A Vision for Science in Public Policy

Total Page:16

File Type:pdf, Size:1020Kb

A Vision for Science in Public Policy PART 2 A Vision for Science in Public Policy Introduction: Stephen D. Nelson Good morning and welcome. Before we look ahead to the future, I want to take us back to the past a bit, really, really back to the ancient Library of Alexandria. Stephen D. Nelson is associate director of Science Founded in 288 B.C., the Library of Alexandria was a and Policy Programs at the American Association for wonder of the ancient world and a unique achievement the Advancement of Science. He directed AAAS’s Sci- of the human intellect. It represented the pinnacle of ence and Technology Fellowship Programs for 15 learning for more than six centuries and remained a years, as part of his responsibilities as program source of inspiration even after its disappearance 1,600 director of the Science, Technology and Government years ago. Program (1990–1999) and as manager of Science Now, you may know that there is a new Library of Policy Studies (1984–1999). Dr. Nelson has also Alexandria, Biblioteca Alexandria, inspired by the orig- co-authored or co-edited 42 volumes published by inal and located very close by the site of the original. It AAAS on federal funding for research and develop- includes a library for up to 8 million volumes; six spe- ment and other issues in science and technology cialized libraries; three museums for antiquities, manu- policy. scripts, and the history of science; seven research Before joining AAAS, Dr. Nelson was senior pro- institutes; several exhibition galleries, two for perma- fessional associate at the Institute of Medicine, nent exhibitions and six galleries for temporary exhibi- National Academy of Sciences, working on a study of tions; a planetarium; an exploratorium for children; and the organizational structure of the National Institutes a conference center that can accommodate 3,000 seats. of Health. He also served for six years as administra- The library receives over 250,000 visitors a year, and tive officer for science and technology policy at the it aspires to be the world’s window on Egypt, Egypt’s American Psychological Association. Before coming window on the world, a learning institute for the digital to Washington in 1977, he was project director at the age, and above all, a center for learning tolerance, dia- Center for Research on Utilization of Scientific Knowl- logue, and understanding. Through its various func- edge, Institute for Social Research at the University tions, the library has identified four main themes: of Michigan. He also taught in both the psychology science, with a special emphasis on the ethics of science and sociology departments at Michigan. He received and technology; humanities, with special emphasis on his B.A. in psychology from Kansas State University new scholarship and historical studies; arts and culture, and his Ph.D. in social psychology from the University with a special emphasis on intercultural dialogue and of Michigan. criticism; and development issues, with special emphases on water and gender. What kind of person would one select to be the A Vision for Science in Public Policy: Nelson 11 Dr. Serageldin is a director of this marvelous institution, the first head of chapters, and technical The task of looking to person of vision and the Library of Alexandria in 1,600 years? Who would papers. He has received at the future is not to try compassion, with a to predict it, which have the abilities and the capacity to direct this ambi- least 16 honorary doctorate burning sense of the probably is not pos- moral tasks facing tious center and to deal with its many facets and many degrees from institutions in sible in any sense, science and tech- challenges? Let me tell you a little bit about the person nine countries on five conti- but rather to clarify nology. who was selected, and you’ll begin to see why he was nents. He speaks three lan- choices among the different paths that a perfectly appropriate candidate for that job. And then guages fluently, Arabic, can be taken, so that after you’ve heard him speak, you will begin to under- French, and English. we can make more stand why he was exactly the right person for that job. Furthermore, as you will intelligent decisions in the present. Ismail Serageldin is an Egyptian national, born in see shortly, Dr. Serageldin is 1944. He received a bachelor’s degree of science with a person of vision and com- first-class honors from Cairo University, a master’s of passion, with a burning sense of the moral tasks facing regional planning from Harvard University, and a doc- science and technology in the world of the future or, torate from Harvard. He worked in many different more accurately, as science and technology confront the capacities at the World Bank since beginning there in possible futures of the world. For as we know, the task 1972, culminating in his service as vice president for of looking to the future is not to try to predict it, which environmentally and socially sustainable development probably is not possible in any sense, but rather to from 1992 to 1998 and vice president for special pro- clarify choices among the different paths that can be grams from 1998 to 2000. In addition, he has led taken, so that we can make more intelligent decisions numerous international bodies and committees, prima- in the present. Our speaker has spent his life doing rily on issues of development, agriculture, and poverty. exactly that, trying to help individuals and organizations Dr. Serageldin has written or edited more than 50 books make more intelligent choices in the present so that the and monographs, as well as some 200 articles, book future can be more hopeful. Let’s welcome him. 12 Vision 2033: Linking Science and Policy for Tomorrow’s World Ismail Serageldin I’m delighted and honored to share some thoughts with Today, the third global revolution is really the knowl- you about the issues that will be facing science in 2033. edge revolution. For the first time, a Web connects People have different views on that subject, of course, knowledge and researchers around the world. People and I would like to present a view that is truly global, doing research in Japan know what’s happening in recognizing that, if the United States is the locomotive Brazil. People doing work in India know what’s hap- and humankind is the train, we nevertheless are all pening in the United States, and vice versa. It is all together in this global environment. thanks, of course, to both the enormous expansion of Allow me to start by discussing the age of science computing and the incredible extension of communica- and the paradox of our times—notably, the coexistence tions. Modern communications have made it possible to of enormous wealth with resource constraints and remain instantaneously in contact around the planet poverty. I will talk about the vast potential power that is almost at all times, a feat that would have been unthink- arising from the new science and technology, as well as able 30 years ago. the need to temper that power with a new ethics. But the digital revolution goes deeper, because the Finally, I will close with a few words about scientists’ ones and zeroes that make up the language of bits and responsibility to engage in public debates, to bring the bytes in effect constitute a common language that values of science into policy discussions, and to turn the brings together image, voice, text, data, and music. As focus of scientific inquiry to the pressing problems that a result, we witness mergers and acquisitions of a we see around us today. nature we never saw before, and we see them all right There are more scientists alive today than have lived on our personal computers. But, as we all know, it is not throughout all of the preceding millennia. Science per- just a single computer that is the strength of the new meates the cultural outlook of more people than ever revolution; it is the networking of these computers, before, and science has yielded enormous improve- their ability to connect with each other, that creates Science permeates the cultural outlook ments in human welfare. We are now moving into what these global exchanges of knowledge, both for com- of more people than I will term the third global revolution, a knowledge- merce and for science. They permeate our existence to ever before, and sci- based society in which science is central. The first global such an extent that we really cannot believe what ence has yielded enormous improve- revolution was the agricultural revolution, without would happen if, for any reason, there was a hang-up. ments in human wel- which there would not have been civilized human exis- We rely every day on that network of communications, fare. tence and cultures would not have arisen. To this day, often in countless ways we don’t even see or realize, of course, it is the surplus produced by farmers that whether for scheduling trains or organizing production allows the cities to exist. We can sometimes forget that in manufacturing, whether for checking bank transac- our foundation is agricultural, just as our youngsters, if tions, or tracking deliveries, or performing any other asked where food comes from, respond that it comes task that requires comparing or manipulating data. from the supermarket. New digital processes are also revolutionizing our The second great revolution, of course, was the most basic notions about technology. Everything seems industrial revolution, which transformed the relation- to be getting smaller and smaller.
Recommended publications
  • Technology, Development and Economic Crisis: the Schumpeterian Legacy
    CIMR Research Working Paper Series Working Paper No. 23 Technology, development and economic crisis: the Schumpeterian legacy by Rinaldo Evangelista University of Camerino Piazza Cavour, 19/F, 62032 Camerino (IT) +39-0737-403074 [email protected] June 2015 ISSN 2052-062X Abstract This contribution aims at highlighting the complex, non-linear and potentially contradictory nature of the relationships between technological progress, economic growth and social development, in particular within the context of market based economies. The main (provocative) argument put forward in the paper is that the recent neo-Schumpeterian literature, while providing fundamental contributions to our understanding of innovation, has contributed to the rising of a positivistic reading of the relationship between technology, economy and society, with technology being able to guaranty strong economic growth and (implicitly) social welfare. This is confirmed by the fact that, contrary to other influential heterodox economic schools and Schumpeter himself, in the recent neo- Schumpeterian literature technology is only rarely associated to macroeconomic market failures such as systemic crises, structural unemployment, and the growth of social and economic inequalities. It is also argued that the emergence of a “positivistic bias” in the neo-Schumpeterian literature has been associated to the dominance of a supply-side and micro-based view of the technology-economy relationships. Key words: Technology, Innovation, Schumpeter, Development, Crisis JEL codes: B52, O00, O30. 2 1. Introduction There is no doubt that the last economic crisis, with its depth, extension and length, could have, at least in principle, the potentiality of shaking at the fundamentals the dominant neo-liberal economic thinking and policy framework.
    [Show full text]
  • Technology Policy and the Environment
    SUSTAINABLE DEVELOPMENT « Technology Policy and the Environment What is the role of technology and technology policy in addressing environmental concerns and realising sustainable development goals? To consider this question, a Workshop on Technology Policy Technology Policy and the Environment was held in Paris on 21 June 2001 as part of the OECD Horizontal Programme on Sustainable Development. This brochure contains a summary of the workshop discussions, which and the Environment focused on the contributions of economic theory and modelling to understanding technology/ environment relationships. Participants debated the role and design of technology policy in addressing environmental problems and developed a list of recommendations for future OECD work. The insights gained at the workshop will contribute to further OECD analysis on technology and sustainable development. SUSTAINABLE DEVELOPMENT www.oecd.org 2000 Technology Policy and the Environment ORGANISATION FOR ECONOMIC CO-OPERATION AND DEVELOPMENT ORGANISATION FOR ECONOMIC CO-OPERATION AND DEVELOPMENT Pursuant to Article 1 of the Convention signed in Paris on 14th December 1960, and which came into force on 30th September 1961, the Organisation for Economic Co-operation and Development (OECD) shall promote policies designed: – to achieve the highest sustainable economic growth and employment and a rising standard of living in Member countries, while maintaining financial stability, and thus to contribute to the development of the world economy; – to contribute to sound economic expansion in Member as well as non-member countries in the process of economic development; and – to contribute to the expansion of world trade on a multilateral, non-discriminatory basis in accordance with international obligations. The original Member countries of the OECD are Austria, Belgium, Canada, Denmark, France, Germany, Greece, Iceland, Ireland, Italy, Luxembourg, the Netherlands, Norway, Portugal, Spain, Sweden, Switzerland, Turkey, the United Kingdom and the United States.
    [Show full text]
  • Japanese Technology Policy: History and a New Perspective
    DPRIETI Discussion Paper Series 01-E-001 Japanese Technology Policy: History and a New Perspective HARAYAMA Yuko RIETI The Research Institute of Economy, Trade and Industry http://www.rieti.go.jp/en/ RIETI Discussion Paper Series 01-E-001 JAPANESE TECHNOLOGY POLICY: HISTORY AND A NEW PERSPECTIVE Yuko Harayama Research Institute of Economy, Trade and Industry August 2001 Abstract The last decade of the 20th century was marked by the emergence of a "knowledge-based economy," with governments in most OECD countries intensifying their commitment to the underlying research and development activities. Japan is no exception. The Japanese government affirmed setting the objectives of a "Nation Based on Science and Technology" as the fundamental policy goal in 1980 and since then it has implemented several laws and policy packages in the fields of science, technology, industry and higher education, with the common denominator being "Industry-University- State cooperation." This policy orientation has been consolidated by the Science and Technology Basic Law, introduced in 1995, which gave the government legal competence in science and technology. This trend tends to reinforce stereotypic images of the Japanese innovation system, such as the "government picking up technological paths" or "industry and government working hand-in-hand." Does this perception reflect reality? This study attempts to clarify this by examining: · How the technology policy evolved during the postwar period in Japan; · What its impact was on the private sector's decision on R&D activities; · What the underlying philosophy was of the government's R&D policies, if one existed; · What the new perspective is.
    [Show full text]
  • The Future Is Now: Science and Technology Policy in America Since 1950
    History Books History 2007 The uturF e is Now: Science and Technology Policy in America Since 1950 Alan I. Marcus Amy Bix Iowa State University, [email protected] Follow this and additional works at: http://lib.dr.iastate.edu/history_books Part of the History of Science, Technology, and Medicine Commons Recommended Citation Marcus, Alan I. and Bix, Amy, "The uturF e is Now: Science and Technology Policy in America Since 1950" (2007). History Books. 7. http://lib.dr.iastate.edu/history_books/7 This Book is brought to you for free and open access by the History at Iowa State University Digital Repository. It has been accepted for inclusion in History Books by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. CONTENTS Introduction 7 Chapter I In the Beginning 13 Chapter 2 Coming Apart 61 Chapter 3 From Malaise to Morning in America 153 Chapter 4 Oscillations and Perturbations through Manipulations: Rise of the New Politics 203 Coda 287 Endnotes 293 Index 309 5 I NTRDDUCTI ON cience and technology are the essential building blocks of con­ Stemporary American society and governance. "Smart" bombs and other sophisticated weapons replace countless soldiers. Hybrid seeds, biotechnology, and fertilizers are the basis of agricultural pro­ ductivity. Job creation, global competitiveness, and the American standard of Jiving stand as the consequence of scientific insight and technological application. Acquisition of knowledge and provision of information and communication, whether through electronic impulses or on land, rest on science and technology. The effects of science and technology are immediate and abun­ dant.
    [Show full text]
  • Forget Politicizing Science. Let's Democratize Science!
    DAVID H. GUSTON Forget Politicizing Science. Let's Democratize Science! Since the publication last year by them of being somewhat insincere, Rep. Henry Waxman (D-Ca.) of a in the same way that Louis, the report alleging that the Bush ad- Science advising in Vichy Prefect of Police in Casa- ministration has been inappropri- blanca, was "shocked, shocked" ately manipulating scientific re- government is to find gambling in the back room ports and advisory committees, unavoidably at Rick's, even as he collected his science policy has become an issue own winnings. From the $120 bil- with surprisingly long political political, but we lion for scientific R&D that the legs. The administration dismissed must make a government provides, to the petty Waxman's report as a partisan dis- power plays that plague depart- tortion and a politicization of sci- concerted effort to mental governance, science is ence in its own right. But this ensure that it is deeply political. Asking whether charge became somewhat harder science is politicized distracts us to sustain with the publication of democratic. from asking. "Who benefits and a like-minded report by the Union loses from which forms of politi- of Concerned Scientists and a let- cization?" and "What are the ap- ter, signed by a left-leaning but still propriate institutional channels for bipartisan group of scientists, again and Technology Policy, eventually political discourse, influence, and alleging that the administration has responded with his own defen- action in science?" Arguing over inappropriately played politics with sively toned report. The political whether science is politicized ne- the findings of government scien- right also took aim with a critique glects the more critical question: tists and with appointments to fed- of leftist science in Politicizing Sci- "Is science democratized?" eral scientific advisory panels.
    [Show full text]
  • Some Notes on Theories of Technology, Society and Innovation Systems for S&T Policy Studies
    1 Some notes on theories of Technology, Society and Innovation Systems for S&T policy studies Mónica Salazar-Acosta and Adam Holbrook CPROST Report 08-02 2 3 Some notes on theories of technology, society and innovation systems for science and technology policy studies Mónica Salazar-Acosta and Adam Holbrook, with editorial comments by Glenda Shaw-Garlock CENTRE FOR POLICY RESEARCH ON SCIENCE AND TECHNOLOGY SIMON FRASER UNIVERSITY Vancouver BC Report 08-02 Introduction Does technology shape society, or does society influence our technological choices? Is technological determinism a theory of society or a theory of technology? The debate on Science, Technology and Society (STS) studies has been animated by two opposite views on technology: one that affirms that technology shapes society, and the other that society shapes technology. The former, is commonly associated with the notion of technological determinism; while the latter could be labeled ‘social shaping of technology’ which covers various approaches, such as social constructivism and actor-network theory. Neither provides an overall view: one looks at the forest and the other at the trees, but both have failed to give us a comprehensive view of technological change and the major forces driving social change. What follows is an examination of technological determinism – the shaping of society by technology - and the influence of society on the evolution of technology . It does not pretend to be exhaustive or representative of the most recent scholarship on the subject. A good, recent,
    [Show full text]
  • Technology Policy and Complex Strategic
    Technology Policy and Complex Strategic Alliance Networks in the Global Semiconductor Industry: An Analysis of the Effects of Policy Implementation on Cooperative R&D Contract Networks, Industry Recovery, and Firm Performance DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Travis Aaron Whetsell, M.P.A. Graduate Program in Public Policy and Management The Ohio State University 2017 Dissertation Committee: Caroline S. Wagner, Advisor Michael J. Leiblein Trevor L. Brown Anand Desai Copyrighted by Travis Aaron Whetsell 2017 Abstract This research analyzes the impact of U.S. Federal technology policy on the emergence of a complex network of strategic alliances in the semiconductor industry during a critical period in its evolution. During the mid-1980s the U.S. region of the global semiconductor industry was on the verge of collapse. A tectonic shift in the technological landscape occurred favoring the robust networked organizational form found in the Japanese keiretsu, and by 1985 Japan had taken the largest share of the global market. In the United States, industry leaders and policymakers moved to support and protect the U.S. manufacturing and supply infrastructure, crafting an organizationally innovative technology policy, called Sematech, which was implemented in 1987. Sematech was a public-private industry consortium that included fourteen U.S. firms, featuring sponsorship and protection by the U.S. Department of Defense (DOD) and the Defense Advanced Research Projects Agency (DARPA). Sematech is widely regarded as a critical element in the recovery of the U.S. region of the semiconductor industry.
    [Show full text]
  • Science and Technology Policy Research in the EU: from Framework Programme to HORIZON 2020
    social sciences $€ £ ¥ Article Science and Technology Policy Research in the EU: From Framework Programme to HORIZON 2020 Junic Kim and Jaewook Yoo * School of Business, Konkuk University, Seoul 05029, Korea; [email protected] * Correspondence: [email protected] Received: 2 April 2019; Accepted: 9 May 2019; Published: 15 May 2019 Abstract: Science and Technology policy is regarded as an essential factor for future growth in the EU, and Horizon 2020 is the world’s most extensive research and innovation programme created by the European Union to support and encourage research in the European Research Area (ERA). The purpose of this study is to analyse and evaluate the changes to the EU’s science and technology policies from Framework Programme to Horizon 2020 and to provide vital information to research organisations and academia to conceive and conduct future research on international cooperation with the EU. Through a policy analysis, this study summarised the four science and technology policy implications: (1) building ecosystems through mutual complementation among industries, (2) solving social problems through science and technology, (3) strengthening SMEs’ participation, and (4) sharing knowledge and strengthening collaboration with non-EU countries. Keywords: European Union; Horizon 2020; Framework Programme; R & D; STI Policy 1. Introduction Over the past decade, the European Union (EU) has faced a situation in which economic growth and jobs have been lost because of the recent financial crisis, and sustainable economic growth does not appear easy in the future. Due to the economic and financial crisis, the EU’s GDP declined to 4% in 2009, industrial production fell to levels characterising the 1990s’ levels, and unemployment increased to include 9.6% of the economically active population.
    [Show full text]
  • Scientific Innovation, Philosophy, and Public Policy
    SCIENTIFIC INNOVATION, PHILOSOPHY, AND PUBLIC POLICY Edited by Ellen Frankel Paul, Fred D. Miller, Jr., and Jeffrey Paul (1996) CAMBRIDGE UNIVERSITY PRESS PROPERTY RIGHTS THEORY AND THE COMMONS: THE CASE OF SCIENTIFIC RESEARCH By ROBERT P. MERGES I. INTRODUCTION For some time now, commentators in and out of the scientific community have been expressing concern over the direction of scientific research. Cogent critics have labeled it excessively commercial, out of touch with its “pure,” public-spirited roots, and generally too much a creature of its entrepreneurial, self-interested times. In most if not all of this and wringing, the scientific community's growing reliance on intellectual property rights, especially patents, looms large. Indeed, for many the pursuit of patents is emblematic of just what is rotten in the republic of science today. These concerns with property rights, and commercialization of science in general, spring from a number of motivations. For some, the issue is strictly utilitarian. Under this view of things, the traditional division of labor between the public and private spheres has proven so effective-contributing as it has to the development of such modern indispensables as semiconductors, penicillin, and jet transportation-that to change our approach now is sheer madness.1 For these observers of the latest trends in science, the changes currently afoot are a threat to kill (or at least cripple) the goose that has laid before us, like so many golden eggs, many of the conveniences we take for granted. Others are concerned for different reasons. They express a more fundamental objection: that commercializing the heretofore noble, pure, and otherwise untainted field of science is not just poor policy, but intrinsically bad.2 They are consumed with the notion that current trends threaten to undermine not simply an effective set of institutions, but ultimately a successful part of our shared public life-what they might characterize as 1.
    [Show full text]
  • LD5655.V855 1993.C655.Pdf (11.60Mb)
    SCIENTIFIC DISCOURSE, SOCIOLOGICALT HEORY, AND THE STRUCTURE OF RHETORIC by James H. Collier Thesis submitted to the Faculty of the Virginia Polytechnic Institute and State University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE in Science and Technology Studies APPROVED: Y— Joseph C. Pitt, Chair Aone ble EtaaT hone, Steve Fuller Elisworth Fuhrman April, 1993 Blacksburg, VA LD S635 VE5S , DaQa cose} aM’~ Scientific Discourse, Sociological Theory, and the Structure of Rhetoric James H. Collier Graduate Program in Science and Technology Studies Chair: Joseph C. Pitt (ABSTRACT) This thesis examines the rhetorical, analytical and critical efficacy of reflexivity and sociological theory as means for reconciling the normative and descriptive functions of the rhetoric of science. In attempting to define a separate research domain within Science Studies, rhetoric of science has borrowed Strong Program and constructivist principles and descriptions of scientific practice from the Sociology of Scientific Knowledge (SSK) as a basis for analyzing scientific discourse. While epistemological claims in the social sciences have been considered inherently self-referential and subject to reflexive analysis and critique, rhetoricians have generally taken these claims on face value and applied them to a treatment of scientific practice. Accordingly, rhetoricians have maintained a natural ontological attitude to sociological theories and descriptions supporting an understanding of scientific discourse as implicitly rhetorical. Recently, however, the concept of "rhetoric" in rhetoric of science has come under scrutiny. This thesis will connect arguments involving the relation of the "irreducibly social" nature of science, to a concept of scientific discourse as rhetorical "without remainder,” to the philosophical commitments of reflexive analysis.
    [Show full text]
  • Public Response to RFI on AI
    White House Office of Science and Technology Policy Request for Information on the Future of Artificial Intelligence Public Responses September 1, 2016 Respondent 1 Chris Nicholson, Skymind Inc. This submission will address topics 1, 2, 4 and 10 in the OSTP’s RFI: • the legal and governance implications of AI • the use of AI for public good • the social and economic implications of AI • the role of “market-shaping” approaches Governance, anomaly detection and urban systems The fundamental task in the governance of urban systems is to keep them running; that is, to maintain the fluid movement of people, goods, vehicles and information throughout the system, without which it ceases to function. Breakdowns in the functioning of these systems and their constituent parts are therefore of great interest, whether it be their energy, transport, security or information infrastructures. Those breakdowns may result from deteriorations in the physical plant, sudden and unanticipated overloads, natural disasters or adversarial behavior. In many cases, municipal governments possess historical data about those breakdowns and the events that precede them, in the form of activity and sensor logs, video, and internal or public communications. Where they don’t possess such data already, it can be gathered. Such datasets are a tremendous help when applying learning algorithms to predict breakdowns and system failures. With enough lead time, those predictions make pre- emptive action possible, action that would cost cities much less than recovery efforts in the wake of a disaster. Our choice is between an ounce of prevention or a pound of cure. Even in cases where we don’t have data covering past breakdowns, algorithms exist to identify anomalies in the data we begin gathering now.
    [Show full text]
  • Who Needs Technology Policy?
    TECHNOPOLICY BRIEF 4 WHO NEEDS TECHNOLOGY POLICY? Ha-Joon Chang AFRICAN TECHNOLOGY POLICY STUDIES NETWORK Published by The African Technology Policy Studies Network, P.O. Box 10081, 00100 General Post Office, Nairobi, Kenya. © 2002 African Technology Policy Studies Network (ATPS) Printed by ISBN: 9966-916-18-0 ABOUT THE AFRICAN TECHNOLOGY POLICY STUDIES NETWORK The African Technology Policy Studies Network (ATPS) is a multi-disciplinary net- work of researchers, policy makers, actors in the private sector and other end-users interested in generating, promoting and strengthening innovative science and tech- nology policies in Africa. With a regional secretariat in Nairobi, the network operates through national chapters in 17 African countries, with an expansion plan to cover the entire sub-Saharan Africa. One of the objectives of the network is to disseminate research results to policy makers, legislators, the organized private sector, civil society, mass media and farm- ers’ groups through publications, dialogue and advocacy. Among its range of publi- cations are the Working Paper Series (WPS), Research Paper Series (RPS), Special Paper Series (SPS) and the Technopolicy Briefs. Technopolicy Briefs Series are commissioned short papers written by ex- perts from all over the world specifically to address current science and technology policy concerns and questions in Africa. The briefs are also summaries of technical papers published under our WPS, SPS and RPS writ- ten to highlight significant policy recommendations. These briefs are writen with the busy policymakers and non-specialists in mind. The materials are designed for general readership and help advance the advocacy and knwoledge brokerage roles of the ATPS.
    [Show full text]