2nd edition (CMB 2e) An Annotated Creative Commons (Open Access) iText By Gerald Bergtrom New in CMB 2e: New format New chapter on repetitive DNA and transposons New chapter on the origins of life Many updates and additional readings, including New or expanded sections on DNA repair, prions, novel RNA, cancer biology and more Two versions + Sample Chapter CMB2e i To my wife, son and our now extended family whose patience and encouragement made this work possible, to my mentor Herbert Oberlander who gave me the chance and the tools to do science and, to my students from whose curiosity I received as much as I gave CMB2e Page ii Written, Compiled and Curated Under (Creative Commons with Attribution) License and Fair Use Rules of Distribution Creative Commons Licensure and Permissions The following is a human-readable summary of (and not a substitute for) the cc-by 4.0 license.