Characterisation of Human and Mouse SOD1-ALS Proteins in Vivo and in Vitro

Total Page:16

File Type:pdf, Size:1020Kb

Characterisation of Human and Mouse SOD1-ALS Proteins in Vivo and in Vitro Characterisation of human and mouse SOD1-ALS proteins in vivo and in vitro Rachele Saccon A thesis presented in partial fulfilment of the requirements for the degree of Doctor of Philosophy to the University of London Department of Neurodegenerative Disease Institute of Neurology University College London 1 Declaration I, Rachele Saccon, confirm that the work presented in this thesis is my own. Where information has been derived from other sources, I confirm that this has been indicated in the thesis. 2 Abstract Amyotrophic lateral sclerosis (ALS) is a fatal progressive neurodegenerative disease affecting motor neurons (MNs). It is primarily sporadic, however a proportion of cases are inherited and of these ~20 % are caused by mutations in the superoxide dismutase 1 (SOD1) gene. The work described in this thesis has focused on the characterisation of the role that the SOD1 protein plays in ALS, investigating the human and the mouse variants in vivo and in vitro. SOD1 mutations result in ALS by an unknown gain of function mechanism, although mouse models suggest that complete loss of SOD1 is also detrimental to MN function. To investigate a possible role of SOD1 loss of function in SOD1-ALS, a meta-analysis was carried out on the literature reviewing measures of SOD1 activity from patients carrying SOD1 familial ALS mutations and the phenotype of Sod1 knockout mice. The first set of experiments aimed to phenotypically characterise a novel mouse model, Sod1D83G, carrying a pathological mutation in the mouse Sod1 gene. Sod1D83G/D83G mice have no SOD1 activity, low levels of SOD1 protein, develop central MN degeneration and a distal peripheral neuropathy. Further the Sod1D83G mice were crossed with Sod1 knockout mice and mice overexpressing the human wild-type SOD1 to determine if it was possible to dissect elements of a loss of function (the peripheral axonopathy) and aspects of a gain of function (the central body degeneration). ALS mutations generally cause SOD1 to become more aggregate-prone, but it is unclear whether the human and the mouse SOD1 proteins co-aggregate in mouse models of SOD1 familial ALS. To investigate possible interactions between human and mouse SOD1 variants, recombinant proteins were produced, characterised and their spontaneous aggregation propensity was assessed in vitro. Finally a sensitised screen focused on the effect of unknown mutations on the life-span of a low copy SOD1G93A transgenic model of ALS, identified one mouse line with reduced survival, named Galahad. The phenotype of the Galahad mouse progeny was examined and a quantitative trait loci analysis was carried out to try to identify possible modifying locus/loci interacting with the SOD1 G93A mutation. The present work aims to shed light on the interaction between human and mouse SOD1 proteins and increase our understanding on the mechanism affecting central and peripheral degeneration of MNs in the context of SOD1 familial ALS mutations. 3 Acknowledgements I would like to express my deep gratitude to Professor Elizabeth Fisher for giving me the opportunity of a lifetime, for always believing and encouraging me providing guidance and support throughout my PhD. Thank you for being such and amazing mentor. Many thanks also to Dr Abraham Acevedo and Professor Linda Greensmith for giving me valuable and constructive advice every step of the way. Thank you to all past and present members of the Fisher, Isaacs and Greensmith labs all of who have played their part in making my PhD a wonderful and fun learning experience. I would also like to thank the members of staff from the UCL Department of Neurodegenerative Disease and the MRC Prion Unit who were essential for the work I have presented in this thesis. So many people have supported me that there are too many to mention individually by name, but in particular I would like to thank Dr Sarah Mizielinska, Dr Emma Clayton, Dr Rosie Bunton-Stasyshyn, Dr Phil McGoldrick, Dr Pietro Fratta, Mark Batchelor, Robin Labesse-Garbal and Cristina Venturini. Another particular whole hearted thanks go to my amazing friends Daniel, Elisa, Caterina, Alessia, Luca, Karinne and Christiane who have always encourage me and lift my spirit during this journey. Finally, my heartfelt thanks to my parents, to my grandparents and Martino, I would not be who I am and where I am without you. 4 Table of contents Declaration..............................................................................................................................2 Abstract ....................................................................................................................................3 Acknowledgements............................................................................................................4 Table of contents.................................................................................................................5 List of figures.......................................................................................................................15 List of tables.........................................................................................................................18 List of abbreviations........................................................................................................20 Chapter 1 Introduction .......................................................................................... 25 1.1 Amyotrophic lateral sclerosis (ALS) .................................................................. 25 1.1.1 Epidemiology ....................................................................................................... 25 1.1.2 ALS clinical course ............................................................................................. 25 1.1.2.1 Motor neuron degeneration .................................................................. 25 1.1.2.2 Cognitive dysfunctions .......................................................................... 26 1.1.3 Diagnosis .............................................................................................................. 27 1.1.4 Treatments ........................................................................................................... 27 1.1.5 Environmental risk factors ................................................................................ 28 1.1.6 ALS pathological features .................................................................................. 28 1.1.6.1 Degeneration of motor neurons .......................................................... 28 1.1.6.2 Gliosis ...................................................................................................... 30 1.1.6.3 Inclusion bodies ...................................................................................... 30 1.1.6.4 Muscle atrophy ........................................................................................ 31 1.1.7 Genetics of ALS .................................................................................................. 31 1.2 SOD1-fALS ................................................................................................................ 37 1.2.1 Clinical course and pathogenicity of SOD1-fALS ......................................... 37 1.2.2 SOD1 gene and inheritance pattern ................................................................. 37 1.3 SOD1 protein ............................................................................................................ 39 5 1.3.1 Biological function .............................................................................................. 40 1.3.2 Structural features and protein stability ........................................................... 41 1.3.3 Properties of mutant SOD1 proteins ............................................................... 43 1.3.3.1 Effect of mutations on protein function ............................................ 43 1.3.3.2 Effect of mutations on SOD1 biochemical properties ..................... 43 1.4 SOD1 mouse models .............................................................................................. 47 1.4.1 Why we use mouse models in ALS research .................................................. 47 1.4.1.1 Mouse models of SOD1-ALS .............................................................. 47 1.4.2 SOD1 transgenic mice ....................................................................................... 48 1.4.2.1 Transgenic SOD1G93A high copy mice ................................................. 48 1.4.2.2 Transgenic SOD1WT mice ...................................................................... 50 1.4.3 Sod1 knock out mice ........................................................................................... 51 1.4.4 Effect of background on mouse phenotypes ................................................. 51 1.4.5 Limitations of current SOD1-ALS mouse models ........................................ 54 1.5 How mutant SOD1 causes disease .................................................................... 55 1.5.1 SOD1-fALS proposed mechanisms of pathogenicity ................................... 55 1.5.1.1 Glutamate toxicity and calcium homeostasis ..................................... 55 1.5.1.2 Endoplasmic reticulum (ER) stress and unfolded protein response (UPR) .......................................................................................................... 56 1.5.1.3 Mitochondrial dysfunction ...................................................................
Recommended publications
  • Analysis of Gene Expression Data for Gene Ontology
    ANALYSIS OF GENE EXPRESSION DATA FOR GENE ONTOLOGY BASED PROTEIN FUNCTION PREDICTION A Thesis Presented to The Graduate Faculty of The University of Akron In Partial Fulfillment of the Requirements for the Degree Master of Science Robert Daniel Macholan May 2011 ANALYSIS OF GENE EXPRESSION DATA FOR GENE ONTOLOGY BASED PROTEIN FUNCTION PREDICTION Robert Daniel Macholan Thesis Approved: Accepted: _______________________________ _______________________________ Advisor Department Chair Dr. Zhong-Hui Duan Dr. Chien-Chung Chan _______________________________ _______________________________ Committee Member Dean of the College Dr. Chien-Chung Chan Dr. Chand K. Midha _______________________________ _______________________________ Committee Member Dean of the Graduate School Dr. Yingcai Xiao Dr. George R. Newkome _______________________________ Date ii ABSTRACT A tremendous increase in genomic data has encouraged biologists to turn to bioinformatics in order to assist in its interpretation and processing. One of the present challenges that need to be overcome in order to understand this data more completely is the development of a reliable method to accurately predict the function of a protein from its genomic information. This study focuses on developing an effective algorithm for protein function prediction. The algorithm is based on proteins that have similar expression patterns. The similarity of the expression data is determined using a novel measure, the slope matrix. The slope matrix introduces a normalized method for the comparison of expression levels throughout a proteome. The algorithm is tested using real microarray gene expression data. Their functions are characterized using gene ontology annotations. The results of the case study indicate the protein function prediction algorithm developed is comparable to the prediction algorithms that are based on the annotations of homologous proteins.
    [Show full text]
  • Mitoxplorer, a Visual Data Mining Platform To
    mitoXplorer, a visual data mining platform to systematically analyze and visualize mitochondrial expression dynamics and mutations Annie Yim, Prasanna Koti, Adrien Bonnard, Fabio Marchiano, Milena Dürrbaum, Cecilia Garcia-Perez, José Villaveces, Salma Gamal, Giovanni Cardone, Fabiana Perocchi, et al. To cite this version: Annie Yim, Prasanna Koti, Adrien Bonnard, Fabio Marchiano, Milena Dürrbaum, et al.. mitoXplorer, a visual data mining platform to systematically analyze and visualize mitochondrial expression dy- namics and mutations. Nucleic Acids Research, Oxford University Press, 2020, 10.1093/nar/gkz1128. hal-02394433 HAL Id: hal-02394433 https://hal-amu.archives-ouvertes.fr/hal-02394433 Submitted on 4 Dec 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution| 4.0 International License Nucleic Acids Research, 2019 1 doi: 10.1093/nar/gkz1128 Downloaded from https://academic.oup.com/nar/advance-article-abstract/doi/10.1093/nar/gkz1128/5651332 by Bibliothèque de l'université la Méditerranée user on 04 December 2019 mitoXplorer, a visual data mining platform to systematically analyze and visualize mitochondrial expression dynamics and mutations Annie Yim1,†, Prasanna Koti1,†, Adrien Bonnard2, Fabio Marchiano3, Milena Durrbaum¨ 1, Cecilia Garcia-Perez4, Jose Villaveces1, Salma Gamal1, Giovanni Cardone1, Fabiana Perocchi4, Zuzana Storchova1,5 and Bianca H.
    [Show full text]
  • Machine Learning Models for Predicting Protein Condensate Formation from Sequence Determinants and Embeddings
    bioRxiv preprint doi: https://doi.org/10.1101/2020.10.26.354753; this version posted October 26, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Machine learning models for predicting protein condensate formation from sequence determinants and embeddings Kadi L. Saar,1;2;† Alexey S. Morgunov,1;3;† Runzhang Qi,1 William E. Arter,1 Georg Krainer,1 Alpha A. Lee2 & Tuomas P. J. Knowles1;2;∗ 1 Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK 2 Cavendish Laboratory, Department of Physics, University of Cambridge, J J Thomson Ave, Cambridge CB3 0HE, UK 3 Fluidic Analytics, Unit A, The Paddocks Business Centre, Cherry Hinton Rd, Cambridge CB1 8DH, UK † These authors contributed equally ∗ To whom correspondence should be addressed: [email protected] Abstract Intracellular phase separation of proteins into biomolecular condensates is increasingly recognised as an important phenomenon for cellular compartmentalisation and regulation of biological function. Different hypotheses about the parameters that determine the ten- dency of proteins to form condensates have been proposed with some of them probed ex- perimentally through the use of constructs generated by sequence alterations. To broaden the scope of these observations, here, we established an in silico strategy for understanding on a global level the associations between protein sequence and condensate formation, and used this information to construct machine learning classifiers for predicting liquid–liquid phase separation (LLPS) from protein sequence.
    [Show full text]
  • The Ubiquitin Proteasome System in Neuromuscular Disorders: Moving Beyond Movement
    International Journal of Molecular Sciences Review The Ubiquitin Proteasome System in Neuromuscular Disorders: Moving Beyond Movement 1, , 2, 3,4 Sara Bachiller * y , Isabel M. Alonso-Bellido y , Luis Miguel Real , Eva María Pérez-Villegas 5 , José Luis Venero 2 , Tomas Deierborg 1 , José Ángel Armengol 5 and Rocío Ruiz 2 1 Experimental Neuroinflammation Laboratory, Department of Experimental Medical Science, Lund University, Sölvegatan 19, 221 84 Lund, Sweden; [email protected] 2 Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla/Instituto de Biomedicina de Sevilla-Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41012 Sevilla, Spain; [email protected] (I.M.A.-B.); [email protected] (J.L.V.); [email protected] (R.R.) 3 Unidad Clínica de Enfermedades Infecciosas, Hospital Universitario de Valme, 41014 Sevilla, Spain; [email protected] 4 Departamento de Especialidades Quirúrgicas, Bioquímica e Inmunología, Facultad de Medicina, 29071 Universidad de Málaga, Spain 5 Departamento de Fisiología, Anatomía y Biología Celular, Universidad Pablo de Olavide, 41013 Sevilla, Spain; [email protected] (E.M.P.-V.); [email protected] (J.Á.A.) * Correspondence: [email protected] These authors contributed equally to the work. y Received: 14 July 2020; Accepted: 31 August 2020; Published: 3 September 2020 Abstract: Neuromuscular disorders (NMDs) affect 1 in 3000 people worldwide. There are more than 150 different types of NMDs, where the common feature is the loss of muscle strength. These disorders are classified according to their neuroanatomical location, as motor neuron diseases, peripheral nerve diseases, neuromuscular junction diseases, and muscle diseases. Over the years, numerous studies have pointed to protein homeostasis as a crucial factor in the development of these fatal diseases.
    [Show full text]
  • Zebrafish Oxr1a Knockout Reveals Its Role in Regulating Antioxidant
    G C A T T A C G G C A T genes Article Zebrafish Oxr1a Knockout Reveals Its Role in Regulating Antioxidant Defenses and Aging Hao Xu 1, Yu Jiang 2, Sheng Li 2, Lang Xie 1, Yi-Xi Tao 1 and Yun Li 1,2,* 1 Institute of Three Gorges Ecological Fisheries of Chongqing, College of Fisheries, Southwest University, Chongqing 400715, China; [email protected] (H.X.); [email protected] (L.X.); [email protected] (Y.-X.T.) 2 Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, Southwest University, Chongqing 400715, China; [email protected] (Y.J.); [email protected] (S.L.) * Correspondence: [email protected]; Tel.: +86-2368-2519-62 Received: 19 August 2020; Accepted: 21 September 2020; Published: 24 September 2020 Abstract: Oxidation resistance gene 1 (OXR1) is essential for protection against oxidative stress in mammals, but its functions in non-mammalian vertebrates, especially in fish, remain uncertain. Here, we created a homozygous oxr1a-knockout zebrafish via the CRISPR/Cas9 (Clustered Regularly Interspaced Short Palindromic Repeats/CRISPR associated protein 9) system. Compared with / wild-type (WT) zebrafish, oxr1a− − mutants exhibited higher mortality and more apoptotic cells under oxidative stress, and multiple antioxidant genes (i.e., gpx1b, gpx4a, gpx7 and sod3a) involved in detoxifying cellular reactive oxygen species were downregulated significantly. Based on these observations, we conducted a comparative transcriptome analysis of early oxidative stress response. The results show that oxr1a mutation caused more extensive changes in transcriptional networks / compared to WT zebrafish, and several stress response and pro-inflammatory pathways in oxr1a− − mutant zebrafish were strongly induced.
    [Show full text]
  • VU Research Portal
    VU Research Portal Megalencephalic Leukoencephalopathy with Subcortical Cysts Boor, P.K.I. 2008 document version Publisher's PDF, also known as Version of record Link to publication in VU Research Portal citation for published version (APA) Boor, P. K. I. (2008). Megalencephalic Leukoencephalopathy with Subcortical Cysts: from disease gene to protein function. General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal ? Take down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. E-mail address: [email protected] Download date: 29. Sep. 2021 regel 1 regel 2 regel 3 regel 4 regel 5 regel 6 regel 7 Summary, Discussion, and regel 8 regel 9 Prospects regel 10 regel 11 regel 12 regel 13 regel 14 regel 15 regel 16 regel 17 regel 18 regel 19 regel 20 regel 21 regel 22 regel 23 8 regel 24 regel 25 regel 26 regel 27 regel 28 regel 29 regel 30 regel 31 regel 32 regel 33 regel 34 regel 35 regel 36 regel 37 regel 38 regel 39 Summary, Discussion, and Prospects regel 1 1.
    [Show full text]
  • Oxr1 Improves Pathogenic Cellular Features of ALS-Associated FUS
    Human Molecular Genetics, 2015, Vol. 24, No. 12 3529–3544 doi: 10.1093/hmg/ddv104 Advance Access Publication Date: 19 March 2015 Original Article ORIGINAL ARTICLE Oxr1 improves pathogenic cellular features of ALS-associated FUS and TDP-43 mutations Downloaded from https://academic.oup.com/hmg/article/24/12/3529/623195 by guest on 26 July 2021 Mattéa J. Finelli†, Kevin X. Liu†, Yixing Wu, Peter L. Oliver* and Kay E. Davies* MRC Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford OX1 3PT, UK *To whom correspondence should be addressed. Tel: +44 1865285880/79; Email: [email protected] (K.E.D.); [email protected] (P.L.O.) Abstract Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by the loss of motor neuron-like cells. Mutations in the RNA- and DNA-binding proteins, fused in sarcoma (FUS) and transactive response DNA-binding protein 43 kDa (TDP-43), are responsible for 5–10% of familial and 1% of sporadic ALS cases. Importantly, aggregation of misfolded FUS or TDP- 43 is also characteristic of several neurodegenerative disorders in addition to ALS, including frontotemporal lobar degeneration. Moreover, splicing deregulation of FUS and TDP-43 target genes as well as mitochondrial abnormalities are associated with disease-causing FUS and TDP-43 mutants. While progress has been made to understand the functions of these proteins, the exact mechanisms by which FUS and TDP-43 cause ALS remain unknown. Recently, we discovered that, in addition to being up-regulated in spinal cords of ALS patients, the novel protein oxidative resistance 1 (Oxr1) protects neurons from oxidative stress-induced apoptosis.
    [Show full text]
  • First Profiling of Lysine Crotonylation of Myofilament Proteins and Ribosomal
    www.nature.com/scientificreports OPEN First profling of lysine crotonylation of myoflament proteins and ribosomal proteins in Received: 20 February 2017 Accepted: 15 February 2018 zebrafsh embryos Published: xx xx xxxx Oh Kwang Kwon, Sun Joo Kim & Sangkyu Lee Zebrafsh embryos are translucent and develop rapidly in individual eggs ex utero; they are widely used as models for embryogenesis and organ development for human diseases and drug discovery. Lysine crotonylation (Kcr) is a type of histone post-translational modifcations discovered in 2011. Kcr dynamics are involved in gene expression regulation and acute kidney injury; however, little is known about the efects of Kcr on non-histone proteins. In the present study, we conducted the frst proteome- wide profling of Kcr in zebrafsh larvae and identifed 557 Kcr sites on 218 proteins, representing the Kcr event in zebrafsh. We identifed two types of Kcr motifs containing hydrophobic (Leu, Ile, Val) and acidic (Asp and Glu) amino acids near the modifed lysine residues. Our results show that both crotonylated proteins and sites of crotonylation were evolutionarily conserved between zebrafsh embryos and humans. Specifcally, Kcr on ribosomal proteins and myoflament proteins, including myosin, tropomyosin and troponin, were widely enriched. Interestingly, 55 lysine crotonylation sites on myosin were distributed throughout coiled coil regions. Therefore, Kcr may regulate muscle contraction and protein synthesis. Our results provide a foundation for future studies on the efects of lysine crotonylation on aging and heart failure. Te zebrafsh (Danio rerio) is a popular vertebrate model organism in genetic and biological research, such as embryogenesis and organ development and has been used as a model for human diseases and drug discovery1,2.
    [Show full text]
  • Aggresomal Sequestration and STUB1-Mediated Ubiquitylation During Mammalian Proteaphagy of Inhibited Proteasomes
    Aggresomal sequestration and STUB1-mediated ubiquitylation during mammalian proteaphagy of inhibited proteasomes Won Hoon Choia,b, Yejin Yuna,b, Seoyoung Parka,c, Jun Hyoung Jeona,b, Jeeyoung Leea,b, Jung Hoon Leea,c, Su-A Yangd, Nak-Kyoon Kime, Chan Hoon Jungb, Yong Tae Kwonb, Dohyun Hanf, Sang Min Lime, and Min Jae Leea,b,c,1 aDepartment of Biochemistry and Molecular Biology, Seoul National University College of Medicine, 03080 Seoul, Korea; bDepartment of Biomedical Sciences, Seoul National University Graduate School, 03080 Seoul, Korea; cNeuroscience Research Institute, Seoul National University College of Medicine, 03080 Seoul, Korea; dScience Division, Tomocube, 34109 Daejeon, Korea; eConvergence Research Center for Diagnosis, Korea Institute of Science and Technology, 02792 Seoul, Korea; and fProteomics Core Facility, Biomedical Research Institute, Seoul National University Hospital, 03080 Seoul, Korea Edited by Richard D. Vierstra, Washington University in St. Louis, St. Louis, MO, and approved July 1, 2020 (received for review November 18, 2019) The 26S proteasome, a self-compartmentalized protease complex, additional LC3-interacting region; the target cargoes can be plays a crucial role in protein quality control. Multiple levels of docked onto phosphatidylethanolamine-modified LC3 (LC3-II) regulatory systems modulate proteasomal activity for substrate on the expanding phagophore membrane, enveloped by an hydrolysis. However, the destruction mechanism of mammalian autophagosome, and eventually degraded in the autolysosomes. proteasomes is poorly understood. We found that inhibited pro- Notably, the enzymatic cascade attaching the lipid moiety at the teasomes are sequestered into the insoluble aggresome via C-terminal glycine of the cleaved LC3 protein in autophagy re- HDAC6- and dynein-mediated transport.
    [Show full text]
  • RTL8 Promotes Nuclear Localization of UBQLN2 to Subnuclear Compartments Associated with Protein Quality Control
    bioRxiv preprint doi: https://doi.org/10.1101/2021.04.21.440788; this version posted April 22, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Title: RTL8 promotes nuclear localization of UBQLN2 to subnuclear compartments associated with protein quality control Harihar Milaganur Mohan1,2, Amit Pithadia1, Hanna Trzeciakiewicz1, Emily V. Crowley1, Regina Pacitto1 Nathaniel Safren1,3, Chengxin Zhang4, Xiaogen Zhou4, Yang Zhang4, Venkatesha Basrur5, Henry L. Paulson1,*, Lisa M. Sharkey1,* 1. Department of Neurology, University of Michigan, Ann Arbor, MI 48109-2200 2. Graduate Program in Cellular and Molecular Biology, University of Michigan, Ann Arbor, MI 48109- 2200 3. Present address: Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611 4. Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109-2200 5. Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109. *Corresponding authors: Henry Paulson: Department of Neurology, University of Michigan, Ann Arbor, MI 48109-2200; [email protected]; Tel. (734) 615-5632; Fax. (734) 615-5655 Lisa M Sharkey: Department of Neurology, University of Michigan, Ann Arbor, MI 48109-2200; [email protected]; Tel. (734) 763-3496; Fax (734) 615-5655 Keywords: Ubiquilin, UBQLN2, RTL8, Nuclear Protein Quality Control, Ubiquitin Proteasome System Declarations Funding: This work was supported by NIH 9R01NS096785-06, 1P30AG053760-01, The Amyotrophic Lateral Sclerosis Foundation and the UM Protein Folding Disease Initiative. Conflicts of interest/Competing interests: None declared Availability of data and material: • The authors confirm that the data supporting the findings in this are available within the article, at repository links provided within the article, and within its supplementary files.
    [Show full text]
  • Transcriptome Analysis of Human OXR1 Depleted Cells Reveals Its Role
    www.nature.com/scientificreports OPEN Transcriptome analysis of human OXR1 depleted cells reveals its role in regulating the p53 signaling Received: 28 July 2015 Accepted: 23 October 2015 pathway Published: 30 November 2015 Mingyi Yang1,2, Xiaolin Lin2,5, Alexander Rowe2, Torbjørn Rognes1,3, Lars Eide2 & Magnar Bjørås1,2,4 The oxidation resistance gene 1 (OXR1) is crucial for protecting against oxidative stress; however, its molecular function is unknown. We employed RNA sequencing to examine the role of human OXR1 for genome wide transcription regulation. In total, in non-treated and hydrogen peroxide exposed HeLa cells, OXR1 depletion resulted in down-regulation of 554 genes and up-regulation of 253 genes. These differentially expressed genes include transcription factors (i.e. HIF1A, SP6, E2F8 and TCF3), antioxidant genes (PRDX4, PTGS1 and CYGB) and numerous genes of the p53 signaling pathway involved in cell-cycle arrest (i.e. cyclin D, CDK6 and RPRM) and apoptosis (i.e. CytC and CASP9). We demonstrated that OXR1 depleted cells undergo cell cycle arrest in G2/M phase during oxidative stress and increase protein expression of the apoptosis initiator protease CASP9. In summary, OXR1 may act as a sensor of cellular oxidative stress to regulate the transcriptional networks required to detoxify reactive oxygen species and modulate cell cycle and apoptosis. Reactive oxygen species (ROS) are readily formed in aerobic organisms and constitute a heterogene- ous group comprising superoxide anions, hydrogen peroxide, hydroxyl radicals and other free radicals, which differ in level between compartments inside the cell. In the cell, ROS may attack DNA causing accumulation of oxidative DNA damage and mutations, which are implicated in diseases such as cancer and neurodegeneration1–3.
    [Show full text]
  • Deciphering the Molecular Profile of Plaques, Memory Decline And
    ORIGINAL RESEARCH ARTICLE published: 16 April 2014 AGING NEUROSCIENCE doi: 10.3389/fnagi.2014.00075 Deciphering the molecular profile of plaques, memory decline and neuron loss in two mouse models for Alzheimer’s disease by deep sequencing Yvonne Bouter 1†,Tim Kacprowski 2,3†, Robert Weissmann4, Katharina Dietrich1, Henning Borgers 1, Andreas Brauß1, Christian Sperling 4, Oliver Wirths 1, Mario Albrecht 2,5, Lars R. Jensen4, Andreas W. Kuss 4* andThomas A. Bayer 1* 1 Division of Molecular Psychiatry, Georg-August-University Goettingen, University Medicine Goettingen, Goettingen, Germany 2 Department of Bioinformatics, Institute of Biometrics and Medical Informatics, University Medicine Greifswald, Greifswald, Germany 3 Department of Functional Genomics, Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany 4 Human Molecular Genetics, Department for Human Genetics of the Institute for Genetics and Functional Genomics, Institute for Human Genetics, University Medicine Greifswald, Ernst-Moritz-Arndt University Greifswald, Greifswald, Germany 5 Institute for Knowledge Discovery, Graz University of Technology, Graz, Austria Edited by: One of the central research questions on the etiology of Alzheimer’s disease (AD) is the Isidro Ferrer, University of Barcelona, elucidation of the molecular signatures triggered by the amyloid cascade of pathological Spain events. Next-generation sequencing allows the identification of genes involved in disease Reviewed by: Isidro Ferrer, University of Barcelona, processes in an unbiased manner. We have combined this technique with the analysis of Spain two AD mouse models: (1) The 5XFAD model develops early plaque formation, intraneu- Dietmar R. Thal, University of Ulm, ronal Ab aggregation, neuron loss, and behavioral deficits. (2)TheTg4–42 model expresses Germany N-truncated Ab4–42 and develops neuron loss and behavioral deficits albeit without plaque *Correspondence: formation.
    [Show full text]