THE GEOLOGY of NIGERIA  the Geology of Nigeria Is Composed of 4 Main Groups:  Basement Complex Ii

Total Page:16

File Type:pdf, Size:1020Kb

THE GEOLOGY of NIGERIA  the Geology of Nigeria Is Composed of 4 Main Groups:  Basement Complex Ii HOW UNFC -2009 STANDARDS ARE PLANNED TO BE IMPLEMENTED IN NIGERIA AND AFRICA BY ARISEKOLA TUNDE, MUKADAS TIJANI AND MASPALMA SAMSON STANLEY (NGSA) AT INTERREGIONAL TRAINING COURSE ON URANIUM, COAL, OIL AND GAS CLASSIFICATION:TOWARDS A BETTER UNDERSTANDIG OF ENERGETIC BASINS AND ‘’UNFC-2009 ’’ ULAANBAATAR, MONGOLIA 16th - 19th August 2016 OUTLINE INTRODUCTION IN-HOUSE CAPACITY BUILDING INVITED CRIRSCO REPRESENTATIVES TO NIGERIA IN MARCH,2015 ESTABLISHMENT OF NATIONAL COMMITTEE ON UNFC-2009 TRIED TO INVITE A REPRESENTATIVE OF EGRC TO THE NIGERIAN MININING AND GEOSCIENCES SOCIETY CONFERENCE TOOK PLACE IN ILORIN, CENTRAL NIGERIA MARCH,2016 FINAL APPRAISAL FOR THE NATIONAL IMPLEMENTATION HAS BEEN PRESENTED TO GOVERNMENT IN JUNE,2016. MET WITH THE OFFICIALS OF AMDC IN ABUJA JUNE, 2016 INVITATION BY AMDC TO MAKE UNFC-2009 PRESNTAION IN CAPE TOWN CONCLUSION INTRODUCTION Solid Minerals had played a long and important role in the industrial history of Nigeria. Prior to 1970 there was a boom in exploration, exploitation of minerals such as coal, tin and columbite . Organized mining in Nigeria started between 1902 and 1923 following the commissioning of Mineral surveys of the southern and northern protectorates. The oil boom in years later resulted in a shift of focus from solid minerals Over 80% of foreign exchange earnings comes from oil and gas Federal and State Governments are now poised to revitalise the solid mineral sector of the economy THE GEOLOGY OF NIGERIA The Geology of Nigeria is composed of 4 main groups: Basement Complex ii. Younger Granites iii. Sedimentary series and iv. the Tertiary-Recent Volcanic rocks The Basement Complex comprises the Migmatite-Gnesis complex, the schist belts (metasedimentary and metavolcanic rocks) and the pan- African Granitoids (Older Granites and associated Charnockitic rocks). The Younger Granites emplaced in the middle or surface Ring complexes of Triassic – Cretaceous (mostly Jurassic) Age. The Sedimentary rocks found in seven basins (Chad basin, Sokoto basin, Benue Trough, Niger, Anambra, Dahomey basin and the Niger Delta). MINERALS OF NIGERIA All the geopolitical zones of the country are endowed with one mineral or the other. More than 34 minerals have been identified in more than 500 locations in the country. The following minerals are found in the many part of Nigeria. The metallic minerals are cassiterite, tantalite, columbite, iron ore, pyrite, wolframite, galena, sphalerite, gold, monazite, ilmenite, rutile, molybdenite and uranium etc Industrial Minerals - clay, kaolin, baryte, gypsum, talc, feldspar, glass sand, marble, mica, bentonite, staurolite, phosphate, brine, coal, and asbestos. The gemstones are tourmaline, aquamarine, emerald, topaz, zircon, quartz, amethyst, sapphire, rubby, fluorite, olivine. NIGERIAN GEOLOGICAL SURVEY AGENCY The Act setting up the Nigerian Geological Survey Agency makes it the primary organ of the Federal Government that deals with the dissemination of geosciences information particularly at regional scale. The knowledge is usually applied in academic research, mineral resources development, land use planning, infrastructural development, sound environmental management among other things. NGSA VISION : To evolve as an open, transparent and flexible organization that would provide geoscientific information and knowledge for wealth creation and national development MISSION: To emerge as the ultimate referral point for geoscience information and knowledge using highly qualified and skilled professionals, cutting edge technology and in collaboration with stakeholders IN-HOUSE CAPACITY BUILDING EVERY TRAINING ATTENDED BY STAFF OF NGSA IN RESPECT OF UNFC-2009 IS REPLICATED TO OTHER MEMBERS OF STAFF BY POWER POINT PRESENTATION On 27th 0f JUNE, 2016 The Fundamentals of UNFC-2009 and Business Model Canvas for NGSA, 27th June, 2016 The Fundamentals of UNCF_2009 INVITED CRIRSCO REPRESENTATIVE TO NIGERIA IN MARCH,2015 ROGER DIXION ESTABLISHMENT OF NATIONAL COMMITTEE ON UNFC-2009 IN 2014 3 MEMBERS FROM NGSA 3 MEMBERS FROM NMGS 2 MEMBERS FROM COMEG 3 MEMBERS FROM NAPE INVITATION OF REPRESENTATIVE OF EGRC TO NIGERIA TRIED TO INVITE REPRESENTATIVE OF EGRC TO THE NIGERIAN MININING AND GEOSCIENCES SOCIETY CONFERENCE THAT TOOK PLACE IN ILORIN CENTRAL NIGERIA 13-18 MARCH, 2016. IT DD NOT WORK SUBMISSION TO GOVERMENT FINAL APPRAISAL FOR THE NATIONAL IMPLEMENTATION OF UNFC-2009 HAS BEEN PRESENTED TO THE GOVERNMENT OF NIGERIA IN JUNE,2016. AS PART OF THE MINERAL RESOURCES ROAD MAP The Minerals Business Model Canvas for Nigeria Key Partners Key Activities Value Propositions Customer Customer Segments Relationships Nigerian Geological Air borne survey Conduct International Survey Agency countrywide Tel calls and emails companies Countrywide radiometric data Mining Cadastre exploration generation, Face-to-face Universities Office production of Uranium/Mineral Setting up Nuclear credible data Public title holders power plant products and offer interpretation, Nigeria Atomic Key Resources project planning and Channels Energy Commission execution services to Uranium team attract investments Customer service Ahmadu Bello (60 geoscientists) and accompanying centres University Zaria value chains that Nigeria NGRL generate revenues Online enquires and employment www.ngsa-nig.org Obafemi Awolowo Varitas Mineral Labs, Use or lose mineral University, Nigeria Canada title policy Public enlightenment Government control and training/workshop Nigeria Nuclear CETEM, Brazil and monitoring Regulatory Authority Maps, reports and publications IAEA Cost Structure Revenue Streams Low cost exploration data Federal Budget Meeting with Delegation from AMDC, Prof, Mongessie Aberra and Dr. Kaiser Souza in Abuja, 7-8 June, 2016 ITEMS GIVING TO AMDC OFFICIALS 1. Two pages write up on UNFC -2009 which cover introduction and basic principles 2. Two copies of official publication on UNFC -2009, 42 UNECE Energy Series 3. Names, countries and e-mails of some participants and colleagues from Africa who has taking part in training/workshops on UNFC-2009 between 2013 to 2016 S/N COUNTRY PARTICIPANTS 1 Algeria Mr. Jamel Eddine NACER Email: [email protected] 2 Burkina Faso Mr. Alphonse KAMDOU Email:[email protected] 3 Cameroon Ms, CristelIe Nikoh MEFEUGEND Email:[email protected] 4 Chad Mr. Brahim Abderamane YACINE Email:[email protected] 5 Cote Divoire Mr. Kouadjo Ernest N’GUESSAN Email:[email protected] 6 Democratic Rep. of Congo Mr. Francois Kadazi KABUYA Email:[email protected] 7 Ghana Dr. Samuel Boakyke Dampare Email:[email protected] 8 Madagascar Mr. Toky Tojonirina RAKOTOSON Email:toy_rakotoson@omnis,mg 9 Malawi Mr. Cassius CHIWANBO Email:[email protected] 10 Mali Mr. Lassina GOITA Email:[email protected] 11 Morocco Prof. El Hassan SAYOUTY Email:[email protected] 12 Niger Mr. Chaibou DJIBO SAMBO Email:djibo_wahabhotmail.com 13 Nigeria Tunde Muritala ARISEKOLA [email protected] 14 Namibia Helena HITAMBA Email:hitamba@mme,gov.na 15 Egypt Mohammed Hamza Email:[email protected] 16 Gabon Ms Patricia OUSSOU Email:[email protected] 17 Tunisia Mr. Noureddine ABBES Email:abbes.noureddine@get,com.tn 18 Sudan Mr. Musab Osman EBRAHIM ALI Email:[email protected] 19 Uganda Mr. Zackary Mosimon BAGUMA Email:[email protected] 20 United Rep. of Tanzania Dennis Amos Mwalong Email:[email protected] 21 Zambia Labson Chibong CHINYAMUKA Email:[email protected] 22 South Africa Abdul KENAN Email: akanan INVITATION BY AMDC TO CAPE TOWN THE TITLE OF THE PRESENTATION IS INTRODUCTION TO THE FUNDAMENTALS OF UNFC-2009 DURING AMDC/GEOLOGICAL AND MINERAL INFORMATION SYSTEM(GMIS) COORDINATION MEETING AND WORKSHOP DATE: 24-26TH AUGUST, 2016 VENUE: CAPE TOWN LODGE-HOTEL AND CONFERENCE CENTRE A typical location of a chaotic illegal mining site .
Recommended publications
  • Geology and Petrography of the Rocks Around Gulani Area, Northeastern Nigeria
    Vol. 7(5), pp. 41-57, May, 2015 DOI: 10.5897/JGMR15.0222 Article Number: A721B2D53045 Journal of Geology and Mining ISSN 2006 – 9766 Copyright © 2015 Research Author(s) retain the copyright of this article http://www.academicjournals.org/JGMR Full Length Research Paper Geology and petrography of the rocks around Gulani Area, Northeastern Nigeria Jalo Muhammad El-Nafaty Department of Geology, University of Maiduguri, Bama Road, P. M. B 1069, Maiduguri, Borno State, Nigeria. Received 21 March, 2015; Accepted 29 April, 2015 Geological mapping of the Gulani area revealed that the area consists of Precambrian Basement Complex rocks, Cretaceous sediments and the Tertiary/Quaternary basalts of the Biu plateau. The Basement Complex rocks are represented by diorite and granites while the sediments include the Bima, Yolde, and Pindiga Formations. Epigenetic baryte-copper mineralizations occur with the baryte veins restricted to the Bima and Yolde sandstones while the Copper mineralizations occur in granites. Petrographic study indicates that the diorite is largely composed of andesine plus hornblende and accessory quartz and iron oxide. The granites, on the other hand, consist essentially of quartz, microcline and orthoclase with minor biotite and iron oxide. The Bima and Yolde sandstones are composed of quartz, microcline, plagioclase and accessory biotite and opaque crystals. The large quartz and microcline crystals in both granites and sandstones are fractured. The Kanawa member of the Pindiga Formation is made up of shales interbedded with Limestones. The limestone interbeds are both crystalline and fossiliferous types. The basalts consist of labradorite laths, olivine, augite and opaques. Transmitted light petrography of the hydrothermally altered Bima and Yolde sandstones show the presence of quartz, baryte and microcline.
    [Show full text]
  • Adisa and Adekoya
    Ife Journal of Science vol. 18, no. 4 (2016) 871 ASSESSMENT OF POLLUTION BY HEAVY METALS IN SEDIMENTS OF RIVER OYI AND ITS TRIBUTARY, SOUTHWESTERN NIGERIA Adisa, A. L.1* and Adekoya, J. A.2 1 Department of Applied Geology, Federal University of Technology Akure, Nigeria. 2 Department of Geological Sciences, Osun State University, Osogbo, Osun State, Nigeria. Corresponding e-mail: [email protected]. (Received: 18th March, 2016; Accepted: 14th Nov., 2016) ABSTRACT The sediments of Rivers Oyi and Wara were sampled in order to assess the pollution status of these rivers by heavy metals. Thirty stream sediment samples were collected along channels of Rivers Oyi and Wara, bounded by Latitudes 8o 39'N and 8o 50'N and Longitudes 5o 00'E and 5o 09'E. The samples were analyzed for eight heavy metals, namely, Co, Cu, Cr, Fe, Mn, Pb and Ni after they had been partially extracted using aqua-regia digestion and analysed by Inductively Coupled Plasma Mass Spectrometry (ICP-MS). The geochemical data obtained were then subjected to univariate statistical and correlational analyses. Enrichment Factor (EF), pollution load index (PLI), geo-accumulation index (Igeo) as well as USEPA sediment quality guidelines were evaluated in order to assess the degree of pollution of the stream sediments. All the analysed heavy metals were widely distributed in the drainage system. The ranges in the concentrations of the elements were: 2.52-50.88 ppm for Cu, 1.20-12.80 ppm for Co, 5.60-41.80 ppm for Cr, 0.28-1.72 % for Fe, 89-619 ppm for Mn, 2.46-19.34 ppm for Pb, 4.80-70.60 ppm for Zn and 1.40-12.30 ppm for Ni while the mean concentrations were as follows: 10.5 ppm for Cu, 5.07 ppm for Co, 20.82 ppm for Cr, 0.83 % for Fe, 248.80 ppm for Mn, 5.79 ppm for Pb, 15.06 ppm for Zn and 6.29 ppm for Ni.
    [Show full text]
  • Structural Interpretation of Northern Sokoto Basin, Using Airborne Magnetic Data
    ISSN(Online): 2319-8753 ISSN (Print): 2347-6710 International Journal of Innovative Research in Science, Engineering and Technology (A High Impact Factor, Monthly, Peer Reviewed Journal) Visit: www.ijirset.com Vol. 7, Issue 7, July 2018 Structural Interpretation of Northern Sokoto Basin, Using Airborne Magnetic Data Ibe Stephen O.1, Uche Iduma2 Senior Lecturer, Department of Physics, Federal University Otuoke, Bayelsa State, Nigeria1 Geophysicist, Nigerian Geological Survey Agency Abuja, Nigeria 2 ABSTRACT: Analysis of high resolution aeromagnetic data was carried out to evaluate the structural complexity of Sokoto Basin, Northern Nigeria. The total magnetic intensity data covering the basin were processed and filtered using First vertical derivative (FVD) and Horizontal gradient (HG) filters. The FVD and HG were computed to enhance faults, fractures and folds. Ten major fault systems were defined trending majorly in the NE-SW direction with minor NW-SE trends. The lineament of the area was extracted and plotted to define the major trends of both major and minor structures. The lineament map and corresponding rose plot show a dominate NE-SW trend with minor NW-SE, EW and NS structures within the study area. The structural complexity was computed using the lineament map. The lineament density map shows that the eastern part of Gwadebawa, Jiga Birne, Jega, Wamako, Sokoto, Raka, Gayawa, Manu, Giden Madi, Matona, Talata Mafara, Moriki, Gada, Dakko and Baban Baki are intensely deformed. Kuka, Birnin Kebbi, Kaingwa, Binji, Satuka, Tureta, Rabah, Isa, Sabon Birni and eastern part of Raka are moderately deformed; and Satuka, Arbkwe, Bui, Kuka, Botawa, Binji, Sabon Birni, southern part of Tureta and eastern part of Manu are less deformation.
    [Show full text]
  • On the Evolution of the Kazaure Schist Belt of Nw Nigeria: a Re-Interpretation U.A
    GLOBAL JOURNAL OF GEOLOGICAL SCIENCES VOL 8, NO. 2, 2010: 207-216 207 COPYRIGHT© BACHUDO SCIENCE CO. LTD PRINTED IN NIGERIA. ISSN 1118-0579 www.globaljournalseries.com ; Email: [email protected] ON THE EVOLUTION OF THE KAZAURE SCHIST BELT OF NW NIGERIA: A RE-INTERPRETATION U.A. DANBATTA (Received 25 May 2007; Revision Accepted 17, March 2009) ABSTRACT All previous models of evolution of the Kazaure Schist Belt (KZSB) invoked a simple ensialic mechanism in the context of Pan-African deformation which led to the formation of a marginal back-arc basin floored by continental materials that accepted sediments. The closure of these basins in Pan-African times led to the deformation and metamorphism of the sediment and reactivation of older sediments. Taking into account the presence of Banded Iron Formations (BIFs), metavolcanics and the Kalangai-Zungeru-Ifewara (KZI) fault in the belt, a new model of its evolution is proposed. The new model of evolution of the KZSB considers the evolution of the belt by invoking a simple ensialic mechanism under extensional and compressional regimes, in the context of both Eburnean and Pan-African deformations, as well as Pan-African intrusion of calc-alkaline granites and volcanics. It is effective in explaining the occurrence of BIF, quartzites, conglomerates, and Pan-African granitoids in the belt; and emphasizes the presence of the KZI fault in the evolution of the Kazaure belt. The study led to the conclusion that the belt has formed through ensialic processes, and an evaluation of previous data suggested in previous works is consistent with the new view that the KZSB may represent remnants of Paleoproterozoic cover rocks infolded within an Archaean migmatite-gneiss complex during an Eburnean event, and become reactivated during the Neoproterozoic Pan-African event.
    [Show full text]
  • P-T Conditions of Pan-African Orogeny in Southeastern Nigeria
    Central European Geology, Vol. 51/4, pp. 359–378 (2008) DOI: 10.1556/CeuGeol.51.2008.4.5 P-T conditions of Pan-African orogeny in southeastern Nigeria Bassey E. Ephraim Barth N. Ekwueme Department of Geology, Niger Delta University, Department of Geology Wilberforce Island, Bayelsa State, Nigeria University of Calabar, Calabar, Nigeria Mohssen Moazzen* Monir Modjarrad Department of Geology, University of Tabriz, Department of Geology, Tabriz, Iran University of Urmia, Urmia, Iran Different rock types from the area northeast of Obudu, southeastern Nigeria were investigated in order to place constraints on their metamorphic conditions. Detailed petrographic studies indicate four main rock groups in the studied area, namely migmatitic gneiss, migmatitic schist, granite gneiss and a minor amount of amphibolite, metagabbro and dolerite. The chemistry of minerals in these rocks is used to estimate metamorphic pressure and temperature (P-T) using appropriate geothermometers and geobarometers. The estimated temperature for migmatitic gneiss of the area is ~600–625 °C and 600–650 °C for migmatitic schist; the pressure is ~ 8 kbar. For amphibolite the temperature is ~600–700 °C and pressure is 8–12 kbar. The estimated pressures and temperatures for the northeast Obudu rocks correspond to upper amphibolite to lower granulite facies metamorphism. The metamorphism occurred due to continent-continent collision during the Pan-African orogeny, most likely during the D1 deformational phase of the area. The recorded high pressures possibly resulted from crustal thickening in the area. P-T conditions for Pan-African orogeny in northeast Obudu area are in good agreement with P-T estimations for the Pan-African event in adjacent areas.
    [Show full text]
  • Geology and Structure of the Precambrian Rocks in Iworoko, Are and Afao Area, Southwestern Nigeria
    International Research Journal of Natural Sciences Vol.1, No. 1, March 2013, pp.14-29 Published by European Centre for Research Training and Development UK (www.ea-journals.org) GEOLOGY AND STRUCTURE OF THE PRECAMBRIAN ROCKS IN IWOROKO, ARE AND AFAO AREA, SOUTHWESTERN NIGERIA. Olusiji Samuel Ayodele Department of Geology, Ekiti State University, P.M.B. 5363. Ado-Ekiti. Abstract: Geologic mapping of the study area revealed three dominant lithologic units namely: banded- gneiss, migmatite-gneiss and granite-gneiss respectively. Systematic structural mapping and study of the area also confirmed the preponderance of different types of folded structures such as ptygmatic, recumbent, disharmonic and asymmetrical folds which trend E-W to NNW-EES. Other structures such as dykes, joints, quartz-veins, fractures and micro faults were also detected on the rocks. The overall results showed that the study area is a manifestation of Precambrian deformation as revealed by the magnitude and style of folding which is an indication of different episodes of deformation on the rocks in the area. Keywords : Iworoko; Are; Afao ; lithologies; Deformation; Structures 1.0 Introduction Nigeria lies to the rest of the West African Craton in the region of late Precambrian to early Paleozoic orogenesis. The Basement complex is made up of Precambrian rocks and these rocks consist of the schist belt infolded in them. The Precambrian rocks in the study area are part of the Precambrian Basement complex of Nigeria which is made up of the migmatite-gneiss complex, the schist belts and the granitoids. The main lithologic units in the study area include; granite-gneiss, migmatite-gneiss and banded-gneiss with well delineated geologic boundaries amongst others.
    [Show full text]
  • Geochemical Characterization and Ore Dressing Potential of Sokoto Phosphate Rock, Northwestern Nigeria
    Universal Journal of Geoscience 2(7): 187-194, 2014 http://www.hrpub.org DOI: 10.13189/ujg.2014.020701 Geochemical Characterization and Ore Dressing Potential of Sokoto Phosphate Rock, Northwestern Nigeria S.O. Obaje1,*, E.A. Okosun2, I.S. Amoka3, J.Z. Kwaha4 1Department of Geology, Delta State University, P.M.B. 1, Abraka, Nigeria 2Department of Geology, Federal University of Technology, Minna, P.M.B. 65, Minna, Nigeria 3Department of Civil Engineering, Nigerian Defence Academy, P.M.B. 2109, Kaduna, Nigeria 4 Department of Mineral Resources Engineering, Kaduna Polytechnic, P.M.B. 2021, Kaduna, Nigeria *Corresponding Author: [email protected] Copyright © 2014 Horizon Research Publishing All rights reserved. Abstract Investigations were carried out for and for the full extraction of uranium and gypsum from the geochemical characterization of Sokoto Phosphate rock and source mineral raw material. Sokoto phosphate rock occurs to propose a suitable ore dressing process for the recovery of mainly in nodules, while some are found as pellets, phosphate for fertilizer and allied applications. The study especially in the southern part of the study area (Figure 1). area is Iullemmeden Basin (Sokoto sector) in the According to Okosun and Alkali [19], the phosphate nodules Northwestern geopolitical zone of Nigeria. The phosphate occur either as thin nodular beds or as disseminations in rock occurs mainly in nodules, while some are found as shales and siltstones. The phosphate rock deposit has pellets, especially in the southern part of the study area. The pronounced and extensive occurrence in the Dange phosphate deposit occurs predominantly in the Dange Formation in comparison to its occurrence in the Gamba Formation and a small occurrence in the Gamba Formation.
    [Show full text]
  • Ijsrp-P8828.Pdf
    International Journal of Scientific and Research Publications, Volume 9, Issue 4, April 2019 183 ISSN 2250-3153 Late Maastrichtian to Paleocene sediments of part of Southwestern Iullemmenden Basin, Rabah Sheet 11, Sokoto State, Northwestern, Nigeria. Sulaiman, Sulaiman Abba1*, Mohammed Rilwan2 1 Department of Geology, Ahmadu Bello University, Zaria 2 Nigerian Institute for Oceanography and Marine Research, Lagos DOI: 10.29322/IJSRP.9.04.2019.p8828 http://dx.doi.org/10.29322/IJSRP.9.04.2019.p8828 Abstract- The stratigraphy and sedimentary structures of the area central region of Niger. The term Iullemmenden Basin was first around Gidan Marafa and environs of Late Maastrichtian to proposed by Raider (1957) to describe the sedimentary basin Paleocene in SW Iullemmeden Basin Nigeria. Detailed field work which extends from Mali to western boundary of the Republic of was carried out on a scale of 1:25,000 and two groups were Niger and Northwestern Nigeria into eastern Niger. The encountered. However, three Formations was studied as follows Iullemmenden Basin is a Cratonic Basin created by tectonic starting from younger to older; (2) Rima Group; only Wurno epiorogenic movement within carbonic rocks (Betrand-Safarti, Formation was found at the top of this group and are made up of 1977). Faure (1966), suggested that the emergence of plate friable, yellow-golden brown fine to medium grained sandstones tectonic theory and seafloor spreading to explain the origin of which intercalates with carboniferous mudstones. This Formation Iullemmeden Basin which was affected by series of marine is separated above with Dukanmaje Formation by bone bed with transgressions during the Paleozoic, Mesozoic and Tertiary age distinct boundary, (1) Sokoto Group; two Formations were respectively.
    [Show full text]
  • Geological Mapping, Petrological Study and Structural Analysis of Complex Rocks in Ife-South Local Government Area of Osun State South Western Nigeria
    International Journal of Research and Scientific Innovation (IJRSI) | Volume VI, Issue XI, November 2019 | ISSN 2321–2705 Geological Mapping, Petrological Study and Structural Analysis of Complex Rocks in Ife-South Local Government Area of Osun State South Western Nigeria Ojedokun Ruth Ojetejumola1* and Fawole Olakunle Ayofe2 1,2Forestry Research Institute of Nigeria, P. M. B. 5087, Jericho, Ibadan, Oyo State, Nigeria *Corresponding Author Abstract: - Geologic map is an important planning tool for the and localized mapping will help to solve problems link economic growth of a nation, it displays the arrangement of between the major rock types of the basement complex and geologic features of a particular area. It has been observed that their associated rocks which have been difficult to resolve the available geologic map of Nigeria omits some local geology of even though dating methods have been employed. These interest which is the reason local geological mapping must be solutions might only be achieved when considering the encouraged. Mapping of the Study area was carried out by traversing along dip direction i.e west east direction from one structures and rock attitudes of every small detailed area. location to another with the aid of a base map, compass Apart from the regional geologic data which is already in clinometer and a geographic positioning system. Samples were existence, more detailed localized knowledge is needed to taken across various locations where there was an outcrop, these complement the previous works and also help geologist have a samples were taken to the laboratory for further analysis. The better view of the past events and how they can initiate new result shows that the study area consist of gneiss, granite gneiss and better ideas subsequent to the known ideologies.
    [Show full text]
  • Late Proterozoic Schist Belts and Plutonism in NW Nigeria
    J. geol. Soc. London, Vol. 142, 1985, pp. 319-337, 7 figs, 1 table. Printed in Northern Ireland Late Proterozoic schist belts and plutonism in NW Nigeria W. R. Fitches, A. C. Ajibade", I. G. Egbuniwe?, R. W. HoltS & J. B. WrightS Geology Department, University College of Wales, Aberystwyth,Dyfed, UK; 'Geology Department, MinnaUniversity, Minna, Nigeria; ?.Geology Depart- ment, Federal University of Technology, PMB 0248, Bauchi, Nigeria; $Depart- ment of Earth Sciences, TheOpen University,Walton Hall, Milton Keynes, Bucks., UK. SUMMARY: The deformed, low-grade, metasedimentary-volcanic schist belts of NW Nigeria, and the voluminous granitoidplutons which invaded them,are expressions of late Proterozoic-early Phanerozoic activity in the terrain separatingthe W African and Congo cratons. Recent interpretationsof Nigerian geotectonic evolution have invoked two generations of schist belt, one aproduct of Kibaran (c. 1lOOMa) ensialic processes, theother due to Pan-African (70W50 Ma)marginal basin development. The detailed histories of the Anka Belt (Pan-African), Maru Belt (Kibaran) and Birnin Gwari Belt (unknown age), and the plutons emplaced in them, are documented here on the basis of new field, chemical and isotopic data.* Each belt represents adominantly quiet-water sedimentary environment but volumetrically minor lithologies reveal important differences between the belts. The volcanic rocks and early minor intrusions have strong affinities with those of destructive plate margins. The schist belts weredeformed congruently and simply before c. 750 Ma, following thedevelopment of flat-lying, possibly thrust-related structures in the Maru and Birnin Gwari Belts. Subsequent plutonism, beginning c. 750Ma ago, has the calcalkaline, I-type characteristics of subduction zones but younger plutons have mildly peralkaline compositions due to thickening crust.
    [Show full text]
  • A Case Study of Sokoto Basin, Northwestern Nigeria
    Journal of Natural Sciences Research www.iiste.org ISSN 2224-3186 (Paper) ISSN 2225-0921 (Online) Vol.7, No.14, 2017 Clay Minerals as Indicator of Phosphatogenesis: A Case Study of Sokoto Basin, Northwestern Nigeria Onuigbo, E.N. * Okoro, A.U. Nwokeabia, C.N. Department of Geological Sciences, Nnamdi Azikiwe University, P.M.B. 5025, Awka, Nigeria Abstract Phosphate deposits which occur in the Sokoto Basin of northwestern Nigeria is more pronounced in the shales of Dange Formation which recorded value ranges of 32- 36% P2O5. Minor occurrences were documented in shale of Dukamaje Formation and the limestone of Kalambaina Formation. However, non phosphatic siltstone, marl, shale and sandstone also occur. Clay mineral evaluation of the phosphatic and non phosphatic units was undertaken in order to study their relationship with phosphatogenesis. Result of analysis shows that the clay mineral distribution in the phosphate bearing sediments and non phosphatic units are consistently different. Kaolinite and hydrargillites are associated with phosphate bearing sediments whereas montmorillonite is typical of non phosphatic ones. The study of clay mineral distribution appears to be a good tool in phosphate exploration in an epicontinental inland basins. Keywords: Phosphatogenesis, Clay mineral, Sokoto Basin, Kaolinite, Montmorillonite, Paleocene 1. Introduction Sokoto Basin is the southern part of Lullemmeden Basin. The Lullemmeden Basin is a broader, sedimentary basin that covers northwestern Nigeria, most parts of Niger Republic, Benin Republic, Mali, Algeria and Libya (Obaje et al., 2013). Sedimentary phosphate deposits occurrences in the Sokoto Basin has been reported (e.g Kogbe, 1976; Nwabufo- Ene, 1982, 1990a and b; Haynes and Nwabufo- Ene, 1990; Okosun, 1989, 1997; Etu- Efeotor, 1998; Ogunleye et al., 2002; Adekeye and Akande, 2004; Okosun and Alkali, 2013; Obaje et al., 2013, 2014a and b; Kolo, 2014).
    [Show full text]
  • Outcrop Examples from the Anambra Basin, Southeastern Nigeria
    Journal of Petroleum Exploration and Production Technology https://doi.org/10.1007/s13202-018-0589-2 ORIGINAL PAPER - EXPLORATION GEOLOGY Signatures of key petroleum system elements: outcrop examples from the Anambra Basin, Southeastern Nigeria Chidozie Izuchukwu Princeton Dim1 · Ayonma Wilfred Mode1 · Ikenna Christopher Okwara1 Received: 15 September 2017 / Accepted: 23 November 2018 © The Author(s) 2018 Abstract Although several works have proved the existence of oil and gas in the Campanian to Maastrichtian strata of the Anambra Basin, it is still considered a frontier basin due to the challenges associated with interpretation of stratigraphy and structure arising from non-availability of subsurface data. This has led to poor understanding of the petroleum system and hindered exploration activity within the basin. This research paper aims to discuss the signatures of essential petroleum system ele- ments, based on the study of high-quality outcrop examples. Detailed field studies reveal the presence of source, reservoir and seal rocks, and traps exposed within the four lithostratigraphic units outcropping in the basin, across the southeastern part of Nigeria. The shales of Enugu Formation, offer good source rocks. The shales, coals, coaly shales and sandstones with repeated occurrence of shale–silt–sand heteroliths of the Mamu Formation provide possible source and reservoir rocks. Thick extensive sandstones with clay laminae of the Ajali Formation offer potential reservoir that are partly compartmentalized. The shales with interstratified sandstone of the Nsukka Formation provide potential cap and overburden rocks. The presence of anastomosing fracture bands, extensional joints and faults, small-scale growth faults, and rollover anticlinal structures are good evidence of structural and stratigraphic configuration that could allow for possible migration, accumulation and entrap- ment of hydrocarbon.
    [Show full text]