07 06042 Aquaticplants.Qxd:CFN 121(2) 10/17/08 1:50 PM Page 164

Total Page:16

File Type:pdf, Size:1020Kb

07 06042 Aquaticplants.Qxd:CFN 121(2) 10/17/08 1:50 PM Page 164 07_06042_aquaticplants.qxd:CFN 121(2) 10/17/08 1:50 PM Page 164 An Inventory of the Aquatic and Subaquatic Plants in SASKWater Canals in Central Saskatchewan, Canada, Before and After the Application of the Herbicide Magnacide J. HUGO COTA-SÁNCHEZ1 and KIRSTEN REMARCHUK Department of Biology and Herbarium of the University of Saskatchewan, University of Saskatchewan, 112 Science Place, Saskatoon, Saskatchewan S7N 5E2 Canada 1 Corresponding author: [email protected] Cota-Sánchez, J. Hugo, and Kirsten Remarchuk. 2007. An inventory of the aquatic and subaquatic plants in SASKWater canals in central Saskatchewan, Canada, before and after the application of the herbicide Magnacide. Canadian Field-Naturalist 121(2): 164–167. This study focuses on the floristic composition of aquatic and semi-aquatic plants in the SASKWater canal system and their potential effect on irrigation systems. A checklist, evaluation, and synthesis of the species identified in this survey before and after the application of the herbicide Magnacide are provided, in addition to a brief discussion of the environmental effects of Magnacide. Thirty-three species in 26 genera within 20 plant families were identified. Two unidentified green algae were also collected. Common aquatics (i.e., green algae, Potamogeton spp., Alisma gramineum, A. plantago-aquatica, Ceratophyllum demersum, and Myriophyllum sibiricum) combined with debris from terrestrial plants were the primary contributors to block- age of irrigation drains. In general, the concentration of Magnacide used in this study had a minor effect on aquatic plant diversity, but effectively reduced plant density. However, the long-term effects of pesticides on the surrounding aquatic and terrestrial environments of the SASKWater irrigation system are unknown. Key Words: aquatic plant inventory, environmental effect, SASKWater canals, Magnacide, acrolein, Saskatchewan. Plants are vital to the function of aquatic ecosystems aquatic plant debris from entering the system. for their role in providing food, oxygen, and habitat for Aquatic species impede water flow by clogging other organisms. However, floating and submerged gates, intake screens, valves, and pumps in irrigation vegetation along with debris from terrestrial plants and drainage channels (Lancar and Krake 2002). As a may be problematic in different types of water bodies. consequence, localized flooding may result under high For example, in shallow lakes, profuse plant growth water conditions. In addition, Holm et al. (1969) indi- creates dense mats that prevent the regular movement cate that abundant vegetation in canals can lead to an of watercraft. In addition, aquatic plants, including excessive loss of water through evapotranspiration. algae, can significantly reduce the aesthetic value of pondweed (Potamogeton L.), Milfoil (Myriophyllum water bodies. Furthermore, rapid growth of vegetation sibiricum), Canada Waterweed (Elodea canadensis), and deposition of debris in irrigation canals can result wild celery (Vallisneria L.), and American Eel-grass in a decline in water flow rates and a subsequent in - (Zostera marina L.) are a few of the problematic coarse ability to supply water to crops. Hence, the removal of or large species in shallow aquatic environments (Lan- selected aquatic species via physical or chemical meth- car and Krake 2002). ods may be required to improve ecosystem function, Of particular interest to this study are aquatic taxa aesthetic value, and availability for human consump- that interfere with canal irrigation systems in central tion. Saskatchewan. Accelerated growth of plants in SASK - Aquatic plants can be placed into four broad cate- Water canals restricts the amount of water available for gories: (1) algae, (2) floating-leaved, (3) submerged, and irrigation. Given the clogging effect of aquatic plant (4) emergent plants (Shelton and Murphy 1989). Of the growth on water flow, agricultural canals were treated four categories listed above, algae are of the greatest with Magnacide, a volatile algaecide and aquatic her- concern in canal systems because of the likelihood of bicide, in which the active ingredient is acrolein (Score- interfering with water flow. Algae grow profusely in card 2006*). Acrolein contains two functional groups, slow moving, shallow water. Floating-leaved and sub- a reactive double bond and an aldehyde group (Nor- merged plants are rooted, with the foliage at or below done et al. 1996) and is, in turn, toxic to some organ- the water surface. Flowing water or disturbance, such isms (Albariño et al. 2007). However, it is widely used as wind, can uproot plants leading to subsequent ob - in agricultural canals and water bodies as an herbicide struc tion of water flow. Finally, emergent species typ- to control aquatic weeds (Burland et al. 1984; San- ically grow in shallow, fluctuating water, such as drain - godoyin and Smith 1996). The use of high concentra- age ditches, canals, rivers, periphery of water bodies, tions of acrolein could pose a significant risk to aquat- and ponds. Plants in this category are of minor concern ic environments (Nordone et al. 1996); therefore, the in canal systems and in some cases may prevent non- controlled application and use of Magnacide and other 164 07_06042_aquaticplants.qxd:CFN 121(2) 10/17/08 1:50 PM Page 165 2007 COTA-SÁNCHEZ and REMARCHUK: AQUATIC AND SUBAQUATIC PLANTS 165 herbicides is highly recommended. Previous studies species were eradicated from the sites as a result of have shown that toxic residues deposited in soils and Magnacide application; that is, the same species were water bodies have detrimental effects in the life cycles identified before and after the treatment. However, of local flora and fauna (Sangodoyin and Smith 1996). the plant density was noticeably lower after the treat- Thus, even though several sources, e.g., Sangodoyin ment with Magnacide. Various submerged species in - and Smith (1996); Nordone et al. (1996); Albariño et cluding Potamogeton richardsonii, P. pectinatus, and al. (2007), claim that the transient use of acrolein in the unknown green algae were present in most of the agricultural waters at minimal amounts has no negative sites surveyed. Other aquatics, e.g., Elodea canadensis impact in natural aquatic environments, rigid control and Lemna trisulca, were less frequent and account- must be enforced to prevent ecological damage. ed for a smaller proportion of plant biomass in the In this study, we investigated the floristic composi- canal system. Emergent species in the Cyperaceae, tion of aquatic and semi-aquatic plants in the SASK - Equisetaceae, and Asteraceae do not appear to play a Water canal system and their potential effect on ir - role in impeding water flow, but floating debris from rigation systems. Our study is a contribution to the non-aquatic taxa, such as Melilotus albus and Hordeum know ledge of Saskatchewan aquatic and sub-aquatic jubatum, contributes to the clogging of intake screens flora and provides a preliminary assessment and syn- throughout the canal system. thesis of the species identified prior to and after the Based on this survey, it is not possible to determine application of Magnacide. The potential effect of a single species that adversely affects water flow by Mag nacide on aquatic flora is also discussed. clogging intake screens in the SASKWater canal sys- tems. A combination of common aquatic plants (Pota- Methods mogeton spp., Alisma gramineum, A. plantago-aquat- Compared to most wetland inventories, this survey ica, Ceratophyllum demersum, and Myriophyllum covers a limited geographic area and a restricted range sibiricum), which are frequently dislodged by flowing of wetland flora. The site selection and sampling strat- water or wind, are the primary contributors to blockage egy were designed to survey all major areas of the of drains and intake screens. The presence of large, SASK Water canal system to be evaluated in terms of coarse water pondweeds such as Potamogeton spp. and aquatic vegetation within the Saskatoon Southeast Water other filamentous species in SASKWater canals is un - Supply Project Location Plan (Brightwater-Blackstrap- desirable because their accumulation affects the reg- Zelma Reservoir areas; 51°25' to 52°55'N, 106°15' to ular water flow. A similar situation has been reported 107°00'W). This system irrigates an estimated area of in the Alberta irrigation systems (Burland and Catling 20 120 acres. The survey sites include locations of 1986). In addition, green algae are common and are Magnacide application by SASKWater personnel at presumably the greatest problem in clogging the in - intake screens. Acrolein was directly applied to water take screen systems because of their filamentous nature in strategic sites to control submersed, floating and and massive growth. Furthermore, some plants or frag- emergent aquatic weeds. The herbicide was applied at ments from non-aquatic plants, particularly Melilotus a concentration of 2.5-5.0 ppm/30 minutes every two albus and Hordeum jubatum, are involved in reducing weeks from June through August 2005 in an attempt to water flow because the species tend to concentrate near eradicate aquatic species with excessive growth rates the uptake areas, especially in the vicinities of mowed (J. Mander, SASKWater, personal communication). ditches along the canals. Surveys were conducted before and after the chemi- Since this survey is mainly concerned with the flo - cal treatment to determine the effect of Magnacide r istic composition of the SASKWater canal system and
Recommended publications
  • Introduction to Common Native & Invasive Freshwater Plants in Alaska
    Introduction to Common Native & Potential Invasive Freshwater Plants in Alaska Cover photographs by (top to bottom, left to right): Tara Chestnut/Hannah E. Anderson, Jamie Fenneman, Vanessa Morgan, Dana Visalli, Jamie Fenneman, Lynda K. Moore and Denny Lassuy. Introduction to Common Native & Potential Invasive Freshwater Plants in Alaska This document is based on An Aquatic Plant Identification Manual for Washington’s Freshwater Plants, which was modified with permission from the Washington State Department of Ecology, by the Center for Lakes and Reservoirs at Portland State University for Alaska Department of Fish and Game US Fish & Wildlife Service - Coastal Program US Fish & Wildlife Service - Aquatic Invasive Species Program December 2009 TABLE OF CONTENTS TABLE OF CONTENTS Acknowledgments ............................................................................ x Introduction Overview ............................................................................. xvi How to Use This Manual .................................................... xvi Categories of Special Interest Imperiled, Rare and Uncommon Aquatic Species ..................... xx Indigenous Peoples Use of Aquatic Plants .............................. xxi Invasive Aquatic Plants Impacts ................................................................................. xxi Vectors ................................................................................. xxii Prevention Tips .................................................... xxii Early Detection and Reporting
    [Show full text]
  • Protostane and Fusidane Triterpenes: a Mini-Review
    Molecules 2013, 18, 4054-4080; doi:10.3390/molecules18044054 OPEN ACCESS molecules ISSN 1420-3049 www.mdpi.com/journal/molecules Review Protostane and Fusidane Triterpenes: A Mini-Review Ming Zhao 1,*, Tanja Gödecke 1, Jordan Gunn 1, Jin-Ao Duan 2 and Chun-Tao Che 1 1 Department of Medicinal Chemistry & Pharmacognosy, and WHO Collaborative Center for Traditional Medicine, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60612, USA 2 Jiangsu Key Laboratory for TCM Formulae Research, Nanjing University of Traditional Chinese Medicine, Nanjing 210046, China * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +1-312-996-1557; Fax: +1-312-996-7107. Received: 6 March 2013; in revised form: 29 March 2013 / Accepted: 1 April 2013 / Published: 5 April 2013 Abstract: Protostane triterpenes belong to a group of tetracyclic triterpene that exhibit unique structural characteristics. Their natural distribution is primarily limited to the genus Alisma of the Alismataceae family, but they have also been occasionally found in other plant genera such as Lobelia, Garcinia, and Leucas. To date, there are 59 known protostane structures. Many of them have been reported to possess biological properties such as improving lipotropism, hepatoprotection, anti-viral activity against hepatitis B and HIV-I virus, anti-cancer activity, as well as reversal of multidrug resistance in cancer cells. On the other hand, fusidanes are fungal products characterized by 29-nor protostane structures. They possess antibiotic properties against staphylococci, including the methicillin-resistant Staphylococcus aureus (MRSA). Fusidic acid is a representative member which has found clinical applications. This review covers plant sources of the protostanes, their structure elucidation, characteristic structural and spectral properties, as well as biological activities.
    [Show full text]
  • Complete Iowa Plant Species List
    !PLANTCO FLORISTIC QUALITY ASSESSMENT TECHNIQUE: IOWA DATABASE This list has been modified from it's origional version which can be found on the following website: http://www.public.iastate.edu/~herbarium/Cofcons.xls IA CofC SCIENTIFIC NAME COMMON NAME PHYSIOGNOMY W Wet 9 Abies balsamea Balsam fir TREE FACW * ABUTILON THEOPHRASTI Buttonweed A-FORB 4 FACU- 4 Acalypha gracilens Slender three-seeded mercury A-FORB 5 UPL 3 Acalypha ostryifolia Three-seeded mercury A-FORB 5 UPL 6 Acalypha rhomboidea Three-seeded mercury A-FORB 3 FACU 0 Acalypha virginica Three-seeded mercury A-FORB 3 FACU * ACER GINNALA Amur maple TREE 5 UPL 0 Acer negundo Box elder TREE -2 FACW- 5 Acer nigrum Black maple TREE 5 UPL * Acer rubrum Red maple TREE 0 FAC 1 Acer saccharinum Silver maple TREE -3 FACW 5 Acer saccharum Sugar maple TREE 3 FACU 10 Acer spicatum Mountain maple TREE FACU* 0 Achillea millefolium lanulosa Western yarrow P-FORB 3 FACU 10 Aconitum noveboracense Northern wild monkshood P-FORB 8 Acorus calamus Sweetflag P-FORB -5 OBL 7 Actaea pachypoda White baneberry P-FORB 5 UPL 7 Actaea rubra Red baneberry P-FORB 5 UPL 7 Adiantum pedatum Northern maidenhair fern FERN 1 FAC- * ADLUMIA FUNGOSA Allegheny vine B-FORB 5 UPL 10 Adoxa moschatellina Moschatel P-FORB 0 FAC * AEGILOPS CYLINDRICA Goat grass A-GRASS 5 UPL 4 Aesculus glabra Ohio buckeye TREE -1 FAC+ * AESCULUS HIPPOCASTANUM Horse chestnut TREE 5 UPL 10 Agalinis aspera Rough false foxglove A-FORB 5 UPL 10 Agalinis gattingeri Round-stemmed false foxglove A-FORB 5 UPL 8 Agalinis paupercula False foxglove
    [Show full text]
  • Aquatic Vascular Plants of New England, Station Bulletin, No.518
    University of New Hampshire University of New Hampshire Scholars' Repository NHAES Bulletin New Hampshire Agricultural Experiment Station 4-1-1981 Aquatic vascular plants of New England, Station Bulletin, no.518 Hellquist, C. B. Crow, G. E. New Hampshire Agricultural Experiment Station Follow this and additional works at: https://scholars.unh.edu/agbulletin Recommended Citation Hellquist, C. B.; Crow, G. E.; and New Hampshire Agricultural Experiment Station, "Aquatic vascular plants of New England, Station Bulletin, no.518" (1981). NHAES Bulletin. 479. https://scholars.unh.edu/agbulletin/479 This Text is brought to you for free and open access by the New Hampshire Agricultural Experiment Station at University of New Hampshire Scholars' Repository. It has been accepted for inclusion in NHAES Bulletin by an authorized administrator of University of New Hampshire Scholars' Repository. For more information, please contact [email protected]. S lTION bulletin 518 April, 1981 Aquatic Vascular Plants of New England: Part 3. Alismataceae BIO SCI by LIBRARY C. B. Hellquist and G. E. Crow NEW HAMPSHIRE AGRICULTURAL EXPERIMENT STATION UNIVERSITY OF NEW HAMPSHIRE DURHAM, NEW HAMPSHIRE 03824 S lTION bulletin 518 April, 1981 Aquatic Vascular Plants of New England: Part 3. Alismataceae BIO SCI by LIBRARY C. B. Hellquist and G. E. Crow NEW HAMPSHIRE AGRICULTURAL EXPERIMENT STATION UNIVERSITY OF NEW HAMPSHIRE DURHAM, NEW HAMPSHIRE 03824 S ?1Hi ACKNOWLEDGEMENTS '^^ ^l<^ We wish to thank Drs. Robert K. Godfrey, Robert R. Haynes, and Arthur C. Mathieson for their helpful comments on the manuscript. Bruce Sorrie kindly supplied locality data not documented in herbaria for some of the rarer taxa occurring in southeastern Massachusetts.
    [Show full text]
  • New York Natural Heritage Program Rare Plant Status List May 2004 Edited By
    New York Natural Heritage Program Rare Plant Status List May 2004 Edited by: Stephen M. Young and Troy W. Weldy This list is also published at the website: www.nynhp.org For more information, suggestions or comments about this list, please contact: Stephen M. Young, Program Botanist New York Natural Heritage Program 625 Broadway, 5th Floor Albany, NY 12233-4757 518-402-8951 Fax 518-402-8925 E-mail: [email protected] To report sightings of rare species, contact our office or fill out and mail us the Natural Heritage reporting form provided at the end of this publication. The New York Natural Heritage Program is a partnership with the New York State Department of Environmental Conservation and by The Nature Conservancy. Major support comes from the NYS Biodiversity Research Institute, the Environmental Protection Fund, and Return a Gift to Wildlife. TABLE OF CONTENTS Introduction.......................................................................................................................................... Page ii Why is the list published? What does the list contain? How is the information compiled? How does the list change? Why are plants rare? Why protect rare plants? Explanation of categories.................................................................................................................... Page iv Explanation of Heritage ranks and codes............................................................................................ Page iv Global rank State rank Taxon rank Double ranks Explanation of plant
    [Show full text]
  • Ecological Checklist of the Missouri Flora for Floristic Quality Assessment
    Ladd, D. and J.R. Thomas. 2015. Ecological checklist of the Missouri flora for Floristic Quality Assessment. Phytoneuron 2015-12: 1–274. Published 12 February 2015. ISSN 2153 733X ECOLOGICAL CHECKLIST OF THE MISSOURI FLORA FOR FLORISTIC QUALITY ASSESSMENT DOUGLAS LADD The Nature Conservancy 2800 S. Brentwood Blvd. St. Louis, Missouri 63144 [email protected] JUSTIN R. THOMAS Institute of Botanical Training, LLC 111 County Road 3260 Salem, Missouri 65560 [email protected] ABSTRACT An annotated checklist of the 2,961 vascular taxa comprising the flora of Missouri is presented, with conservatism rankings for Floristic Quality Assessment. The list also provides standardized acronyms for each taxon and information on nativity, physiognomy, and wetness ratings. Annotated comments for selected taxa provide taxonomic, floristic, and ecological information, particularly for taxa not recognized in recent treatments of the Missouri flora. Synonymy crosswalks are provided for three references commonly used in Missouri. A discussion of the concept and application of Floristic Quality Assessment is presented. To accurately reflect ecological and taxonomic relationships, new combinations are validated for two distinct taxa, Dichanthelium ashei and D. werneri , and problems in application of infraspecific taxon names within Quercus shumardii are clarified. CONTENTS Introduction Species conservatism and floristic quality Application of Floristic Quality Assessment Checklist: Rationale and methods Nomenclature and taxonomic concepts Synonymy Acronyms Physiognomy, nativity, and wetness Summary of the Missouri flora Conclusion Annotated comments for checklist taxa Acknowledgements Literature Cited Ecological checklist of the Missouri flora Table 1. C values, physiognomy, and common names Table 2. Synonymy crosswalk Table 3. Wetness ratings and plant families INTRODUCTION This list was developed as part of a revised and expanded system for Floristic Quality Assessment (FQA) in Missouri.
    [Show full text]
  • Tracheophyte of Xiao Hinggan Ling in China: an Updated Checklist
    Biodiversity Data Journal 7: e32306 doi: 10.3897/BDJ.7.e32306 Taxonomic Paper Tracheophyte of Xiao Hinggan Ling in China: an updated checklist Hongfeng Wang‡§, Xueyun Dong , Yi Liu|,¶, Keping Ma | ‡ School of Forestry, Northeast Forestry University, Harbin, China § School of Food Engineering Harbin University, Harbin, China | State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China ¶ University of Chinese Academy of Sciences, Beijing, China Corresponding author: Hongfeng Wang ([email protected]) Academic editor: Daniele Cicuzza Received: 10 Dec 2018 | Accepted: 03 Mar 2019 | Published: 27 Mar 2019 Citation: Wang H, Dong X, Liu Y, Ma K (2019) Tracheophyte of Xiao Hinggan Ling in China: an updated checklist. Biodiversity Data Journal 7: e32306. https://doi.org/10.3897/BDJ.7.e32306 Abstract Background This paper presents an updated list of tracheophytes of Xiao Hinggan Ling. The list includes 124 families, 503 genera and 1640 species (Containing subspecific units), of which 569 species (Containing subspecific units), 56 genera and 6 families represent first published records for Xiao Hinggan Ling. The aim of the present study is to document an updated checklist by reviewing the existing literature, browsing the website of National Specimen Information Infrastructure and additional data obtained in our research over the past ten years. This paper presents an updated list of tracheophytes of Xiao Hinggan Ling. The list includes 124 families, 503 genera and 1640 species (Containing subspecific units), of which 569 species (Containing subspecific units), 56 genera and 6 families represent first published records for Xiao Hinggan Ling. The aim of the present study is to document an updated checklist by reviewing the existing literature, browsing the website of National Specimen Information Infrastructure and additional data obtained in our research over the past ten years.
    [Show full text]
  • HELCOM Red List
    SPECIES INFORMATION SHEET Alisma wahlenbergii English name: Scientific name: – Alisma wahlenbergii Taxonomical group: Species authority: Class: Liliopsida (Holmb.) Juz. Order: Alismatales Family: Alismataceae Subspecies, Variations, Synonyms: Generation length: 1–10 years Alisma gramineum ssp. wahlenbergii Holmb. Past and current threats (Habitats Directive Future threats (Habitats Directive article 17 article 17 codes): codes): Overgrowth of open areas (A04.03, K04.01, Overgrowth of open areas (A04.03, K04.01, K01.03), Eutrophication (H01.05), Construction K01.03), Eutrophication (H01.05), Construction (D01, D03, E01, J02.02.02) (D01, D03, E01, J02.02.02), Climate change (reduction of ice scouring, J03.03) IUCN Criteria: HELCOM Red List VU B2ab(ii,iii,iv,v) Category: Vulnerable Global / European IUCN Red List Category Habitats Directive: VU / VU Annex II and IV Protection and Red List status in HELCOM countries: Denmark –/–, Estonia –/–, Finland strictly protected under the Nature Conservation Decree (Annex 4), a specific protection plan /EN, Germany –/–, Latvia –/–, Lithuania –/–, Poland –/–, Russia protected and red-listed in Leningrad Region as EN, also included in Red Data Book of Russia, Sweden protected by law / EN Distribution and status in the Baltic Sea region Alisma wahlenbergii is an endemic species to the Baltic Sea and some adjacent lakes. It was included in the previous HELCOM list of threatened and/or declining species (HELCOM 2007). In the Baltic Sea, the extant occurrences are focused to two major areas from Rånefjärden (Sweden) to Kalajoki (Finland) in the Bothnian Bay, and in the eastern Gulf of Finland (Russia). The main population is situated on the Finnish coast of the Bothnian Bay.
    [Show full text]
  • Flowering Rush Biocontrol: Future Funding and Research CABI
    Flowering Rush Biocontrol: Future Funding and Research CABI Needs Jennifer Andreas*, Hariet L. Hinz, Patrick Häfliger, Jenifer Parsons, Greg Haubrich, Peter Rice, Susan Turner * [email protected], (253) 651-2197, www.invasives.wsu.edu Flowering Rush Biocontrol Consortium © 2004, Ben • Began in 2012 Legler • Partnership between WA, MT, ID, B.C., AB, © 2004, Ben CABI, MN, MS… • Updates provided to Legler distribution list • Outline – impact data needs © 2004, Ben – test plant list Legler – funding Flowering Rush Impacts Mackey, Chelan Chelan Mackey, CNWCB • FR impact data needed – strengthen biocontrol petition – increase likelihood of additional funding • Economic impact – herbicide, mechanical costs • Ecological impact – system impacts? – salmonid impacts?!?!? Österberg Marcus • Human health/ recreational impacts /SXC Flowering Rush Taxonomy • FR in subclass Alismatidae • Mobot: – Order: Alismatales – 2 families closely related: Hydrocharitaceae & Alismataceae (includes Limnocharitaceae) • USDA PLANTS Database – 3 orders: Alismatales, Hydrocharitales, Najadales – 3 families closely related Mobot, verrsion 12, Stevens, P.F. 2001 onward; http://www.mobot.org/MOBOT/research/APweb/orders/alismatalesweb.htm Draft Test Plant List • 42 test plant species selected • Category 1: genetic types of target weed species in North America – test at least most common genotype for both cytotypes • Category 2: NA species in same genus – does not apply • Category 3: NA species in other genera in same family – does not apply Draft Test Plant List • Category
    [Show full text]
  • State of NEW MEXICO 2014 Wetland Plant List
    4/2/14 & n s p State of NEW MEXICO 2014 Wetland Plant List Lichvar, R.W., M. Butterw ick, N.C. Melvin, and W.N. Kirchner. 2014. The National Wetland Plant List: 2014 Update of Wetland Ratings. Phytoneuron 2014-41: 1-42. http://wetland_plants.usace.army.mil/ Sisyrinchium demissum Greene (Stif f Blue-Ey ed-Grass) Photo: Lewis E. Epple User Notes: 1) Plant species not listed are considered UPL for w etland delineation purposes. 2) A few UPL species are listed because they are rated FACU or w etter in at least one Corps region. 3) Some state boundaries lie w ithin tw o or more Corps Regions. If a species occurs in one region but not the other, its rating w ill be show n in one column and the other column w ill be BLANK. Approved for public release; distribution is unlimited. 1/24 4/2/14 State of NEW MEXICO 2014 Wetland Plant List Total Species = 1506 AW GP WMVC OBL 273 266 266 FACW 337 330 320 FAC 338 329 345 FACU 450 390 430 UPL 100 126 116 Regional Totals 1498 1441 1477 Scientific Name Authorship AW GP WMVC Common Name Abies bifolia A. Murr. FACU FACU Rocky Mountain Alpine Fir Abutilon theophrasti Medik. UPL UPL FACU Velv etleaf Acer glabrum Torr. FAC FAC FACU Rocky Mountain Maple Acer grandidentatum Nutt. FACU FAC FACU Cany on Maple Acer negundo L. FACW FAC FAC Ash-Leaf Maple Acer saccharinum L. FAC FAC FAC Silv er Maple Achillea millefolium L. FACU FACU FACU Common Yarrow Achnatherum hymenoides (Roemer & J.A.
    [Show full text]
  • ALISMATACEAE 1. SAGITTARIA Linnaeus, Sp. Pl. 2: 993. 1753
    ALISMATACEAE 泽泻科 ze xie ke Wang Qingfeng (王青锋)1; Robert R. Haynes2, C. Barre Hellquist3 Herbs, perennial or rarely annual, aquatic or of marshes, sometimes rhizomatous. Leaves basal, linear, lanceolate, elliptic to ovate or orbicular, or sagittate, with elongated sheathing petioles; principal veins parallel with margins and converging toward apex and connected by transverse veins. Flowers often whorled at nodes of scape forming racemes, panicles, or umbels, pedicellate, actinomorphic, bisexual, unisexual, or polygamous, usually bracteate. Sepals 3, persistent, green. Petals 3, deciduous, usually white, sometimes yellowish. Stamens 3 to numerous, whorled, with elongated filaments; anthers 2-celled, extrorse, opening by longitudinal slits. Carpels 3 to numerous, whorled or spirally arranged, free; ovules 1 to several; style persistent. Fruit a cluster or whorl of lat- erally compressed achenes, drupelets, or occasionally follicles. Seeds curved, with a horseshoe-shaped embryo; endosperm absent. About 13 genera and ca. 100 species: cosmopolitan, especially abundant in temperate and tropical regions of the N Hemisphere; six genera (one introduced) and 18 species (three endemic, one introduced) in China. Chen Yaodong. 1992. Alismataceae. In: Sun Xiangzhong, ed., Fl. Reipubl. Popularis Sin. 8: 127–145; Zhou Lingyun. 1992. Butomopsis and Limnocharis. In: Sun Xiangzhong, ed., Fl. Reipubl. Popularis Sin. 8: 147–151. 1a. Stamens 8 or 9, or numerous, with sterile staminodes in outermost whorl, filaments flattened; stigmas sessile, carpels 6–9 or numerous, crowded into a head; aquatic herbs with terminal umbels; bracts forming an involucre. 2a. Petals white; stamens 8 or 9; carpels 6–9; pedicels slender ................................................................................... 5. Butomopsis 2b. Petals yellowish; stamens numerous; carpels numerous; pedicels thick .............................................................
    [Show full text]
  • Typhaceae/Sparganiaceae
    AN ILLUSTRATED KEY TO MISCELLANEOUS MONOCOT FAMILIES IN ALBERTA ACORACEAE ALISMATACEAE ARACEAE HYDROCHARITACEAE IRIDACEAE JUNCAGINACEAE TYPHACEAE/SPARGANIACEAE Compiled and writen by Linda Kershaw & Lorna Allen April 2019 © Linda J. Kershaw & Lorna Allen This key was compiled using informaton primarily from Moss (1983), Packer & Gould (2018), Douglas et. al. (2001) and the Flora of North America (2008-2010). Taxonomy follows VASCAN (Brouillet, 2015). Please let us know if there are ways in which the keys can be improved. The families are arranged alphabetcally. The 2017 S-ranks of rare species (S1; S1S2; S2; S2S3; SU, according to ACIMS, 2017) are noted in superscript (S1;S2;SU) afer the species names. For more details go to the ACIMS web site. If naturalized, exotc orchids are discovered in Alberta, their names would be followed by a superscript X, XX if noxious and XXX if prohibited noxious (X; XX; XXX) in the Alberta Weed Control Act. ALISMATACEAE Waterplantain Family Key to Genera 01a Emersed leaves egg-shaped to lance-shaped; submersed leaves ribbon-like or absent; stamens 6(9); fowers/fruits in a single ring (whorl) on a small, fat stem tip (receptacle) . ..............................Alisma 01a Emersed leaves arrowhead-shaped; submersed leaves without blades (usually) or arrowhead-shaped; stamens 7-25; fowers/ fruits spirally arranged on a large, convex receptacle ................... Sagittaria - - - - - - - - - - - - - - - - - - - - - - - ALISMA Waterplantain 01a Leaves oval-lance-shaped (emergent) or strap-like (submersed); fower clusters usually shorter than the leaves, often with branches bent back/down; style ≤ ovary length; anthers egg-shaped to rounded; stamens ± as long as the ovaries ...........Alisma gramineum 01b Leaves egg-shaped to oval (all emergent); fower clusters taller than the leaves, with branches angled upwards; style ≥ ovary 1a length; anthers football-shaped; stamens 2X as long as the ovaries .....
    [Show full text]