Status of Digital Agriculture in 18 Countries of Europe and Central Asia

Total Page:16

File Type:pdf, Size:1020Kb

Status of Digital Agriculture in 18 Countries of Europe and Central Asia ITUPublications International Telecommunication Union Development Sector Status of Digital Agriculture in 18 countries of Europe and Central Asia Co-published with: Status of Digital Agriculture in 18 countries of Europe and Central Asia Published by International Telecommunication Union and Food and Agriculture Organization of the United Nations Acknowledgement This report was prepared for the International Telecommunication Union (ITU) and the Food and Agriculture Organization (FAO) of the United Nations by Mihaly Csoto and Laszlo Gabor Papocsi, with the support and guidance of the ITU Offices for Europe (Jaroslaw Ponder and Lena Lattion) and the Commonwealth of Independent States (CIS) (Farid Nakhli) and in collaboration with the FAO Regional Office for Europe and Central Asia (Sophie Treinen and Valentin Nagy). ITU and FAO would like to express sincere gratitude to the representatives of the 18 countries concerned (Albania, Armenia, Azerbaijan, Belarus, Bosnia and Herzegovina, Georgia, Kazakhstan, Kyrgyzstan, Moldova, Montenegro, North Macedonia, Russian Federation, Serbia, Tajikistan, Turkey, Turkmenistan, Ukraine and Uzbekistan) for the support and assistance they provided to the ITU experts. They would also like to express appreciation for the support they received from FAO country offices, national focal points in ministries of agriculture and FAO experts in the Regional Office for Europe and Central Asia. NOTES Please note that for the purpose of this report, the term Europe and Central Asia refers to the group of countries consisting of the following: Albania, Andorra, Armenia, Austria Azerbaijan, Belarus, Belgium, Bosnia and Herzegovina, Bulgaria, Croatia, Cyprus, the Czech Republic, Denmark, Estonia, Finland, France, Georgia, Germany, Greece, Hungary, Iceland, Ireland, Israel, Italy, Kazakhstan, Kyrgyzstan, Latvia, Liechtenstein, Lithuania, Luxembourg, Malta, Moldova, Monaco, Montenegro, the Netherlands, North Macedonia, Norway, Poland, Portugal, Romania, the Russian Federation, San Marino, Serbia, Slovakia, Slovenia, Spain, Sweden, Switzerland, Tajikistan, Turkey, Turkmenistan, Ukraine, the United Kingdom, Uzbekistan and the Vatican. DISCLAIMER ITU and FAO. 2020. Status of Digital Agriculture in 18 countries of Europe and Central Asia. Geneva, Switzerland. The designations employed and the presentation of material in this information product do not imply the expression of any opinion whatsoever on the part of the Food and Agriculture Organization of the United Nations (FAO) or of the International Telecommunication Union (ITU) concerning the legal or development status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. The mention of specific companies or products of manufacturers, whether or not these have been patented, does not imply that these have been endorsed or recommended by FAO or ITU in preference to others of a similar nature that are not mentioned. The views expressed in this information product are those of the author(s) and do not necessarily reflect the views or policies of FAO or ITU. COPYRIGHT © ITU and FAO 2020 Some rights reserved. This work is made available under the Creative Commons Attribution- NonCommercial-ShareAlike 3.0 IGO licence (CC BY-NC-SA 3.0 IGO; https:// creativecommons .org/ licenses/by -nc -sa/ 3 .0/ igo/ legalcode). Under the terms of this licence, this work may be copied, redistributed and adapted for non- commercial purposes, provided that the work is appropriately cited. In any use of this work, there should be no suggestion that FAO or ITU endorse any specific organization, products or services. The use of the FAO or the ITU logo is not permitted. If the work is adapted, then it must be licensed under the same or equivalent Creative Commons licence. If a translation of this work is created, it must include the following disclaimer along with the required citation: “This translation was not created by the Food and Agriculture Organization of the United Nations (FAO) or by the International Telecommunication Union (ITU). FAO and ITU are not responsible for the content or accuracy of this translation. The original English edition shall be the authoritative edition.” Disputes arising under the licence that cannot be settled amicably will be resolved by mediation and arbitration as described in Article 8 of the licence except as otherwise provided herein. The applicable mediation rules will be the mediation rules of the World Intellectual Property Organization http:// www.wipo .int/ amc/ en/ mediation/ rules and any arbitration will be in accordance with the Arbitration Rules of the United Nations Commission on International Trade Law (UNCITRAL). Third-party materials: Users wishing to reuse material from this work that is attributed to a third party, such as tables, figures or images, are responsible for determining whether permission is needed for that reuse and for obtaining permission from the copyright holder. The risk of claims resulting from infringement of any third-party-owned component in the work rests solely with the user. Sales, rights and licensing: FAO information products are available on the FAO website (www .fao .org/ publications) and can be purchased throughpublications -sales@ fao .org. ITU information products are available on the ITU website (www .itu.int/ en/ publications) and can be purchased through sales@itu .int ”. Requests for commercial use should be submitted to:sales@ itu .int . Photos credits: FAO ISBN (FAO) 978-92-5-132889-7 ISBN (ITU) 978-92-61-31131-5 (Paper version) 978-92-61-31141-4 (Electronic version) 978-92-61-31151-3 (EPUB version) 978-92-61-31161-2 (Mobi version) FOREWORDS The year 2020 marks the beginning of the “Decade of Action” proclaimed by the United Nations for achieving the goals and targets set out in the 2030 Agenda for Sustainable Development Agenda. In an increasingly digital world, information and communication technologies (ICTs) play a key role as development enablers that can facilitate countries’ capabilities to reach all the 17 Sustainable Development Goals (SDGs). In the wake of the COVID-19 pandemic which continues to ravage so many of our populations and economies, there can no longer be any doubt that dramatically accelerating progress on the SDGs means dramatically accelerating progress to extend digital connectivity to the 3.6 billion still totally cut off from the online world. Digital is the foundation on which we can build social and economic resilience. We have never faced a situation of greater urgency, and renewed global recognition of the importance of digital infrastructure, services and skills presents many unprecedented opportunities to make real and rapid progress. Europe and the Commonwealth of Independent States (CIS), throughout the years, made significant progress, becoming world leader in broadband connectivity. However, a lot remains to be done to bridge connectivity, affordability and digital skills divides across the countries. The impact of policy and regulatory frameworks on the development of digitization in Europe and CIS is positive. In Europe, an increase of 10 per cent in digitization results in 1.4 per cent growth in gross domestic product (GDP) per capita. ​In the CIS region, an increase of 10 per cent in fixed-broadband penetration would result in 0.63 per cent in GDP per capita. While Europe leads in digital agriculture development, the e-agriculture sector in many parts of Europe still suffers from underinvestment. As agriculture becomes more and more knowledge-intensive, having access to timely and accurate information tailored to specific locations and conditions is critical to helping farmers enhance their efficiency in agricultural production. E-agriculture centres on designing, developing, and applying innovative methods of ICT use within the agricultural sector in the rural domain. Many stakeholders have long recognized the need for strategies for national e-agriculture, also known as digital agriculture. However, most countries have yet to adopt or implement a national strategy for the agricultural sector's use of ICTs. E-agriculture strategies will help rationalize financial and human resources, address (holistically) ICT opportunities and challenges of the agricultural sector, generate new revenue streams and improve the lives of people in rural communities. This review provides the results of a one-year study jointly conducted by ITU and FAO, addressing a broad range of issues related to contemporary policy and practices across Europe and CIS in e-agriculture. The review also features the experiences of countries in their ongoing efforts to develop and implement digital agriculture strategies. I thank all administration of the 18 countries that have participated in this mapping exercise and commend the Europe and CIS regions for the report. It is an important result of our work carried out under the ITU Regional Initiatives for Europe and CIS on a “Citizen-centric approach to building services for national administrations” and on “Fostering innovative solutions and partnership for the implementation of Internet of Things technologies and their interaction in telecommunication networks, including 4G, IMT-2020 and next-generation networks, in the interests of sustainable development”. v The review is a significant regional milestone in implementing the World Summit for Information Society (WSIS) Action Plan, in particular WSIS Action Line C7: ICT applications: e-Agriculture. It is an important
Recommended publications
  • Digital Agribusiness Models”
    Int.J.Curr.Microbiol.App.Sci (2020) 9(8): 3030-3038 International Journal of Current Microbiology and Applied Sciences ISSN: 2319-7706 Volume 9 Number 8 (2020) Journal homepage: http://www.ijcmas.com Review Article https://doi.org/10.20546/ijcmas.2020.908.342 Innovations in Agriculture – A Case of “Digital Agribusiness Models” C. Muralidharan* Department of Social Sciences, Agricultural College and Research Insititute, Killikulam, Vallanad, Tuticorin District, India *Corresponding author ABSTRACT World population will increase at geometric rate of progression and an estimated 9.6 billion people and will require 70 percent more food than is available today. In order to increase the production efficiency, expertise in the domain of agriculture opined and K e yw or ds developed different agribusiness models to address the above aspects. In order to conduct this research, case study method was adopted to collect the necessary data and information Digital agriculture, from the entrepreneurs performing successful ventures in digital mode of agribusiness by Startups , Artificial adopting purposive sampling method. Secondary data pertaining to different countries Intelligence and were collected from the websites of digital agribusiness of their respective country. Digital Internet of Things agripreneurs enrolled in the Agribusiness incubation society were contacted personally to (IoT) collect the required data. M/s Kisangates Agro Informatics is an innovative startup with a motive to revolutionize business processes in agricultural ecosystem through strategic Article Info models and digital transformations that are synergistic with environment and business needs. Further, M/s Jeypee Biotechs, Virudhunagar developed the digital and ICT enabled Accepted: field advisory system model and executes networking among farmers on a common 24 July 2020 platform for dry chillies cultivation for export purposes.
    [Show full text]
  • Agriculture 4.0 and Smart Sensors. the Scientific Evolution of Digital Agriculture: Challenges and Opportunities
    Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 31 May 2021 doi:10.20944/preprints202105.0758.v1 Article Agriculture 4.0 and Smart Sensors. The Scientific Evolution of Digital Agriculture: Challenges and Opportunities Michele Kremer Sott 1,*, Leandro da Silva Nascimento 2, Cristian Rogério Foguesatto 1, Leonardo B. Furstenau 2, Kadígia Faccin 1, Paulo Antônio Zawislak 2, Bruce Mellado 3, Jude Dzevela Kong 4 and Nicola Luigi Bragazzi 4,* 1 Unisinos University; [email protected] (M.K.S.), [email protected] (C.R.F.), [email protected] (K.F.) 2 Federal University of Rio Grande do Sul; [email protected] (L.B.F.), [email protected] (L.S.N.), [email protected] (P.A.Z.) 3 School of Physics and Institute for Collider Particle Physics, University of the Witwatersrand, Johannes- 7 burg, Wits 2050, South Africa; [email protected] 4 Department of Mathematics and Statistics, York University; [email protected] *Correspondence: [email protected] (M.K.S.); [email protected] (N.L.B.) Abstract: The agriculture sector is one of the backbones of many countries’ economies and its processes have been changing in order to enable technological adoption to increase productivity, quality, and sustainable development. In this research, we present a theoretical reflection through a scientific mapping of the adoption of precision techniques and breakthrough technologies in agriculture, the so-called Precision Agriculture (PA) and Agriculture 4.0 (A4.0). To do this, we used 4,694 documents from the Web of Science database to perform a Bibliometric Performance and Network Analysis (BPNA) of the literature with the support of the PICOC protocol and the SciMAT software.
    [Show full text]
  • Digital Agriculture and the Agridigit Project, Italy: Case Study Contribution to the OECD TIP Digital and Open Innovation Project
    2 │ Digital Agriculture and the AgriDigit project, Italy: Case study contribution to the OECD TIP Digital and Open Innovation project Authors: Marcello Donatellia, Michele Pisantea,b a CREA, Council for Agricultural Research and Economics b University of Teramo Digital Agriculture and the Agridigit project, Italy – Contribution to the OECD TIP Digital and Open Innovation project │ 3 Table of contents Introduction ........................................................................................................................................... 4 1. Digital transformation of the agri-food sector ................................................................................ 6 2. The effects of digital transformation on innovation practices in the agri-food sector ................ 8 3. The AgriDigit project ...................................................................................................................... 10 References ............................................................................................................................................ 16 Digital Agriculture and the Agridigit project, Italy – Contribution to the OECD TIP Digital and Open Innovation project 4 │ Introduction The rapid development of innovation in the field of digital agriculture and agri-food chain, albeit in a chaotic frame of individual proposals, has highlighted an opportunity for a change of paradigm in establishing productivity in farms and of production areas. This has created a link between the production phase and product
    [Show full text]
  • ITU-FAO Stocktaking Report: Digital Excellence in Agriculture in Europe and Central Asia
    Digital Excellence in Agriculture in Europe and Central Asia Good practices in the field of digital agriculture Stocktaking Report @ITU and @FAO | July 2021 -Living document- Please note that the content of this document was provided by the submitter and ITU and FAO are not accountable for the information displayed. 2 ACKNOWLEDGMENTS This report was developed by the ITU Office for Europe within the framework of the ITU Regional Initiative for Europe on information and communication technology-centric innovation ecosystems. It was elaborated by Mr Laszlo Papocsi and Mr Mihaly Csoto, with the support of Ms Daniela DiGianantonio and Mr Eugen Harabara. ITU and FAO would also like to acknowledge the contribution of Mr Rinor Ahmeti (FAO), Ms Sarah Delporte (ITU), Mr Victor Lagutov (FAO), Mr Thembani Malapela (FAO), Mr Valentin Nagy (FAO), Mr Farid Nakhli (ITU), Mr Joshua Oiro (ITU), and Ms Antonia Vanzini (ITU). The work has been undertaken under the supervision and direction of Mr Jaroslaw Ponder, Head of ITU Office for Europe, and Ms Sophie Treinen, Information and Knowledge Management Officer and Digital Agriculture Team Leader of FAO Regional Office for Europe and Central Asia. FAO and ITU would also like to express sincere gratitude to all the participants of the Regional Contest “Digital Excellence in Agriculture in Europe and Central Asia” for their valuable submissions. Please note that the content of this document was provided by the submitter and ITU and FAO are not accountable for the information displayed. 3 DISCLAIMER ITU and FAO. 2021. Digital Excellence in Agriculture in Europe and Central Asia - Call for good practices in the field of digital agriculture - Stocktaking Report.
    [Show full text]
  • The Implications of Digital Agriculture and Big Data for Australian Agriculture
    research report April 2016 The Implications of Digital Agriculture and Big Data for Australian Agriculture © 2016 Australian Farm Institute ISBN 978-1-921808-38-8 (Print and Web) Australia’s Independent Farm Policy Research Institute The Australian Farm Institute The Australian Farm Institute is an agricultural policy research organisation that has been established to develop and promote public policies that maximise the opportunity for Australian farmers to operate their businesses in a profitable and sustainable manner. To do this, the Institute carries out or contracts leading academics and consultants to conduct research into farm policy issues that the Institute’s Research Advisory Committee has identified as being of high strategic importance for Australian farmers. The Institute has a commitment to ensuring research findings are the conclusion of high quality, rigorous and objective analysis. The Australian Farm Institute promotes the outcomes of the research to policy-makers and the wider community. The Australian Farm Institute Limited is incorporated as a company limited by guarantee and commenced operations on 23 March 2004. The Institute is governed by a Board of Directors who determine the strategic direction for the Institute. The Institute utilises funding voluntarily contributed by individuals and corporations to perform its activities. Initial seed funding has been contributed by the NSW Farmers’ Association. Vision Farm policies that maximise the opportunity for Australian farmers to operate their businesses in a profitable and sustainable manner. Objective To enhance the economic and social wellbeing of farmers and the agricultural sector in Australia by conducting highly credible public policy research, and promoting the outcomes to policy-makers and the wider community.
    [Show full text]
  • Urban Bites and Agrarian Bytes: Digital Agriculture and Extended Urbanization
    Berkeley Planning Journal 31 100 Urban Bites and Agrarian Bytes: Digital Agriculture and Extended Urbanization TIMOTHY RAVIS AND BENJAMIN NOTKIN Abstract Capitalist agriculture faces a crisis. Plateauing yields and profts are driving up food prices, and the ability to continue the traditional practice of expanding into new, un-commodifed territories appears to be waning. This crisis is due in large part to the accelerating biophysical contradictions of industrial agriculture, which systematically undermine the ecological conditions for its own success in pursuit of proft. We investigate how digital technologies are deployed as a potential data fx that does not solve the crisis but merely staves it of. We situate these technologies within the material context of capitalist urbanization, along the way arguing for bringing information back into the neo-Lefebvrian framework of “extended” or “planetary” urbanization. Digital agriculture technologies continue the centralization of economic knowledge and power as they facilitate the transformation of vast territories into “operational landscapes” that provide the material, energy, and labor for a rapidly expanding urban system. Keywords: Digital Agriculture, Precision Agriculture, Extended Urbanization, Planetary Urbanization, Globalization, Agrarian Studies, Depeasantization, Globalization, Computation “Eventually, precision agriculture could take humans out of the loop entirely. Once that happens, the world won’t just see huge gains in productivity. It will see a fundamental shif in the history of agriculture: farming without farmers.” —Foreign Afairs Magazine (Lowenberg-DeBoer 2015) “99% of all technological disruption is there to merely ensure that nothing of substance gets disrupted at all.” —Evgeny Morozov (2019) Introduction: Feeding “the Next Two Billion” Hundreds of reports and articles begin with a variation on the same apocalyptic exhor- tation: The combination of population growth, food price volatility, and climate change demands a new agricultural revolution to expand and secure the global food supply.
    [Show full text]
  • Value Creation in the Digital Agribusiness Network Transform and Grow to Sustainably Feed the World
    Value Creation in the Digital Agribusiness Network Transform and Grow to sustainably feed the world - 1 - SAP Digital Agribusiness Whitepaper (03/16) © 2016 SAP SE. All rights reserved ANJA’S POINT OF VIEW Dear Customers, The world population is growing to upwards of 10 billion people by the middle of the century.1 This growth combined with urbanization and the rise of the middle class will increase the demand for healthy, fairly produced, and sustainable food and will require agricultural production to double.2 To succeed, we need smart solutions from farm to fork. We expect the digitization of agribusiness to play a key role in solving this challenge. New processes and technologies optimize seed selection, irrigation, fertilization, and crop protection; automate farming work with autonomous equipment; optimize asset utilization; and streamline the food supply chain to avoid waste. But even in a high-tech economy, agriculture is still exposed to the weather, crop and animal diseases, and substantial fluctuations on commodity markets. Predictive analytics and simulations enable optimized risk mitigation strategies. Digital technology is turning the farm into a digital enterprise and the farmer into a digital entrepreneur. Farmers stand in the center of a complex ecosystem of farming equipment manufacturers, food "Digital technology and processors, and agrichemical specialists. At the same time, consumer behavior is changing collaboration are key radically. Consumers are the focus point of the food industry. They want to know the origin of their food and how it was produced and processed, driving the need for transparency along the enablers to provide end-to-end agribusiness supply chain.
    [Show full text]
  • From Smart Farming Towards Agriculture 5.0: a Review on Crop Data Management
    agronomy Review From Smart Farming towards Agriculture 5.0: A Review on Crop Data Management Verónica Saiz-Rubio * and Francisco Rovira-Más Agricultural Robotics Laboratory (ARL), Universitat Politècnica de València, Camino de Vera, s/n. 46022 Valencia, Spain; [email protected] * Correspondence: [email protected]; Tel.: +34-963-877-291 Received: 2 December 2019; Accepted: 17 January 2020; Published: 3 February 2020 Abstract: The information that crops offer is turned into profitable decisions only when efficiently managed. Current advances in data management are making Smart Farming grow exponentially as data have become the key element in modern agriculture to help producers with critical decision-making. Valuable advantages appear with objective information acquired through sensors with the aim of maximizing productivity and sustainability. This kind of data-based managed farms rely on data that can increase efficiency by avoiding the misuse of resources and the pollution of the environment. Data-driven agriculture, with the help of robotic solutions incorporating artificial intelligent techniques, sets the grounds for the sustainable agriculture of the future. This paper reviews the current status of advanced farm management systems by revisiting each crucial step, from data acquisition in crop fields to variable rate applications, so that growers can make optimized decisions to save money while protecting the environment and transforming how food will be produced to sustainably match the forthcoming population growth. Keywords: agriculture 4.0; big data; farm management information system (FMIS); robotics; IoT; variable-rate technology (VRT); AI 1. Introduction The agriculture sector is undergoing a transformation driven by new technologies, which seems very promising as it will enable this primary sector to move to the next level of farm productivity and profitability [1].
    [Show full text]
  • Toolkit: Digital Tools in Agriculture Programming
    TABLE OF CONTENTS TABLE OF CONTENTS ............................................................................................................................... 2 OVERVIEW ................................................................................................................................................... 2 Why are Digital Tools in Agriculture Important? ........................................................................................ 2 Opportunity: Mobile Connectivity in Feed the Future and Affiliate Countries ............................................ 3 PRINCIPLES FOR DIGITAL DEVELOPMENT ............................................................................................ 3 The Principles ............................................................................................................................................ 3 Market Research ....................................................................................................................................... 5 Responsible Data Practices ...................................................................................................................... 7 Examples of Digital Projects Supported by USAID ................................................................................... 8 DIGITAL TOOLS IN AGRICULTURE ........................................................................................................ 10 Data-Driven Agriculture ..........................................................................................................................
    [Show full text]
  • Precision Farming: Cheating Malthus with Digital Agriculture
    EQUITY RESEARCH | July 13, 2016 Innovation flourishes where there Jerry Revich, CFA (212) 902-4116 are big problems to solve, and jerry.revich @gs.com few problems are as large as the Goldman, Sachs & Co. need to feed the world. In the Robert Koort, CFA latest in our Profiles in (713) 654-8480 robert.koort @gs.com Innovation series, we explore Goldman, Sachs & Co. how agriculture offers fertile ground for a confluence of Patrick Archambault, CFA (212) 902-2817 technology trends, from sensors patrick.archambault @gs.com and the Internet of Things to Goldman, Sachs & Co. drones, big data and autonomous driving. We see the potential for Adam Samuelson (212) 902-6764 Precision Farming to lift crop adam.samuelson @gs.com yields 70% by 2050 and create a Goldman, Sachs & Co. $240 billion market for farm tech, Michael Nannizzi adding to agriculture’s long (917) 343-2726 michael.nannizzi @gs.com history of holding off a Goldman, Sachs & Co. Malthusian crisis. Mohammed Moawalla +44(20)7774-1726 mohammed.moawalla @gs.com Goldman Sachs International Andrew Bonin (917) 343-1445 andrew.bonin @gs.com Goldman, Sachs & Co. PROFILES IN INNOVATION Precision Farming Cheating Malthus with Digital Agriculture Goldman Sachs does and seeks to do business with companies covered in its research reports. As a result, investors should be aware that the firm may have a conflict of interest that could affect the objectivity of this report. Investors should consider this report as only a single factor in making their investment decision. For Reg AC certification and other important disclosures, see the Disclosure Appendix, or go to www.gs.com/research/hedge.html.
    [Show full text]
  • Introduction Agriculture Is Entering a Transformative Age, Where Technology Will Change How We Support a Growing Healthy Population
    Introduction Agriculture is entering a transformative age, where technology will change how we support a growing healthy population. The Center for Digital Agriculture at Illinois (the Center) recognizes this transformation and will serve as a catalyst for collaborative research projects across engineering and agricultural disciplines. Increased global productivity and sustainability requires technical innovations that involve the Center’s initial themes: automation, data, crops and animals, and people. The Center will also address the immediate need for a trained workforce. Successful innovations will further increase the need for a workforce skilled in both agriculture and digital technologies, which will lead to new recruitment, training, and retraining challenges for the rural workforce as well as for private sector agricultural concerns. The Center will leverage the strong tradition of teambuilding for large long-term interdisciplinary research at Illinois, including the National Center for Supercomputer Applications (NCSA) and the Institute for Genomic Biology (IGB). Expertise from these and other centers will advance collaborations between the College of Agricultural, Consumer and Environmental Sciences (ACES) and the Grainger College of Engineering. The Center will enable multidisciplinary research as well as education and outreach involving agricultural, biological, food, consumer, economic, and environmental researchers together with computer science, electrical, civil, mechanical, and other engineering fields. In partnership
    [Show full text]
  • Digital Agriculture
    Volume 9 │ Issue 1 Providing insight and analysis for business professionals Digital agriculture How to feed a growing world Demand-driven planning and forecasting A holistic and transformative approach This article is an extract from Performance, Volume 9, Issue 1, February 2017. The full journal is available at Activity-based costing Insights from E.ON Energie Deutschland ey.com/performance If you could see the future, would you change the past? Digital agriculture: helping to feed a growing world Digital (or precision) agriculture and big data hold answers to the problem of how to feed a growing world sustainably. The field-level impact of this next agricultural revolution has been well documented, digital agriculture will, without doubt, change farming. However, research on its effects of agribusinesses has been limited despite the fact it will fundamentally change multiple business functions for agribusinesses across the world. This is the first in a series of articles that will introduce these concepts and foreshadow how agribusinesses will be affected. 82 Volume 9 │ Issue 1 w Volume 9 │ Issue 1 Providing insight and analysis for business professionals Digital agriculture How to feed a growing world Demand-driven planning and forecasting A holistic and transformative approach This article is an extract from Performance, Volume 9, Issue 1, February 2017. The full journal is available at Activity-based costing Insights from E.ON Energie Deutschland ey.com/performance If you could see the future, would you change the past? Authors Rob Dongoski Global Agribusiness Leader, Ernst & Young LLP Andrew Selck Senior Manager Global Agribusiness, Ernst & Young LLP, US 83 w w Volume 9 │ Issue 1 Providing insight and analysis for business professionals Digital agriculture How to feed a growing world Demand-driven planning and forecasting A holistic and transformative approach This article is an extract from Performance, Volume 9, Issue 1, February 2017.
    [Show full text]