Myth Technical Report Greg Rowe
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Extending the UHC LLVM Backend: Adding Support for Accurate Garbage Collection
Extending the UHC LLVM backend: Adding support for accurate garbage collection Paul van der Ende MSc Thesis October 18, 2010 INF/SCR-09-59 Daily Supervisors: Center for Software Technology dr. A. Dijkstra Dept. of Information and Computing Sciences drs. J.D. Fokker Utrecht University Utrecht, the Netherlands Second Supervisor: prof. dr. S.D. Swierstra Abstract The Utrecht Haskell Compiler has an LLVM backend for whole program analyse mode. This backend pre- viously used the Boehm-Weiser library for heap allocation and conservative garbage collection. Recently an accurate garbage collector for the UHC compiler has been developed. We wanted this new garbage collection library to work with the LLVM backend. But since this new collector is accurate, it needs cooperation with the LLVM backend. Functionality needs to be added to find the set of root references and traversing all live references. To find the root set, the bytecode interpreter backend currently uses static stack maps. This is where the problem arises. The LLVM compiler is known to do various aggressive transformations. These optimizations might change the stack layout described by the static stack map. So to avoid this problem we wanted to use the shadow-stack provided by the LLVM framework. This is a dynamic structure maintained on the stack to safely find the garbage collection roots. We expect that the shadow-stack approach comes with a runtime overhead for maintaining this information dynamically on the stack. So we did measure the impact of this method. We also measured the performance improvement of the new garbage collection method used and compare it with the other UHC backends. -
Improving Memory Management Security for C and C++
Improving memory management security for C and C++ Yves Younan, Wouter Joosen, Frank Piessens, Hans Van den Eynden DistriNet, Katholieke Universiteit Leuven, Belgium Abstract Memory managers are an important part of any modern language: they are used to dynamically allocate memory for use in the program. Many managers exist and depending on the operating system and language. However, two major types of managers can be identified: manual memory allocators and garbage collectors. In the case of manual memory allocators, the programmer must manually release memory back to the system when it is no longer needed. Problems can occur when a programmer forgets to release it (memory leaks), releases it twice or keeps using freed memory. These problems are solved in garbage collectors. However, both manual memory allocators and garbage collectors store management information for the memory they manage. Often, this management information is stored where a buffer overflow could allow an attacker to overwrite this information, providing a reliable way to achieve code execution when exploiting these vulnerabilities. In this paper we describe several vulnerabilities for C and C++ and how these could be exploited by modifying the management information of a representative manual memory allocator and a garbage collector. Afterwards, we present an approach that, when applied to memory managers, will protect against these attack vectors. We implemented our approach by modifying an existing widely used memory allocator. Benchmarks show that this implementation has a negligible, sometimes even beneficial, impact on performance. 1 Introduction Security has become an important concern for all computer users. Worms and hackers are a part of every day internet life. -
Ethereal Developer's Guide Draft 0.0.2 (15684) for Ethereal 0.10.11
Ethereal Developer's Guide Draft 0.0.2 (15684) for Ethereal 0.10.11 Ulf Lamping, Ethereal Developer's Guide: Draft 0.0.2 (15684) for Ethere- al 0.10.11 by Ulf Lamping Copyright © 2004-2005 Ulf Lamping Permission is granted to copy, distribute and/or modify this document under the terms of the GNU General Public License, Version 2 or any later version published by the Free Software Foundation. All logos and trademarks in this document are property of their respective owner. Table of Contents Preface .............................................................................................................................. vii 1. Foreword ............................................................................................................... vii 2. Who should read this document? ............................................................................... viii 3. Acknowledgements ................................................................................................... ix 4. About this document .................................................................................................. x 5. Where to get the latest copy of this document? ............................................................... xi 6. Providing feedback about this document ...................................................................... xii I. Ethereal Build Environment ................................................................................................14 1. Introduction .............................................................................................................15 -
A Compiler Front-End for the WOOL Parallelization Library
A compiler front-end for the WOOL Parallelization library GEORGIOS VARISTEAS KTH Information and Communication Technology Master of Science Thesis Stockholm, Sweden 2010 TRITA-ICT-EX-2010:291 Royal Institute of Technology A compiler front-end for the WOOL Parallelization library Georgios Varisteas yorgos(@)kth.se 15 October, 2010 A master thesis project conducted at Examiner: Mats Brorsson Supervisor: Karl-Filip Faxén Abstract WOOL is a C parallelization library developed at SICS by Karl-Filip Faxén. It provides the tools for develop- ing fine grained independent task based parallel applications. This library is distinguished from other similar projects by being really fast and light; it manages to spawn and synchronize tasks in under 20 cycles. However, all software development frameworks which expose radically new functionality to a programming language, gain a lot by having a compiler to encapsulate and implement them. WOOL does not differ from this category. This project is about the development of a source-to-source compiler for the WOOL parallelization library, supporting an extension of the C language with new syntax that implements the WOOL API, transform- ing it and eventually outputting GNU C code. Additionally, this compiler is augmented with a wrapper script that performs compilation to machine code by using GCC. This script is configurable and fully automatic. The main advantage gained from this project is to satisfy the need for less overhead in software development with WOOL. The simplified syntax results in faster and more economical code writing while being less error- prone. Moreover, this compiler enables the future addition of many more features not applicable with the current state of WOOL as a library. -
LFS-8.4-Fr.Pdf
Linux From Scratch Version 8.4 Créé par Gerard Beekmans Rédacteur en chef : Bruce Dubbs Linux From Scratch: Version 8.4 par Créé par Gerard Beekmans et Rédacteur en chef : Bruce Dubbs Copyright © 1999-2019 Gerard Beekmans Copyright © 1999-2019, Gerard Beekmans Tous droits réservés. Ce livre est distribué sous la Creative Commons License. Les instructions d'ordinateur peuvent être extraites du livre sous la MIT License. Linux® est une marque déposée de Linus Torvalds. Linux From Scratch - Version 8.4 Table des matières Préface ................................................................................................................................................................... viii i. Avant-propos ................................................................................................................................................ viii ii. Public visé ..................................................................................................................................................... ix iii. Architectures cibles de LFS ........................................................................................................................ ix iv. LFS et les standards ...................................................................................................................................... x v. Raison de la présence des paquets dans le livre .......................................................................................... xi vi. Prérequis ................................................................................................................................................... -
Comparative Studies of Programming Languages; Course Lecture Notes
Comparative Studies of Programming Languages, COMP6411 Lecture Notes, Revision 1.9 Joey Paquet Serguei A. Mokhov (Eds.) August 5, 2010 arXiv:1007.2123v6 [cs.PL] 4 Aug 2010 2 Preface Lecture notes for the Comparative Studies of Programming Languages course, COMP6411, taught at the Department of Computer Science and Software Engineering, Faculty of Engineering and Computer Science, Concordia University, Montreal, QC, Canada. These notes include a compiled book of primarily related articles from the Wikipedia, the Free Encyclopedia [24], as well as Comparative Programming Languages book [7] and other resources, including our own. The original notes were compiled by Dr. Paquet [14] 3 4 Contents 1 Brief History and Genealogy of Programming Languages 7 1.1 Introduction . 7 1.1.1 Subreferences . 7 1.2 History . 7 1.2.1 Pre-computer era . 7 1.2.2 Subreferences . 8 1.2.3 Early computer era . 8 1.2.4 Subreferences . 8 1.2.5 Modern/Structured programming languages . 9 1.3 References . 19 2 Programming Paradigms 21 2.1 Introduction . 21 2.2 History . 21 2.2.1 Low-level: binary, assembly . 21 2.2.2 Procedural programming . 22 2.2.3 Object-oriented programming . 23 2.2.4 Declarative programming . 27 3 Program Evaluation 33 3.1 Program analysis and translation phases . 33 3.1.1 Front end . 33 3.1.2 Back end . 34 3.2 Compilation vs. interpretation . 34 3.2.1 Compilation . 34 3.2.2 Interpretation . 36 3.2.3 Subreferences . 37 3.3 Type System . 38 3.3.1 Type checking . 38 3.4 Memory management . -
Licensing Information User Manual Release 9.0 Revision 1.2
Oracle SD-WAN Edge Licensing Information User Manual Release 9.0 Revision 1.2 October 2020 Licensing Information User Manual Oracle SD-WAN Edge 8.2 Oracle SD-WAN Edge Licensing Information ser !an"al# Release 9.0 Copyright Information $o%yrig't ( 2020# Oracle and)or its a*liates. All rig'ts reser+ed. ,'is soft-are and related doc"mentation are %rovided "nder a license agreement containing restrictions on "se and disclosure and are %rotected by intellect"al %ro%ert& la-s. E.ce%t as e.%ressly %ermitted in &o"r license agreement or allo-ed by la-# &o" may not "se# co%&# re%rod"ce# translate# broadcast# modif&# license# transmit# distrib"te# e.'ibit# %erform# %"blish# or display any %art# in any form# or by any means. Re+erse engineering# disassembl&# or decom%ilation of t'is soft-are# "nless re/"ired by la- for intero%erabilit&# is %ro'ibited. ,'e information contained 'erein is sub0ect to change -it'o"t notice and is not -arranted to be error-free. If &o" find any errors, %lease re%ort t'em to "s in -riting. If t'is is soft-are or related documentation t'at is deli+ered to t'e .S. 2o+ernment or an&one licensing it on be'alf of t'e .S. 2o+ernment# t'en t'e follo-ing notice is a%%licable3 .S. 2O4ERN!EN, END SERS3 Oracle %rograms, incl"ding any o%erating s&stem# integrated soft-are# any %rograms installed on t'e 'ard-are# and)or documentation# deli+ered to .S. -
Implementation of C Library for Constructing Packrat Parser with Statically Allocated Memory
Journal of Information Processing Vol.26 335–344 (Mar. 2018) [DOI: 10.2197/ipsjjip.26.335] Regular Paper Implementation of C Library for Constructing Packrat Parser with Statically Allocated Memory Yuta Sugimoto1,a) Atusi Maeda1 Received: July 23, 2017, Accepted: September 28, 2017 Abstract: Packrat parsing is a recursive descent parsing method with backtracking and memoization. Parsers based on this method require no separate lexical analyzers, and backtracking enables those parsers to handle a wide range of complex syntactic constructs. Memoization is used to prevent exponential growth of running time, resulting in linear time complexity at th cost of linear space consumption. In this study, we propose CPEG – a library that can be used to write parsers using Packrat parsing in C language. This library enables programmers to describe syntactic rules in an internal domain-specific language (DSL) which, unlike parser combinators, does not require runtime data structures to represent syntax. Syntax rules are just expressed by plain C macros. The runtime routine does not dynamically allocate memory regions for memoization. Instead, statically allocated arrays are used as memoization cache tables. Therefore, programmers can implement practical parsers with CPEG, which does not depend on any specific memory management features, requiring fixed-sized memory (except for input string). To enhance usability, a translator to CPEG from an external DSL is provided, as well as a tuning mechanism to control memoization parameters. Pars- ing time compared to other systems when parsing JavaScript Object Notation and Java source files are given. The experimental results indicate that the performance of CPEG is competitive with other libraries. -
Qgis-1.0.0-User-Guide-En.Pdf
Quantum GIS User, Installation and Coding Guide Version 1.0.0 ’Kore’ Preamble This document is the original user, installation and coding guide of the described software Quantum GIS. The software and hardware described in this document are in most cases registered trademarks and are therefore subject to the legal requirements. Quantum GIS is subject to the GNU General Public License. Find more information on the Quantum GIS Homepage http://qgis.osgeo.org. The details, data, results etc. in this document have been written and verified to the best of knowledge and responsibility of the authors and editors. Nevertheless, mistakes concerning the content are possible. Therefore, all data are not liable to any duties or guarantees. The authors, editors and publishers do not take any responsibility or liability for failures and their consequences. Your are always welcome to indicate possible mistakes. This document has been typeset with LATEX. It is available as LATEX source code via subversion and online as PDF document via http://qgis.osgeo.org/documentation/manuals.html. Translated versions of this document can be downloaded via the documentation area of the QGIS project as well. For more information about contributing to this document and about translating it, please visit: http://wiki.qgis.org/qgiswiki/DocumentationWritersCorner Links in this Document This document contains internal and external links. Clicking on an internal link moves within the document, while clicking on an external link opens an internet address. In PDF form, internal links are shown in blue, while external links are shown in red and are handled by the system browser. -
Latexsample-Thesis
INTEGRAL ESTIMATION IN QUANTUM PHYSICS by Jane Doe A dissertation submitted to the faculty of The University of Utah in partial fulfillment of the requirements for the degree of Doctor of Philosophy Department of Mathematics The University of Utah May 2016 Copyright c Jane Doe 2016 All Rights Reserved The University of Utah Graduate School STATEMENT OF DISSERTATION APPROVAL The dissertation of Jane Doe has been approved by the following supervisory committee members: Cornelius L´anczos , Chair(s) 17 Feb 2016 Date Approved Hans Bethe , Member 17 Feb 2016 Date Approved Niels Bohr , Member 17 Feb 2016 Date Approved Max Born , Member 17 Feb 2016 Date Approved Paul A. M. Dirac , Member 17 Feb 2016 Date Approved by Petrus Marcus Aurelius Featherstone-Hough , Chair/Dean of the Department/College/School of Mathematics and by Alice B. Toklas , Dean of The Graduate School. ABSTRACT Blah blah blah blah blah blah blah blah blah blah blah blah blah blah blah. Blah blah blah blah blah blah blah blah blah blah blah blah blah blah blah. Blah blah blah blah blah blah blah blah blah blah blah blah blah blah blah. Blah blah blah blah blah blah blah blah blah blah blah blah blah blah blah. Blah blah blah blah blah blah blah blah blah blah blah blah blah blah blah. Blah blah blah blah blah blah blah blah blah blah blah blah blah blah blah. Blah blah blah blah blah blah blah blah blah blah blah blah blah blah blah. Blah blah blah blah blah blah blah blah blah blah blah blah blah blah blah. -
Diploma Thesis
Faculty of Computer Science Chair for Real Time Systems Diploma Thesis Porting DotGNU to Embedded Linux Author: Alexander Stein Supervisor: Jun.-Prof. Dr.-Ing. Robert Baumgartl Dipl.-Ing. Ronald Sieber Date of Submission: May 15, 2008 Alexander Stein Porting DotGNU to Embedded Linux Diploma Thesis, Chemnitz University of Technology, 2008 Abstract Programming PLC systems is limited by the provided libraries. In contrary, hardware-near programming needs bigger eorts in e. g. initializing the hardware. This work oers a foundation to combine advantages of both development sides. Therefore, Portable.NET from the DotGNU project has been used, which is an im- plementation of CLI, better known as .NET. The target system is the PLCcore- 5484 microcontroller board, developed by SYS TEC electronic GmbH. Built upon the porting, two variants to use interrupt routines withing the Portabe.NET runtime environment have been analyzed. Finally, the reaction times to occuring interrupt events have been examined and compared. Die Programmierung für SPS-Systeme ist durch die gegebenen Bibliotheken beschränkt, während hardwarenahe Programmierung einen gröÿeren Aufwand durch z.B. Initialisierungen hat. Diese Arbeit bietet eine Grundlage, um die Vorteile bei- der Entwicklungsseiten zu kombinieren. Dafür wurde Portable.NET des DotGNU- Projekts, eine Implementierung des CLI, bekannter unter dem Namen .NET, be- nutzt. Das Zielsystem ist das PLCcore-5484 Mikrocontrollerboard der SYS TEC electronic GmbH. Aufbauend auf der Portierung wurden zwei Varianten zur Ein- bindung von Interrupt-Routinen in die Portable.NET Laufzeitumgebung untersucht. Abschlieÿend wurden die Reaktionszeiten zu eintretenden Interrupts analysiert und verglichen. Acknowledgements I would like to thank some persons who had inuence and supported me in my work. -
GNU Octave a High-Level Interactive Language for Numerical Computations Edition 3 for Octave Version 2.0.13 February 1997
GNU Octave A high-level interactive language for numerical computations Edition 3 for Octave version 2.0.13 February 1997 John W. Eaton Published by Network Theory Limited. 15 Royal Park Clifton Bristol BS8 3AL United Kingdom Email: [email protected] ISBN 0-9541617-2-6 Cover design by David Nicholls. Errata for this book will be available from http://www.network-theory.co.uk/octave/manual/ Copyright c 1996, 1997John W. Eaton. This is the third edition of the Octave documentation, and is consistent with version 2.0.13 of Octave. Permission is granted to make and distribute verbatim copies of this man- ual provided the copyright notice and this permission notice are preserved on all copies. Permission is granted to copy and distribute modified versions of this manual under the conditions for verbatim copying, provided that the en- tire resulting derived work is distributed under the terms of a permission notice identical to this one. Permission is granted to copy and distribute translations of this manual into another language, under the same conditions as for modified versions. Portions of this document have been adapted from the gawk, readline, gcc, and C library manuals, published by the Free Software Foundation, 59 Temple Place—Suite 330, Boston, MA 02111–1307, USA. i Table of Contents Publisher’s Preface ...................... 1 Author’s Preface ........................ 3 Acknowledgements ........................................ 3 How You Can Contribute to Octave ........................ 5 Distribution .............................................. 6 1 A Brief Introduction to Octave ....... 7 1.1 Running Octave...................................... 7 1.2 Simple Examples ..................................... 7 Creating a Matrix ................................. 7 Matrix Arithmetic ................................. 8 Solving Linear Equations..........................