The Rock Cycle Journey and Mineral Deposits

Total Page:16

File Type:pdf, Size:1020Kb

The Rock Cycle Journey and Mineral Deposits The Rock Cycle Journey and Mineral Deposits Overview Students will use observation, inference, and data collection skill to discover that the rock cycle, like the water cycle, has various phases and does not necessarily move linearly through those phases Students will make the connection between rock type, mineral deposit type and processes as they travel through the rock cycle. Source: The original idea for this lesson comes from a lesson by DLESE Mountain Building Teaching Box. It has been adapted for Saskatchewan schools by the SMA. Duration: one – two classes Materials: Rock Cycle Journey Paper dice Rock Cycle Journey Station and Mineral Deposits cards Student Data Table Mineral Deposits Chart Student Rock Cycle Journey Summary Student Cartoon Sheet Saskatchewan Rock Kit (optional): see Resources Keepers of the Earth: “Tunka-shila, Grandfather Rock”; Learning Outcomes and Indicators “Old Man Coyote and the Rock” Grade 7: Earth’s Crust and Resources EC7.1 analyse societal and environmental impacts of Prior Knowledge: historical and current catastrophic geological events, Before attempting these activities students should have and scientific understanding of movements and forces some understanding of the following: within Earth’s crust. Metamorphic, Sedimentary and Igneous rocks b. Provide examples of past theories and ideas, including cultural mythology, that explain geological phenomena such as volcanic activity, earthquakes, and mountain Note to Teachers: building. (Extension 1.) In this activity, rock cycle phases (igneous, sedimentary and metamorphic), processes, such as melting, cooling EC7.2 Identify locations and processes used to extract (crystallization), weathering, erosion, burial, Earth’s geological resources and examine the impacts of deformation, heating, and information about those locations and processes on society and the Saskatchewan mineral deposits are located at 11 environment. [SI, DM, CP] different stations. Each station has a “die” – a box that is d. Identify locations of Saskatchewan’s primary mineral labeled on each of its six sides. The sides of the dice are resources (e.g., potash, gold, diamond, salt, uranium, marked to reflect the relative likelihood of materials copper, and graphite) and their primary uses. actually moving through the phase. EC7.3 Investigate the characteristics and formation of the surface geology of Saskatchewan, including soil, Instructional Methods: and identify correlations between surface geology and past, present, and possible future land uses. [DM, SI] g. Simulation c. Construct a visual representation of the rock cycle (e.g., formation, weathering, sedimentation, and Saskatchewan Saskatchewan Mining Mining Association Association www.saskmining.ca Page 1 The Rock Cycle Journey and Mineral Deposits continued reformation) and relate this representation to the rocks can be recycled as new rocks. Nearly all of the surface geology of Saskatchewan and Canada. earth’s crustal material originates from the flow of molten magma from deep within the Earth. Magma Earth Science 30 becomes Igneous rock upon cooling. If it solidifies slowly Lithosphere deep within the Earth’s crust, it forms plutonic rock such ES30-LS2 Examine the processes that lead to the as granite. If it reaches the surface and erupts from a formation of rocks and minerals. volcano, it solidifies quickly into volcanic rock such as a. Differentiate the three main rock groups (i.e., basalt. The processes of weathering, erosion, sedimentary, igneous and metamorphic) by their transportation and deposition (in rivers, lakes and processes of formation, including the roles of time, heat oceans) can convert any pre-existing rock into a and pressure. sediment and finally a new sedimentary rock. Increased heat and pressure due to deep burial cause the growth ES30-LS3 Investigate the processes and technologies of new minerals and possibly partial melting, converting used to locate and extract mineral resources and fossil any pre-existing rock into a metamorphic rock. fuels locally, provincially and globally. Complete melting converts metamorphic rocks into b. Identify the location, method of extraction, uses and magma, which may form a new igneous rock (Geological economic impact of major fossil fuel and mineral (e.g., Highway Map). gold, diamond, rare earth elements, copper, zinc, kaolin, coal, potash, uranium, salt, and sodium sulphate) Not all rocks to go through each step in the cycle. For resources. instance, a sandstone may be weathered breaking up into small fragments, the fragments are transported and c. Investigate how the location of major mineral and deposited eventually to be lithified as another fossil fuel resources in Saskatchewan are influenced by sedimentary rock. their depositional setting and geologic history including depth of deposit and geological stability/instability. Mineral deposits are associated with particular rock (indirectly) types and processes. Sometimes a mineral can occur in several rock types but the processes in the formation of Source: Saskatchewan Evergreen Curriculum the deposit will differ. For example: Other: In Saskatchewan, we have deposits of uranium occurring As a result of this lesson, students will be able to: in sandstone, as well as the in the underlying gneiss. The process by which uranium is deposited in both rocks is Identify the various phases of the rock cycle. the same. Hot, oxidizing, uranium-rich fluids migrated Explain that Saskatchewan mineral deposits occur in through the rocks and precipitated uranium upon hitting specific rock types and as a result of processes a reducing environment. The smaller pegmatite-hosted identified in the rock cycle uranium deposits also found in the basement gneiss, have a different origin. Quartz, feldspar, tourmaline, and uranium rich magma was injected into fractures in the Big Picture Questions Earth’s crust, where it slowly cooled in a final stage of 1. Where do Saskatchewan’s mineral deposits fit into granitic pluton emplacement. the Rock Cycle? Potash was deposited as a sedimentary rock by Background Information crystallization of potassium-rich brines at the bottom of James Hutton (1726—1797), the 18th-century founder of an ancient sea. Coal formed when vegetation rotting in a modern geology came up with the concept of the rock swamp was buried and subjected to pressure and cycle. The main idea is that rocks are continually increased temperature. Coal is also a sedimentary rock. changing from one type to another and back again as they are weathered, eroded, and compacted at the The elements, copper and zinc commonly occur as earth’s surface and subjected to heat and pressure and sulfide minerals in igneous rocks. Gold occurs as a are melted at depth when forces on the earth cause natural element finely disseminated in igneous rocks or them to sink back into the mantle. A continuous cycle. in quartz veins in Saskatchewan. The Rock Cycle Diagram shows the many ways that old SaskatchewanSaskatchewan Mining Mining Association Association www.saskmining.ca www.saskmining.ca Page 2 The Rock Cycle Journey and Mineral Deposits continued with. Vocabulary GLOSSARY deposit extrusive 4. Students begin by taking turns rolling the die at their Igneous rock intrusive station and following the directions to either “go to” magma mine another station or “stay put”. If they stay put they go metamorphic rock sedimentary rock to the back of the line and wait their turn to roll again. The Activity For example, rock material may remain in a molten state inside the earth for long periods of time. To show this, the die at station # 10, “Magma,” has four Teacher Preparation: sides that say “magma (stay as you are)” and only 1. Cut out each die pattern and the signs for each two sides that say “cooling and hardening.” If you roll station. Assemble dice by folding along lines the “magma (stay as you are)” side of the die, you and taping the edges together. will stay at station #10 and roll again when it is your turn. If you roll one of the sides that say “cooling and 2. Set up the eleven stations in the classroom – one for hardening” you would move to station #9, the each die and matching cards (Station title and “Cooling and Hardening (crystallization)” station. Mineral Deposits). Each card has the number of the station and the name of the phase or rock type Remind the students to be careful with the die. printed on it. Each die also has the name and number of the station on it. 5. Information about Saskatchewan’s mineral deposits is posted at each station. Have the students pick up a 3. Copy and cut out the Mineral Deposits information Saskatchewan Mineral Deposits “card” and tape/glue sheets for each station. Have at least 30 copies of it into the correct column on the Rock Cycle Journey each slip per station. Not all students will reach Table. If the student stays at the station for several every station but some may visit twice and may stay at the station for several turns. Place tape or glue tosses of the dice they can enter the symbol “ to beside the information slips. indicate the same information. 4. If you have rock samples you could place a 6. While at each station students must record (station # corresponding sample at the appropriate station. and what happened to them) on the Rock Cycle Journey Table for each roll of the die and its outcome on their data table even if they end up rolling it The Activity: multiple times. (Minerals cards see Step 5.) Rock Cycle Journey and Mineral Deposits See example Rock Cycle Journey Table. 1. Explain to the students that they are going to do an Each step in the rock cycle can take as little as 200,000 activity to learn more about rocks and what happens years or as much as several million years. For this to them. activity, count each roll of the die as 200,000 years. Students multiply the number of tosses of the die by 2.
Recommended publications
  • A Review of Feldspar Alteration and Its Geological Significance in Sedimentary Basins from Shallow Aquifers to Deep Hydrocarbon
    Originally published as: Yuan, G., Cao, Y., Schulz, H.-M., Hao, F., Gluyas, J., Liu, K., Yang, T., Wang, Y., Xi, K., Li, F. (2019): A review of feldspar alteration and its geological significance in sedimentary basins: From shallow aquifers to deep hydrocarbon reservoirs. - Earth-Science Reviews, 191, pp. 114—140. DOI: http://doi.org/10.1016/j.earscirev.2019.02.004 Earth-Science Reviews 191 (2019) 114–140 Contents lists available at ScienceDirect Earth-Science Reviews journal homepage: www.elsevier.com/locate/earscirev A review of feldspar alteration and its geological significance in sedimentary basins: From shallow aquifers to deep hydrocarbon reservoirs T ⁎ ⁎ Guanghui Yuana,b, , Yingchang Caoa,b, , Hans-Martin Schulzc, Fang Haoa, Jon Gluyasd, Keyu Liua, Tian Yanga, Yanzhong Wanga, Kelai Xia, Fulai Lia a Key laboratory of Deep Oil and Gas, School of Geosciences, China University of Petroleum, Qingdao, Shandong 266580, China b Laboratory for Marine Mineral Resources, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong 266071, China c GFZ German Research Centre for Geosciences, Section 4.3, Organic Geochemistry, Telegrafenberg, D-14473 Potsdam, Germany d Department of Earth Sciences, Durham University, Durham DH1 3LE, UK ARTICLE INFO ABSTRACT Keywords: The feldspar group is one of the most common types of minerals in the earth's crust. Feldspar alteration (in- Feldspar alteration cluding the whole processes of feldspar dissolution, transfer of released solutes, and secondary mineral pre- Dissolution mechanisms cipitation) is ubiquitous and important in fields including resources and environmental sciences. This paper Rate law provides a critical review of feldspar alteration and its geological significance in shallow aquifers to deep hy- Organic-inorganic interaction drocarbon reservoirs, as assessed from peer-reviewed paper in the literature.
    [Show full text]
  • Minerals & Rocks: Mineral Formation
    Minerals & Rocks: Mineral Formation Lesson Title: Explain & Explore - Mineral Formation Subject/Grade: Earth Science 30 Stage 1: Identify Desired Results Outcome(s)/Indicator(s) Earth Science 30 ES30-LS1 Examine the processes that lead to the formation of sedimentary, igneous and metamorphic rocks and minerals. [SI] Indicator(s): (a) Pose scientific questions about the characteristics and formation of rocks and minerals. (c) Compare the three primary methods of mineral formation (i.e., precipitation of mineral matter, crystallization of molten rock and solid-state transformation related to changing temperature and pressure during metamorphism). Key Understandings: (‘I Can’ statements) Essential Questions: I can ... compare the different ways minerals are ● How do minerals form? formed. ● How is a mineral formed by precipitation and what are some examples? I can ... explain the different way that minerals ● How is a mineral formed by crystallization of a form and provide examples. magma and what are some examples? ● What is biomineralization and what are some I can ... collaborate and communicate with others examples? to explain what mineral formation process I am dealing with based on my observations. ● How is a mineral formed by solid-state chemical reactions and what are some examples? Teacher Background This lesson covers mineral formation by explaining to students the various ways mineral form, through a PowerPoint and then having students either explore a guided mineral formation lab or students can form groups and have a mineral growing competition. The lab/competition will take a couple of weeks for the minerals to grow, so at the beginning or end of each class, students can check in with their minerals and record observations during the growing process.
    [Show full text]
  • Mineralogy of a Layered Gabbro Deformed During Magmatic
    American Mineralogist, Volume 74, pages 101-112, 1989 Mineralogy of a layered gabbro deformedduring magmatic crystallizationo western Sierra Nevada foothills" California Rorrnr K. SpmNcrn Departmentof Geology,Brandon University, Brandon, Manitoba R7A 6A9, Canada ABSTRACT In the 162 Ma Pine Hill intrusive complex of northern California, a synformal, layered pyroxenite-gabbro-dioritebody, the crystallization sequenceand compositional variation of cumulus and intercumulus minerals indicate that magmatic crystallization was char- acteized by a high initial oxygenfugacity, log,ofo,in the rangeof -4 to -9, which allowed the early precipitation of abundant titanomagnetite; the oxygen fugacity decreasedless than two log units with crystallizalion. The magmatic crystallization sequenceis ol + aug, ol + aug * mt, ol + aug + mt + pl, ol + aug + mt + pl + opx(invertedfrom pig) and aug + mt + pl + opx (inverted from pig) * qz. Pigeonite crystallization is evidenced by 001 exsolution lamellae in orthopyroxene of Enrr. Superimposedupon this sequenceare intercumulus minerals, which crystallized from magma trapped within cumulates, and biotite and calcic amphibole, which largely formed from a subsolidusreaction of a residual hydrous fluid phasewith primary minerals. Mineral compositional rangesare plagioclase, Ann, to Anrr; olivine, Fo, to Fooo;augite, CanrMgrFento CaorMg.rFerr;Ca-poor pyroxene, Ca,Mgr"Fe' to Ca,MgorFeon;Mgl(Mg * Fe * Mn) of calcic amphibole, 0.74 to 0.48; and Me/(Me * Fe * Mn) of biotite, 0.78 to 0.45. Prior to complete solidification (>900/o crystallized), deformation of the complex coincided with an abrupt decreasein Mg/(Mg * Fe) values for the mafic silicates. This compositional discontinuity is attributed to a decreasein oxygen fugacity of the crystallizing magma causedby an exchangebetween the fluid phaseof adjacentcountry rock and the fluid phaseof the magma during deformation.
    [Show full text]
  • Geological Survey Research 1961 Synopsis of Geologic and Hydrologic Results
    Geological Survey Research 1961 Synopsis of Geologic and Hydrologic Results GEOLOGICAL SURVEY PROFESSIONAL PAPER 424-A Geological Survey Research 1961 THOMAS B. NOLAN, Director GEOLOGICAL SURVEY PROFESSIONAL PAPER 424 A synopsis ofgeologic and hydrologic results, accompanied by short papers in the geologic and hydrologic sciences. Published separately as chapters A, B, C, and D UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1961 FOEEWOED The Geological Survey is engaged in many different kinds of investigations in the fields of geology and hydrology. These investigations may be grouped into several broad, inter­ related categories as follows: (a) Economic geology, including engineering geology (b) Eegional geologic mapping, including detailed mapping and stratigraphic studies (c) Eesource and topical studies (d) Ground-water studies (e) Surface-water studies (f) Quality-of-water studies (g) Field and laboratory research on geologic and hydrologic processes and principles. The Geological Survey also carries on investigations in its fields of competence for other Fed­ eral agencies that do not have the required specialized staffs or scientific facilities. Nearly all the Geological Survey's activities yield new data and principles of value in the development or application of the geologic and hydrologic sciences. The purpose of this report, which consists of 4 chapters, is to present as promptly as possible findings that have come to the fore during the fiscal year 1961 the 12 months ending June 30, 1961. The present volume, chapter A, is a synopsis of the highlights of recent findings of scientific and economic interest. Some of these findings have been published or placed on open file during the year; some are presented in chapters B, C, and D ; still others have not been pub­ lished previously.
    [Show full text]
  • Magmatic Differentiation in the Cale-Alkaline Khalkhab-Neshveh Pluton. Central Iran Mehdi Rezaei-Kahkhaei A,*, Carmen Galindo B
    Magmatic differentiation in the cale-alkaline Khalkhab-Neshveh pluton. Central Iran a * b Mehdi Rezaei-Kahkhaei , , Carmen Galindo , Robert J. Pankhurst C, Dariush Esmaeilya 'School o/Geology, College o/Science, University of Tehran, PO 14155-6455, Iran bDepartmento de Petrologiay Geoquimica, Universidad Complutense-IGEO (UCM-CSIC), Cl Jose Antonio Navais n° 2, 28040 Madrid, Spain CVisiting Research Associate, British Geological Survey, Nottingham, United Kingdom ABSTRACT Geochemical and isotopic data (Sr, Nd) are presented for the Khalkhab-Neshveh pluton, an E-W elon­ gated body of quartz monzogabbro, quartz monzodiorite, granodiorite and granite in the Urumieh­ Dokhtar magmatic arc of Central Iran. The plutonic rocks are medium- to high-K, metaluminous, and I-type, with 52-71 wt.% Si02_ The geochemistry shows smooth differentiation trends in which most major elements (except AlZ03, KzO and NazO) are negatively correlated with SiOz; I<zO, Ba, Rb, Ce, Nb, and Zr are positively correlated. NazO, Sr, Eu and Y follow curves that are not considered to represent Keywords: simple mixing between mafic and felsic magmas, but reflect crystal fractionation of clinopyroxene, CIYstal fractionation plagioc1ase and hornblende. Initial 87Sr/8SSr ratios ( �O.7047) and ENdt values (�+3.o) are essentially Isotope geochemistIY Quartz monzogabbro constant, and the large volume of quartz monzogabbros compared to granites, as well as the lack of mafic Granite enclaves in more evolved rocks, are also indicative of crystal fractionation rather than mixing of magmas Urumieh-Dokhtar magmatic arc from different sources. Clinopyroxene fractionation was the main control in the evolution of the magmas up to 55% SiOz; hornblende took over from 55 wt.%, resulting in decreasing Dy/Yb with increasing silica content in the most siliceous rocks.
    [Show full text]
  • Primary Igneous Analcime: the Colima Minettes
    American Mineralogist, Volume 74, pages216-223, 1989 Primary igneous analcime: The Colima minettes Jlnrns F. Lurrn Department of Earth and Planetary Sciences,Washington University, St. Louis, Missouri 63 130, U.S.A. T. Kunrrs Kvsnn Department of Geological Sciences,University of Saskatchewan,Saskatoon, Saskatchewan S7N 0W0, Canada Ansrnrcr Major-element compositions, cell constants, and oxygen- and hydrogen-isotopecom- positions are presentedfor six analcimes from differing geologicenvironments, including proposed primary @-type) analcime microphenocrysts from a late Quaternary minette lava near Colima, Mexico. The Colima analcimehas X.,.,",: 0.684, ao: 13.712A, and one of the lowest D'sOvalues yet recorded for analcime (+9.28m).The major difficulty in identifuing primary @-type) igrreousanalcime is distinguishing it from analcime formed by ion-exchangeconversion of leucite (L-type analcime) or other precursor minerals. Pet- rographic criteria are shown to be unreliable in discriminating P and L analcimes,although the higher KrO and Rb contents and D'8Ovalues of L-type crystals may be diagnostic. P- and L-type analcimescan be distinguishedfrom classichydrothermal varieties (H-type) by the lower Fe contents of the latter. H-type analcimes,however, can have 6t8Ovalues as low as 8.9Vmand cannot be distinguished from P-type analcimes by this criterion. Analcimes formed from volcanic glass or zeolite precursorsin saline, alkaline lakes (S- type) or metamorphic sequences(M-type) can be distinguished from other varieties by their higher silica contents, smaller cell constants,and higher d'8O values of > + 17.7Vm. For all types of analcime, d'8O of the channel water does not correlate with 6180of the framework oxygen.
    [Show full text]
  • Petrography Edward F
    Chapter 4 Petrography Edward F. Stoddard A petrographic study was taken in order to help determine the sources of lithic artifacts found at archaeological sites on Fort Bragg. In the first phase of the study, known and suspected archaeological quarry sites in the central Piedmont of North Carolina were visited. From each quarry, hand specimens were collected and petrographic thin sections were examined in an attempt to establish a basis for distinguishing among the quarries. If material from each quarry was sufficiently distinctive, then quarry sources could potentially be matched with Fort Bragg lithic artifacts. Seventy-one samples from 12 quarry zones were examined (Table 4.1). Thirty- one of these samples are from five quarry zones in the Uwharrie Mountains region; 20 of these were collected and described previously by Daniel and Butler (1996). Forty specimens were collected from seven additional quarry zones in Chatham, Durham, Person, Orange, and Cumberland Counties. All quarries are within the Carolina Terrane, except the Cumberland County quarry, which occurs in younger sedimentary material derived primarily from Carolina Terrane outcrops. Rocks include both metavolcanic and metasedimentary types. Compositionally, most metavolcanic rocks are dacitic and include flows, tuffs, breccias, and porphyries. Metasedimentary rocks are metamudstone and fine metasandstone. The Uwharrie quarries are divided into five zones: Eastern, Western, Southern, Asheboro, and Southeastern. The divisions are based primarily on macroscopic petrography and follow the results of Daniel and Butler (1996); the Uwharries Southeastern zone was added in this study. Each of the Uwharrie quarry zones represents three to six individual quarries in relatively close proximity. Rock specimens are all various felsic metavolcanic rocks, but zones may be distinguished based upon mineralogy and texture.
    [Show full text]
  • Mineralogical Characteristics of Hydrothermally-Altered Andesite in Kalirejo Village and the Surrounding Areas, Indonesia
    Journal of Applied Geology, vol. 3(2), 2018, pp. 99–108 DOI: http://dx.doi.org/10.22146/jag.48598 Mineralogical Characteristics of Hydrothermally-altered Andesite in Kalirejo Village and The Surrounding Areas, Indonesia Diyan Aditya Putra Pratama, I Gde Budi Indrawan,* and I Wayan Warmada Department of Geological Engineering, Faculty of Engineering, Gadjah Mada University, Yogyakarta, Indonesia ABSTRACT. Type and intensity of hydrothermal alterations affect rock engineering prop- erties and slope stability. Identification of mineralogical characteristics of rocks is essen- tial in determination of rock slope failure mechanism in a hydrothermal alteration zone. This research was conducted to identify mineralogical characteristics of hydrothermally- altered andesite in Kalirejo Village and surrounding areas, Indonesia. The research was conducted by field observation and laboratory analyses involving petrographic and X-ray Powder Diffraction (XRD) analyses. The results showed that the research area was domi- nated by argillic alteration type and high alteration intensity implying high susceptibility to slope failures. Keywords: Hydrotermal alteration · Mineralogical characteristics · Andesite · Kalirejo Vil- lage · Indonesia. 1I NTRODUCTION more detailed zonation of areas susceptible to The research area was located in Kalirejo Vil- slope failures. lage and the surroundings. It was adminis- Stability of rock slopes in tectonically active tratively located in Kulon Progo Regency (Yo- and tropical regions is controlled by several fac- gyakarta Special Province) and Purworejo Re- tors, such as slope geometry, material proper- gency (Central Java Province), Indonesia. The ties, groundwater, surface cover, and active fac- regional geological map produced by Rahardjo tors involving earthquake and rainfall. Previ- et al. (1995) indicated that the research area ous publications (e.g., Bell, 2007; Pola et al., was composed of intrusive igneous rock group 2012) have shown that hydrothermal alteration of andesite.
    [Show full text]
  • Topic Xi Formation of Rocks
    UNIT H MINERALS AND ROCKS ROCKS ARE MADE UP OF MINERALS MINERAL - NATURALLY OCCURRING, INORGANIC, CRYSTALLINE SUBSTANCE WITH CHARACTERISTIC PHYSICAL AND CHEMICAL PROPERTIES. ROCK FORMING MINERALS FELDSPAR, QUARTZ, MICA, CALCITE, HORNBLENDE, AUGITE, GARNET, MAGNETITE, OLIVINE, PYRITE AND TALC. THESE MINERALS MAKE UP MORE THAN 90% OF THE ROCKS IN THE LITHOSPHERE IDENTIFYING MINERALS physical properties are determined by the internal arrangement of atoms MINERALS ARE CLASSIFIED BY THE FOLLOWING PHYSICAL PROPERTIES: COLOR STREAK LUSTER HARDNESS SPECIFIC GRAVITY FRACTURE/CLEAVAGE Luster Metallic- looks like shiny metal Non-metallic- all the other ways that a mineral can shine Glassy/vitreous- shines like a piece of broken glass (most common non-metallic) Dull/earthy- no shine at all Resinous/waxy- looks like a piece of plastic or dried glue Pearly- looks oily it may have a slight rainbow like an oil slick on water. Hardness Fingernail 2.5 Penny 3.5 Iron Nail 4.5 Glass Plate 5.5 Steel File 6.5 MOH’S SCALE OF HARDNESS 1-TALC FINGERNAIL SCRATCHES EASILY 2-GYPSUM FINGERNAIL SCRATCHES 3-CALCITE COPPER PENNY SCRATCHES 4-FLUORITE STEEL FILE SCRATCHES EASILY 5-APATITE STEEL FILE SCRATCHES 6-FELDSPAR SCRATCHES WINDOW GLASS 7-QUARTZ HARDEST COMMON MINERAL; SCRATCHES GLASS EASILY 8-TOPAZ HARDER THAN ANY COMMON MINERAL 9-CORUNDUM SCRATCHES TOPAZ 10- DIAMOND HARDEST OF ALL MINERALS MINERAL FAMILIES SILICATES - MADE OF SILICON AND OXYGEN ABOUT 60% OF ALL MINERALS ARE SILICATES THE SILICON - OXYGEN TETRAHEDRON - ONE SILICON ATOM AND 4 OXYGEN ATOMS. A VERY STRONG STRUCTURE SILICATE FAMILY OLIVINE ISOLATED TETRAHEDRA GREENISH COLOR, NO CLEAVAGE PLANES ASBESTOS CHAIN TETRAHEDRA FIBERLIKE MICA SHEET TETRAHEDRA QUARTZ NETWORK TETRAHEDRA ALL SILICON-OXYGEN TETRAHEDRA CARBONATE MINERALS CARBON ATOM IN COMBINATION WITH 3 OXYGEN ATOMS CALCITE IRON OXIDES AND SULFIDES AN OXIDE IS A MINERAL CONSISTING OF A METAL ELEMENT COMBINED WITH OXYGEN.
    [Show full text]
  • Ocean Drilling Program Scientific Results Volume
    Silver, E. A., Rangin, C, von Breymann, M. T., et al., 1991 Proceedings of the Ocean Drilling Program, Scientific Results, Vol. 124 21. GEOCHEMISTRY AND PETROGENESIS OF THE VOLCANIC ROCKS FROM HOLES 768 AND 769, SULU SEA1 T. E. Smith,2 C. H. Huang,3 and F. G. Sajona4 ABSTRACT Major-, trace-, and rare-earth element analyses of the basaltic rocks recovered from the basement of the Sulu Sea and of lithic clasts from the pyroclastic unit representing the acoustic basement of the Cagayan Ridge, are presented. The major and trace elements were measured by X-ray fluorescence techniques, and rare-earth elements by instrumental neutron activation analysis. These data show that the Sulu Sea basalts are back-arc tholeiites and the lithic clasts are basalts, basaltic andesites, and andesites typical of volcanic arc suites erupted on continental crust. Petrogenetic modeling is used to show that the Sulu Sea basalts were derived from a heterogeneous mantle, probably representing subcontinental lithosphere, with contributions from a subduction component. The Sulu Sea is interpreted as a back-arc basin formed by rifting of an Oligocene to early Miocene volcanic arc leaving the Cagayan Ridge as a remnant arc. This event occurred during northward subduction of the Celebes Sea basement beneath the Oligocene to early Miocene arc. INTRODUCTION ogy of the overlying sediments, is used to try to enhance the understanding of the tectonic evolution of this complex area. The Sulu Sea is a small ocean basin 600 km long by 400 km wide (Fig. 1), and is one of three marginal basins, the Banda, PETROGRAPHY AND GEOCHEMISTRY Celebes, and Sulu Seas, located at the junction of the Eurasian, Recovery Indo-Australian, and Philippine Sea plates.
    [Show full text]
  • Open File Report LXXX GEOLOGY of MICHIGAN
    Open File Report LXXX Scenic Beauty of the Pre-Cambrian.............................13 Pre-Cambrian in Lower Michigan.................................14 GEOLOGY OF MICHIGAN X Paleozoic Era ..............................................................14 by Cambrian Period ..........................................................14 O. F. Poindexter The Michigan Basin ............................................... 14 Economic Products of the Cambrian..................... 15 1934 Formation, Sandstone, Shale, Limestone, Dolomite and Conglomerate ................................................. 15 Sandstone..................................................................15 TABLE OF CONTENTS Shale..........................................................................15 Limestone ..................................................................15 I Introduction and Acknowledgments ............................... 2 Dolomite.....................................................................15 Conglomerate.............................................................15 II Definition of Geology..................................................... 3 Scenic Effects of the Cambrian ............................. 15 III Origin of the Earth and Solar System .......................... 3 Ordovician Period.........................................................16 St. Peter Formation ............................................... 16 IV Composition of the Earth’s Core.................................. 4 Trenton Formation (Trenton-Black River).............
    [Show full text]
  • Chapter 5 Geochemical Weathering
    1 Chapter 6 Weathering Chapter 5 Geochemical Weathering Weathering of landscapes involves an array of mechanical and geochemical agents that conspire to alter primary geological formations to sediments and solutes. Geochemical weathering is driven by water. In soils, water is the limiting factor for the activity of aerobic bacteria that degrade organics and produce CO2 at partial pressures orders of magnitude higher than in the atmosphere. Soil CO 2 is hydrated by soil water, providing carbonic acid for the dissolution of primary carbonate and silicate minerals. Water also hosts the bacterial oxidation of sulfides, ferrous iron and other redox reactions in the weathering of minerals. Finally, it is water, with its polar character and capacity to hydrate and hydroxylate that facilitates dissolution of primary mineral phases and transport of solutes in groundwater. Primary phases include high temperature minerals formed by magmatic and metamorphic processes ― the aluminosilicate granites and gneisses that make up shield terrains of continental cratons, and ferromagnesian silicates like basalts that dominate in volcanic belts. The kinetics of silicate weathering are slow, with the formation of secondary clays ― hydrated aluminosilcate minerals with high capacity for cation exchange and sorption. Weathering of carbonate rocks proceeds more rapidly than weathering of silicate rocks. These are dissolution reactions, generating porosity and accelerating water movement. Carbonate minerals are ubiquitous, not just as limestone and dolomite formations, but as secondary phases filling fractures in silicate rocks, and as cements and crusts in soils. In near-surface environments found in unsaturated soils and fractures, CO 2 and O 2 consumed by reaction are continually replenished by diffusion into water from the soil air or open atmosphere.
    [Show full text]