Studies of Linear and Nonlinear Photoelectric Emission for Advanced Accelerator Applications

Total Page:16

File Type:pdf, Size:1020Kb

Studies of Linear and Nonlinear Photoelectric Emission for Advanced Accelerator Applications © 1996 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE. Studies of Linear and Nonlinear Photoelectric Emission for Advanced Accelerator Applications R. Brogle, P. Muggli, P. Davis, G. Hairapetian, and C. Joshi Department of Electrical Engineering, University of California, Los Angeles, CA 90024 Abstract potential barrier. No such enhancement was observed in Various electron emission properties of accelerator the DC gun. Thus the QE of a photocathode in the RF gun photocathodes were studied using short pulse lasers. The is typically an order of magnitude greater than that of the quantum efficiencies (QE’s) of copper and magnesium same cathode measured in the DC gun. The anode-cathode were compared before and after above-damage threshold system of the DC gun was enclosed in a vacuum system at laser cleaning. Changes in the emission properties of a pressure of 10−6 torr. The energy of each laser pulse was copper photocathodes used in the UCLA RF photoinjector measured on line by a photodiode placed behind a UV gun were observed by mapping the QE's of the cathode mirror in the laser line. The emitted charge was measured surfaces. The electron yield of thin copper films resulting by a charge preamplifier placed across a 1 MΩ load from back-side illumination was measured. Multiphoton resistor. (nonlinear) emission was studied as a means of creating 10 ultrashort electron bunches, and an RF gun Parmela simulation investigated the broadening of such pulses as they propagate down the beam line. 1 I. COPPER AND MAGNESIUM QUANTUM EFFICIENCY MEASUREMENTS 0.1 In a radio-frequency (RF) photoinjector gun, short pulse electron beams are created using a laser pulse incident on a photocathode placed in a high RF field emitted charge (pC) 0.01 Mg before cleaning accelerating structure. The laser is synchronized with the Mg after cleaning RF cycle to achieve maximum acceleration and minimum Mg 15 minutes later Cu before cleaning energy spread of the electron bunch. For high peak 0.001 currents, a photocathode material should be chosen which 0.001 0.01 0.1 1 10 has a high quantum efficiency at the laser wavelength. It µ must also be robust to withstand the high RF fields and incident energy ( J) high incident laser intensity, and should have a smooth, Fig. 1. Electron yields of Cu and Mg. nonreactive surface for uniform emission over long periods The cathodes were 1" diameter OFHC copper and of operation. 95% Mg-Zn-Al alloy samples hand polished to 1 µm. The Copper and magnesium are two materials 1,2 QE of each sample was determined by varying the incident commonly used in these devices. The work function of laser energy and measuring the corresponding emitted copper is 4.6 eV and thus ultra-violet (UV) laser pulses are charge. For the single-photon (linear) photoelectric effect, required to achieve linear photoemission. In the UCLA RF the emitted charge should be directly proportional to the 1 gun these pulses are created by frequency quadrupling an incident laser energy. The constant of proportionality of amplified Nd:YAG laser pulse to obtain 266 nm (4.7 eV this relationship is the electron yield. photon energy) radiation. Magnesium has a 3.7 eV work The results of the Cu and Mg measurements are function and therefore may exhibit a higher electron yield shown in Fig. 1. The curves show the linear relationship than copper. However, Mg is more reactive than Cu and between charge and laser energy at moderate charge levels subject to greater surface contamination which can hinder -- at high charge levels the curves bend due to space photoemission. charge saturation. Initially, the electron yield of copper A DC field test gun was devised to measure the was 2.2 pC/µJ (QE = 1. 0 × 10−5 electrons per photon) while QE's of copper and magnesium photocathodes. Laser the magnesium yield was only 0.15 pC/µJ. We then pulses of 266 nm wavelength, 50 ps pulsewidth, and 3 mm performed above-damage threshold laser cleaning on the spot size were sent through a hollow anode onto the magnesium sample, and observed the electron yield cathode sample at normal incidence. The anode was increase to 33 pC/µJ (a factor of 220 -- 15 times greater biased at +5 kV and located 3 mm from the cathode, than Cu). However, within minutes the yield decayed to 10 resulting in an electric field of 1.6 MeV/m. In the actual pC/µJ where it remained steady. Even in a vacuum of 10−6 RF gun the electric field is 100 MeV/m, which enhances the magnesium surface can quickly become contaminated the electron emission via the Schottky lowering of the and lose quantum efficiency. Similar cleaning on copper 1039 showed a modest (factor of two) increase in QE but no such 10 emission degradation over time. Although this technique enhances electron yield, the resulting damaged area may 8 produce non-uniform emission which could impair the J) emittance of the accelerator beam. µ II. CHANGES IN RF GUN PHOTOCATHODE 6 EMISSION CHARACTERISTICS In an RF photoinjector gun, the cathode is exposed 4 to many adverse physical conditions: extreme RF fields, high voltage arcing during conditioning, impurities in the 2 vacuum, and repetitive incident UV laser shots. These electron yield (pC)/ newly polished factors may induce physical changes on the surface of the after 1 week in RF gun photocathode which modify its photoemission 0 characteristics. Such changes were observed for copper -6-4-20246 cathodes in the UCLA RF gun.3 x (mm) 6 Fig. 3. Hand polished photocathode. ---- new Spawr mirror photocathode after 5 4 months in RF gun The second cathode was polished by hand to a 1 µm finish. It was installed in the RF gun for one week J) µ 4 before its quantum efficiency and emittance characteristics began to deteriorate. Fig. 3 shows the QE maps of this 3 cathode before and after the RF gun installation. Note that originally the electron yield was two times larger toward 2 the edges of the cathode than at the center. This feature was not present for the new Spawr-polished mirror (Fig. 2), electron yield (pC/ 1 and thus seems to be a characeristic of the polishing method. After one week in the RF gun the QE map had 0 changed, becoming fairly constant across the surface. No -6 -4 -2 0 2 4 6 large scale variations were observed as on the previous x (mm) cathode. Fig. 2. Spawr polished RF photocathode. III. BACK ILLUMINATION OF THIN Cu In an attempt to understand the nature of these FILMS emission changes, the DC gun was used to create quantum Synchronization of an electron bunch with a laser efficiency maps of the cathode surfaces. This was done by pulse is important in experiments such as the plasma beat focusing the input 266 nm laser pulse to a spotsize of wave accelerator. Using laser-induced photoemission to approximately 100 µm, and then moving the cathode with generate such electron bunches is an effective means of the x,y feedthrough to illuminate different points on the achieving this synchronization. However, if a photoinjector surface. gun is part of an X-band or higher frequency linac, it may The first cathode tested was originally polished by be difficult or impossible to illuminate the front surface of a Spawr Industries to λ/20 for 10 µm light. It had been used photocathode with a laser pulse. If such a device is driven in the RF gun for 4 months of operation, then removed after by a DC gun, it may be possible to circumvent this problem its quantum efficiency and emittance characteristics by employing a thin film photocathode that is illuminated degraded. A QE surface map of this cathode after removal from the back side of the film to produce electron emission is shown in Fig. 2. Variations greater than a factor of five from the front side. Although this technique will result in in the QE are observed across the surface. Such variations some loss of quantum efficiency, it may be useful in are not present on a newly polished Spawr copper mirror, systems which do not require a high total charge. shown for comparison. To investigate this possibility, we measured the UV (266 nm) light transmission and electron emission properties of five different thicknesses of copper films. The measurements were done in the back illumination configuration of the DC gun. The films were deposited on 1" diameter fused silica windows and ranged from 270 Å to 1490 Å in thickness. The laser pulses propagated through the transparent substrate onto the back side of the copper film. The resulting photoelectrons were then collected on 1040 the opposite (front) side by the hollow anode. A calibrated 10 325 nm photodiode was placed after the hollow anode to meaure 650 nm the energy of the light transmitted through the film. 217 nm 1 1 -6 QE = 7 x 10 UV transmisson slope = 1 charge emission 0.1 0.1 0.01 emitted charge (pC) emitted charge slope = 2 0.01 slope = 3 optical skin depth = 200 Å back/front ratio 0.001 0.001 10-5 0.0001 0.001 0.01 0.1 1 10 100 1000 incident energy (µJ) 0.0001 Fig. 5. Multiphoton emission from copper.
Recommended publications
  • Performance of the Fermi Fel Photoinjector Laser*
    WEPPH014 Proceedings of FEL 2007, Novosibirsk, Russia PERFORMANCE OF THE FERMI FEL PHOTOINJECTOR LASER* M. B.Danailov, A.Demidovich, R.Ivanov, I.Nikolov, P.Sigalotti ELETTRA, 34012 Trieste, Italy Abstract amplifier system described here is a custom system The photoinjector laser system for the FERMI FEL has constructed by Coherent Inc. This is in fact the first been installed at the ELETTRA laser laboratory. It is amplifier system of this type, reaching an energy level based on a completely CW diode pumping technology above 18 mJ in the infrared, with the use of entirely CW and features an all-CW-diode-pumped Ti:Sapphire diode pumping technology, which is the base for the amplifier system, a two stage pulse shaping system, a extremely high UV energy stability reported below. The time-plate type third harmonic generation scheme and amplifier design is shown on Figure 1. aspheric shaper based beam shaping. The paper will As it is seen, the seed coming from a Ti:Sapphire present experimental results describing the overall oscillator (Mira), is stretched and amplified to a mJ level performance of the system. The data demonstrates that in a regenerative cavity, after which it is further amplified all the initially set parameters were met and some largely in two two-pass amplifier stages. Each of these is pumped exceeded. We present what is to our knowledge the first by up to 45 mJ from two Evolution HE Nd:YLF Q- direct measurement of the timing jitter added by a switched pump lasers. As mentioned above, they are Ti:Sapphire amplifier system and show that for our case it pumped by diodes in CW.
    [Show full text]
  • Review of Third and Next Generation Synchrotron Light Sources
    Home Search Collections Journals About Contact us My IOPscience Review of third and next generation synchrotron light sources This article has been downloaded from IOPscience. Please scroll down to see the full text article. 2005 J. Phys. B: At. Mol. Opt. Phys. 38 S773 (http://iopscience.iop.org/0953-4075/38/9/022) View the table of contents for this issue, or go to the journal homepage for more Download details: IP Address: 129.49.56.80 The article was downloaded on 02/11/2010 at 21:36 Please note that terms and conditions apply. INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF PHYSICS B: ATOMIC, MOLECULAR AND OPTICAL PHYSICS J. Phys. B: At. Mol. Opt. Phys. 38 (2005) S773–S797 doi:10.1088/0953-4075/38/9/022 Review of third and next generation synchrotron light sources Donald H Bilderback1, Pascal Elleaume2 and Edgar Weckert3 1 Cornell High Energy Synchrotron Source and the School of Applied and Engineering Physics, 281 Wilson Laboratory, Cornell University, Ithaca, NY 14853, USA 2 European Synchrotron Radiation Facility, BP 220, F-38053 Grenoble Cedex, France 3 HASYLAB at Deutsches Elektronen-Synchrotron (DESY), Notkestrasse 85, D-22603 Hamburg, Germany E-mail: [email protected] Received 20 January 2005, in final form 17 March 2005 Published 25 April 2005 Online at stacks.iop.org/JPhysB/38/S773 Abstract Synchrotron radiation (SR) is having a very large impact on interdisciplinary science and has been tremendously successful with the arrival of third generation synchrotron x-ray sources. But the revolution in x-ray science is still gaining momentum. Even though new storage rings are currently under construction, even more advanced rings are under design (PETRA III and the ultra high energy x-ray source) and the uses of linacs (energy recovery linac, x-ray free electron laser) can take us further into the future, to provide the unique synchrotron light that is so highly prized for today’s studies in science in such fields as materials science, physics, chemistry and biology, for example.
    [Show full text]
  • The New Photoinjector for the Fermi Project G
    TUPMN028 Proceedings of PAC07, Albuquerque, New Mexico, USA THE NEW PHOTOINJECTOR FOR THE FERMI PROJECT G. D’Auria, D. Bacescu, L. Badano, F. Cianciosi, P. Craievich, M. Danailov, G. Penco, L. Rumiz, M. Trovo’, A. Turchet. Sincrotrone Trieste, Trieste, Italia H. Badakov, A. Fukusawa, B. O’Shea, J.B. Rosenzweig UCLA Department of Physics and Astronomy, 405 Hilgard Ave., Los Angeles, CA 90095 Abstract For this purpose a collaboration agreement, aimed to FERMI@elettra is a single-pass FEL user facility develop this high brightness source, has been recently covering the spectral range 100-10 nm. It will be located signed between ST and UCLA. Indeed, UCLA has proven near the Italian third generation Synchrotron Light Source experience in this field and has developed several recent facility ELETTRA and will make use of the existing 1.0 photoinjectors as component of the SPARC project (high GeV normal conducting Linac [1]. To obtain the high brightness beam and visible FEL) [3,4] and, most beam brightness required by the project, the present Linac recently, the FINDER (ICS) [5] collaborations. electron source will be substituted with a photocathode In the FINDER experiment, low emittance performance RF gun now under development in the framework of a is paramount, and the requirements on the photoinjector collaboration between Sincrotrone Trieste (ST) and are nearly identical to those of the FERMI project. As the Particle Beam Physics Laboratory (PBPL) at UCLA. The FINDER photoinjector is the most advanced design new gun will use an improved design of the 1.6 cell developed at UCLA, we have based the FERMI design accelerating structure already developed at PBPL, scaled upon it.
    [Show full text]
  • Rf Photoinjector/Linac Development and Their Applications at Ucla*
    Proceedings of the 1994 International Linac Conference, Tsukuba, Japan RF PHOTOINJECTOR/LINAC DEVELOPMENT AND THEIR APPLICATIONS AT UCLA* S. Park, M. Hogan, C. Pellegrini, J. Rosenzweig, G. Travish, R. Zhang Department of Physics, University of California, Los Angeles, California 90024 P. Davis, G. Hairapetian, C. Joshi Department of Electrical Engineering, University of California, Los Angeles, California 90024 Abstract number of revisions from the original design and prototype. It has been found that the rf power dissipation at the cells Various RF accelerator structures have been developed were high enough to cause detuning of the resonance fre­ for acceleration of high brightness photoelectron beams at quency after only a short period of operation. Leaving the UCLA during the last several years. The first is a 1~­ basic parameters such as cell size and washer dimensions cell injector, which produces 0-3 nC of photoelectrons per unchanged, a water cooling was employed for the structure bunch at up to 4 MeV with an rf induced emittance of to remain resonant, and to be able to tune it to the driving 1.5,.. mm-mrad. In order to boost the beam energy to 15- frequency. Preliminary measurements of the dark current 20 MeV, a plane wave transformer(PWT) linac was con­ indicate that the energy gain of the PWT will be about 13 structed, cold tested, and it is in commissioning phase. The MeV at the rf power input of 16 megawatts. injector and PWT combination has overall length of less An extension of the photoinjector[5] has 7 ~ cells, driven than 1.5 meters.
    [Show full text]
  • LABORATORI NAZIONALI Dl FRASCATI SIS - Pubblicazioni
    LABORATORI NAZIONALI Dl FRASCATI SIS - Pubblicazioni LNF-00/004 (P) 3 Marzo 2000 SLAC-PUB 8400 HOMDYN STUDY FOR THE LCLS RF PHOTO-INJECTOR1 M. Ferrario1, J. E. Clendenin2, D. T. Palmer2, J. B. Rosenzweig3, L. Serafini4 1}INFN - Laboratori Nazionali di Frascati, Via E. Fermi 40, 00044 Frascati (Roma), Italy 2>SLAC, Stanford University, Stanford, CA 94309 3>UCLA, Dep. of Physics and Astronomy, Los Angeles, CA 90095 4>INFN- Sezione di Milano, Via Celoria 16, 20133 Milano, Italy Abstract We report the results of a recent beam dynamics study, motivated by the need to redesign the LCLS photoinjector, that led to the discovery of a new effective working point for a split RF photoinjector. The HOMDYN code, the main simulation tool adopted in this work, is described together with its recent improvements. The new working point and its LCLS application is discussed. Validation tests of the HOMDYN model and low emittance predictions, 0.3 mm-mrad for a 1 nC flat top bunch, are performed with respect to the multi-particle tracking codes ITACA and PARMELA. PACS.: 29.27.Bd Presented at the 2nd ICFA Advanced Accelerator Workshop on The Physics of High Brightness Beam, s UCLA Faculty Center, Los Angeles, CA November 9-12, 1999 Work supported by Department of Energy contract DE-AC03-76SF00515. 1 INTRODUCTION The Linac Coherent Light Source (LCLS) is an X-ray Free Electron Laser (FEL) proposal that will use the final 15 GeV of the SLAC 3-km linac for the drive beam. The performance of the LCLS in the 1.5 Angstrom regime is predicated on the availability of a 1-nC, 100-A beam at the 150-MeV point with normalised rms transverse emittance of ~1 mm-mrad.
    [Show full text]
  • Flash Photoinjector Laser Systems
    39th Free Electron Laser Conf. FEL2019, Hamburg, Germany JACoW Publishing ISBN: 978-3-95450-210-3 doi:10.18429/JACoW-FEL2019-WEP048 FLASH PHOTOINJECTOR LASER SYSTEMS S. Schreiber∗, K. Klose, C. Grün, J. Rönsch-Schulenburg, B. Steffen, DESY, Hamburg, Germany Abstract is operated with an RF power of 5 MW at 1.3 GHz, with an RF pulse duration of 650 µs at a repetition rate of 10 Hz. The free-electron laser facility FLASH at DESY (Ham- Since FLASH can accelerate many thousands of electron burg, Germany) operates two undulator beamlines simultane- bunches per second with a charge of up to 2 nC, the quantum ously for FEL operation and a third for plasma acceleration efficiency of the photocathode must be in the order of a few experiments (FLASHForward). The L-band superconduct- percent in order to keep the average laser power at an accept- ing technology allows accelerating fields of up to 0.8 ms able limit. Cesium telluride has been proven to be a reliable in length at a repetition rate of 10 Hz (burst mode). A fast and stable cathode material with a quantum efficiency (QE) kicker-septum system picks one part of the electron bunch well above 5 % for a wavelength in the UV (around 260 nm). train and kicks it to the second beamline such that two beam- The lifetime is much longer than 1000 days of continuous lines are operated simultaneously with the full repetition rate operation. [9] To give an idea of the required laser single of 10 Hz. The photoinjector operates three laser systems.
    [Show full text]
  • Energy Recovery Linacs As Synchrotron Light Sources
    Nuclear Instruments and Methods in Physics Research A 500 (2003) 25–32 Energy recovery linacs as synchrotron light sources Sol M. Gruner*, Donald H. Bilderback Wilson Laboratory, Cornell University, CHESS, Pinetree road, Route 366, Ithaca, NY 14853, USA Abstract Pushing to higher light-source performance will eventually require using linacs rather than storage rings, much like colliding-beam storage rings are now giving way to linear colliders. r 2003 Elsevier Science B.V. All rights reserved. PACS: 07.85.Qe; 07.85.Àm Synchrotron radiation sources have proven to single source will meet every need, the trend is be immensely important tools throughout the towards higher brilliance and intensity, and short- sciences and engineering. In consequence, syn- er bunches. These trends are driven by a desire to chrotron radiation usage continues to grow, study smaller and smaller samples that require assuring the need for additional synchrotron more and more brilliance, because tiny samples radiation machines well into the foreseeable tend to have both low absolute scattering power future. Storage rings, the basis for all major and require micro-X-ray beams. An increasing existing hard X-ray synchrotron facilities, have number of experiments also require transversely inherent limitations that constrain the brightness, coherent X-ray beams. It can be shown that pulse length, and time structure of the X-ray transverse coherence increases with the brilliance beams. Since large synchrotron X-ray facilities are of the source. Another trend is towards examina- expensive and take many years to bring to fruition, tion of time-resolved phenomena in shorter and it is important to consider if there are alternatives shorter time windows.
    [Show full text]
  • Progress with the 4GLS ERL Prototype Photoinjector Laser System
    Laser Science and Development – Laser Research and Development Progress with the 4GLS ERL prototype photoinjector laser system G J Hirst, M Divall, I N Ross Central Laser Facility, CCLRC Rutherford Appleton Laboratory, Chilton, Didcot, Oxon., OX11 0QX, UK F E Hannon, G D Markey CCLRC Daresbury Laboratory, Daresbury, Warrington, Cheshire, WA4 4AD, UK Main contact email address: [email protected] Introduction The design of a laser system to generate bunches of photoelectrons for subsequent acceleration in the 4GLS Energy Recovery Linac prototype was reported last year1). Since then we have commissioned the laser itself, implemented the choppers for time-structuring the beam and designed the hardware needed to attenuate and stretch the individual pulses. In February 2005 the whole system was transported from the CLF development lab, at RAL, to Daresbury, where it was installed in a custom-built laser room (see Figure 1). Further development and testing has continued there. Laser performance The laser (High Q Lasers, IC-532-5000) is a modelocked, frequency-doubled Nd:YVO4 unit, consisting of an 81.25 MHz Figure 1. The laser system during installation at Daresbury. oscillator, an amplifier to raise the average power to >10 W and an LBO frequency doubler to convert the infrared fundamental Attenuating and pulse stretching to green light at 532 nm. The system was supplied as an integrated whole, when it delivered ~5 W in the green. The ERLP accelerator is designed with an 80 pC electron bunch charge. Variations from this would affect the way the bunch The ERLP accelerator needs the cw-modelocked laser beam to expands due to Coulomb repulsion before it reaches relativistic be chopped into pulse trains, using a combination of mechanical speed.
    [Show full text]
  • Free-Electron Laser Operation with a Superconducting Radio-Frequency Photoinjector at ELBE
    Nuclear Instruments and Methods in Physics Research A 743 (2014) 114–120 Contents lists available at ScienceDirect Nuclear Instruments and Methods in Physics Research A journal homepage: www.elsevier.com/locate/nima Free-electron laser operation with a superconducting radio-frequency photoinjector at ELBE J. Teichert a,n, A. Arnold a, H. Büttig a, M. Justus a, T. Kamps b, U. Lehnert a,P.Lua,c, P. Michel a, P. Murcek a, J. Rudolph b, R. Schurig a, W. Seidel a, H. Vennekate a,c, I. Will d, R. Xiang a a Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstr. 400, 01328 Dresden, Germany b Helmholtz-Zentrum Berlin, Albert-Einstein-Str. 15, 12489 Berlin, Germany c Technische Universität Dresden, 01062 Dresden, Germany d Max-Born-Institut, Berlin, Max-Born-Str. 2a, 12489 Berlin, Germany article info abstract Article history: At the radiation source ELBE a superconducting radio-frequency photoinjector (SRF gun) was developed Received 31 May 2013 and put into operation. Since 2010 the gun has delivered beam into the ELBE linac. A new driver laser Received in revised form with 13 MHz pulse repetition rate allows now to operate the free-electron lasers (FELs) with the SRF gun. 30 July 2013 This paper reports on the first lasing experiment with the far-infrared FEL at ELBE, describes the Accepted 6 January 2014 hardware, the electron beam parameters and the measurement of the FEL infrared radiation output. Available online 17 January 2014 & 2014 Elsevier B.V. All rights reserved. Keywords: Superconducting RF SRF gun Photo injector Free-electron laser 1. Introduction detailed overview.) Several recently launched accelerator-based light source projects plan the application of SRF guns [6–8].
    [Show full text]
  • Jinr Powerful Laser Driver Applied for Fel Photoinjector
    THPRO022 Proceedings of IPAC2014, Dresden, Germany JINR POWERFUL LASER DRIVER APPLIED FOR FEL PHOTOINJECTOR N. Balalykin, M. Nozdrin, G.Shirkov, E. Syresin#, G.Trubnikov, Joint Institute for Nuclear Research, Dubna, Russia E. Gacheva, E. Khazanov, G. Luchinin, S.Mironov, A. Potemkin, V. Zelenogorsky, Institute of applied physics, Nizhniy Novgorod, Russia Abstract The present analysis [2-4] shows that this technology The JINR develops a project of superconducting linear holds great potential for increasing the average power of a accelerator complex, based on a superconducting linear linear accelerator and the efficiency of conversion of accelerator, for applications in nanoindustry, mainly for electron kinetic energy into light (Table 1). extreme ultraviolet lithography at a wavelength of 13.5 nm using kW-scale Free Electron Laser (FEL) light source. The application of kW-scale FEL source permits Table 1: Parameters of EUVL Accelerator Complex and realizing EUV lithography with 22 nm, 16 nm resolutions Laser Driver and beyond. JINR-IAP collaboration constructed powerful laser Acceleration complex driver applied for photoinjector of FEL linear accelerator Electron energy, GeV 0.68 which can be used for EUV lithography. To provide FEL kW-scale EUV radiation the photoinjector laser driver FEL length, m 110 should provide a high macropulse repetition rate of 10 Macropulse frequency, Hz 10 Hz, a long macropulse time duration of 0.8 ms and 8000 pulses per macropulse. The laser driver operates at Macropulse time duration, Ps 800 wavelength of 260-266 nm on forth harmonic in the mode Number of pulses per macropulse 8000 locking on base of Nd ions or Yb ions The laser driver micropulse energy of 1.6 PJ should provide formation of Micropulse frequency, MHz 10 electron beam in FEL photoinjector with the bunch Micropulse radiation energy, mJ 8.5 charge about 1 nC.
    [Show full text]
  • Multiphoton Emission
    Multiphoton photoemission for high brightness electron beam sources Pietro Musumeci UCLA Department of Physics and Astronomy P3 workshop, Brookhaven 12-14 October 2010 Outline • Multiphoton photoemission – “blow-out” regime beam dynamics • Oblique incidence illumination – S and P charge yields • Beyond the cathode emittance limit – Proper use of a collimating aperture • Conclusions UCLA Pegasus Laboratory • UCLA-based advanced photoinjector laboratory – State-of-the-art ultrafast drive laser Ti:Sa – RF streak camera with 50 fs resolution – Electro-Optic Sampling setup • Ultrafast relativistic electron diffraction – New application of high brightness ultrashort electron beams from RF photoinjector. • Uniformly filled ellipsoidal beam distributions – Launch an ultrashort beam at the cathode – Uniformly filled ellipsoid created by self-expansion. • High beam brightness & ultrashort beams ! RF gun Probing electron beam UCLA/BNL/SLAC ~200 fs long 1 pC 3.5 MeV Photocathode driver pulse Collimating hole Pump pulse delay line Multiphoton photoelectric effect • Einstein photoelectric effect… o For a given metal and frequency of incident radiation, the rate at which photoelectrons are ejected is directly proportional to the intensity of the incident light. o For a given metal, there exists a certain minimum frequency of incident radiation below which no photoelectrons can be emitted. This frequency is called the threshold frequency • …..and few years of RF photoinjector common practice spent on “getting ready the UV on the cathode” • Two or more small photons can do the job of a big one. • Generalized Fowler-Dubridge theory: photoelectric current can be written as sum of different terms. Fowler function J J selects the dominant n n n where -order of the process n e n n 2 nh e 0 J n n A 1 R I Te F h kTe Send ultrashort IR pulses on the cathode Very early results from Rao et al.
    [Show full text]
  • Status of Chirped Pulse Laser Shaping for the Pitz Photoinjector
    39th Free Electron Laser Conf. FEL2019, Hamburg, Germany JACoW Publishing ISBN: 978-3-95450-210-3 doi:10.18429/JACoW-FEL2019-WEP050 STATUS OF CHIRPED PULSE LASER SHAPING FOR THE PITZ PHOTOINJECTOR C. Koschitzki∗, J. Good, M. Gross, Y. Chen, G. Loisch, M. Krasilnikov, R. Niemczyk, F. Stephan, DESY Zeuthen, Germany L. Winkelmann, T. Lang, DESY Hamburg, Germany S. Mironov, E. Khazanov, IAP RAS Nischni Nowgorod, Russia Abstract and special care has to be taken to preserve pulse shapes In this publication we show the current status on spectral- through the conversion process. In particular the conversion spatial shaping of laser pulses at the Photo Injector Test from visible (VIS) to UV light is challenging. A laser pulse facility at DESY-Zeuthen (PITZ) for providing temporally shaper capable of shaping in three dimensions, i.e. spatially and spatially variable laser pulse intensities at a photo in- and temporarily, has been developed at PITZ, based on a jector cathode. The temporal and spatial distribution of prior system by Mironov et al. [1]. Preserving such pulses these laser pulses will determine the properties of the emit- in all three dimensions through the conversion process is a ted electron bunch, which will influence the properties of key challenge in order to use the pulse shaper system for the Free-Electron Laser (FEL) radiation, after these electron photo injector application. Mironov et al. have proposed bunches are further accelerated in the linac. The presented and simulated a method for shape preserving conversion [2], pulse shaper modulates the spectral amplitude of a chirped using an angular chirp matching with type I phase matching.
    [Show full text]