Preparative Scale Mass Spectrometry: a Brief History of the Calutron

Total Page:16

File Type:pdf, Size:1020Kb

Preparative Scale Mass Spectrometry: a Brief History of the Calutron ACCOUNT AND PERSPECTIVE Preparative Scale Mass Spectrometry: A Brief History of the Calutron Alfred L. Yergey National Institute of Child Health and Human Development, Bethesda, Maryland, USA A. Karl Yergey Department of History, West Virginia University, Morgantown, West Virginia, USA Calutrons were developed in the laboratory of E. O. Lawrence at the University of California at Berkeley. They were a modification of the cyclotrons he had invented and used in his Noble Prize winning investigations of the atomic nucleus. At the time their construction was undertaken, calutrons represented the only certain means of preparing enriched uranium isotopes for the construction of a fission bomb. The effort was successful enough that every atom of the 42 kg of 235U used in the first uranium bomb had passed through at least one stage of calutron separation. At peak production, the first stage separators, a tanks, yielded an aggregate 258-g/d 235U enriched to about 10 at. % from its natural abundance level of 0.72 at. %. The second stage separators, b tanks, used the 10 at. % material as feedstock and produced a total 204-g/d 235U enriched to at least 80 at. %. The latter, weapons grade, material was used in fission bombs. Under typical operating conditions, each a tank operated at a uranium beam intensity at the collectors of approximately 20 mA and each b tank at a beam intensity of approximately 215 mA at the collectors. Bulk separation of isotopes for bomb production ceased in 1945. Since that time calutrons have been used to separate stable isotopes, but on a more limited scale than wartime weapons production. Stable isotope separations since 1960 have taken place using one modified beta tank. (J Am Soc Mass Spectrom 1997, 8, 943–953) © 1997 American Society for Mass Spectrometry he purpose of this Account and Perspective is to separation in 1941, and produced 200 g of 12 at. % 235U recount the story of the development and use of by February, 1942. While this separation represents Tpreparative scale mass spectrometers, the more than a 15-fold increase in enrichment from the calutrons. The initial development of these electromag- natural abundance level of 0.72 at. %, it was only about netic isotope separators occurred as part of the Manhat- one seventh of the enrichment estimated at that time to tan Project. Since this critical war effort, the Atomic be necessary for an atomic weapon. Remarkably, within Energy Commission and its successor, the Department 18 months, 43 kg of weapons grade, i.e., $85 at. % of Energy, have used calutrons to separate isotopes that enrichment, 235U had been produced. This amount of are used for physical and biomedical research. For fissionable isotope required more than 5000 kg of nat- example, calutrons have been operated, under ISO 9000 ural abundance uranium to have passed through the conditions, to separate an isotope for a cancer treatment calutrons! protocol approved by the Food and Drug Administra- Despite the fact that the events recounted below tion. occurred more than 50 years ago, complete details of Using calutrons for peaceful purposes yields tens to how this astounding feat was accomplished cannot be hundreds of grams per year of highly enriched, physi- cally and biomedically significant isotopes which are obtained by the public. We were initially surprised at often minor components of an element’s natural isoto- our inability to have access to such materials pertinent pic distribution. However, this important and impres- to the work done during World War II. We found that sive contribution to research pales in significance to the while few, if any, of the individual aspects of the magnitude of the accomplishments in the period of calutron development and production work are classi- 1940–1945 [1]. The Y-12 project, the wartime name for fied today, aspects of the wartime work that would calutrons, originated as a concept for large scale isotope provide detailed information about production rates and operational efficiency are not available to the Address reprint requests to Alfred L. Yergey, 10 Center Drive, MSC 1580, public. When one realizes that during the recent Persian Room 6C208, Bethesda, MD 20892. E-mail: [email protected] Gulf War, calutrons were found to be part of the Iraqi © 1997 American Society for Mass Spectrometry. Published by Elsevier Science Inc. Received January 16, 1997 1044-0305/97/$17.00 Revised May 12, 1997 PII S1044-0305(97)00123-2 Accepted May 12, 1997 944 YERGEY AND YERGEY J Am Soc Mass Spectrom 1997, 8, 943–953 government’s atomic weapons development program nuclear fragments and a great deal of energy. Hahn and [2], the basic wisdom for such restrictions is apparent. Strassman’s investigations allowed them to identify This account of the development and use of radioactive barium as a product, measure an energy calutrons is a composite of both the history of a portion release of about 200 MeV and observe the production of of mid-20th century physics and the history of the additional neutrons [9]. Their colleague Lise Meitner Manhattan Project. It differs from accounts of those calculated that these results were entirely consistent areas because it considers events in either of them only with the equivalence of mass and energy [10]. Within a as they bear on calutron development. In this sense, the week of the publication of Hahn and Strassman’s work, following account is unique. For those interested in a there was wide recognition that such results might lead broader picture of early 20th century physics or the to an atomic bomb [11, pp. 252–261; 12, p. 7]. Manhattan Project, an annotated reading list is given as In this same year, Nazi Germany expanded rapidly. an Appendix. Germany annexed Austria in March and the Czechoslo- vak Sudetenland in September. By March, 1939, the Historical Background remainder of Czechoslovakia had been seized. The potential consequences of an atomic weapon in the Between 1927 and 1931 Ernest Lawrence invented the hands of the Third Reich prompted grave concerns cyclotron in order to generate protons with sufficient among a number of scientists who had fled the Nazi energy to disrupt the atomic nucleus and explore inter- regime and settled in the United States. Prominent actions between those protons and the nucleus. Theo- among this group were Leo Szilard, Enrico Fermi, retical calculations at the time estimated that 1-MeV Edward Teller, and Eugene Wigner. While the plans of protons would be required for this task. In 1927 Law- German physicists were not known to this group, it was rence saw reports of European work using a linear certain that the Germans, in principle, were very capa- accelerator to generate high energy particles. Lawrence ble of developing an atomic weapon. The group began realized that to obtain 1-MeV protons from such devices to plan ways to circumvent Germany’s acquisition of would require prohibitively long tubes. In his biogra- such a weapon. phy, Herbert Childs describes Lawrence’s next step in a Planning by the group of concerned scientists re- manner that makes it clear that the step was pure sulted in a letter from Albert Einstein to President inspiration [3, p. 139]. Lawrence realized that using a Franklin D. Roosevelt [11, pp. 305–315]. Dated August magnetic field could confine accelerating particles to 2, 1939, but not delivered until October 11, the letter circular trajectories, thereby giving all particles constant was presented to the President by his long-time infor- angular velocity. The radius of the particle trajectories mal advisor, Alexander Sachs, an economist trained in would, however, depend on their energy. The particles biology and interested in physics. The delay in deliver- underwent successive resonant acceleration through ing the letter was caused by the pressure of world the application of radiofrequency voltage across the events. Between the letter’s writing and delivery, gaps of magnet pole pieces, the “Dees.” In 1929 Law- Adolph Hitler and Josef Stalin signed the German– rence and Niels Edlefsen, his first graduate student, Soviet Non-Aggression Pact, and Germany invaded assembled a 4-in.-diameter version of the device [4]. Poland on September 1. The President’s initial response Initially this device produced 1300-eV protons. Use of a to the letter and to Szilard’s appended comments has stronger magnet led to 80-kV protons. By July, 1931, been described as one of “skeptical interest” [12, p. 14]. Lawrence had designed and constructed a 1-MeV pro- Another report states that Roosevelt immediately called ton instrument. in his aide, General Edward M. “Pa” Watson, and told In 1932 Cockroft and Walton reported that a Li target him that “this requires action” [11, p. 314]. In either bombarded with high energy protons yielded a pair of case, Lyman Briggs, then director of the National Bu- a particles accompanied by the release of 8.62 MeV [5]. reau of Standards, was directed to organize what be- Within a few months, the work had been replicated at came known as the Advisory Committee on Uranium. the University of California at Berkeley [6]. The accel- At the initial meeting of the Advisory Committee held erator results were used by Kenneth Bainbridge in on October 12, 1939, Army and Navy ordinance experts, conjunction with mass spectrometric measurements to Lt. Col. Keith F. Adamson and Cdr. Gilbert C. Hoover, demonstrate the equivalence of mass and energy [7]. were openly skeptical of the possibility of an atomic Bainbridge used his exact mass measurement of 7Li and weapon or of its possibility of being used in the present F. W. Aston’s measurements of the masses of hydrogen war [11, pp. 315–317]. Their cautious attitude out- and helium [8] for the calculation.
Recommended publications
  • Building 9731 – Secret City Festival’S Y-12 Public Tour Or: Building 9731 to Be Featured in Secret City Festival's Public Tour (Title Provided by the Oak Ridger)
    Building 9731 – Secret City Festival’s Y-12 public tour Or: Building 9731 to be featured in Secret City Festival's public tour (title provided by The Oak Ridger) In March 1943 the very first structure to be completed at the newly emerging Y-12 Electromagnetic Separation Plant was Building 9731. It was only a little over a month earlier that ground had been broken for the first of nine major buildings designed to hold cautrons (CALifornia University Cyclotron). But the real push had been to complete the construction of a smaller building, one with a high bay and especially designed to house four very special units of newly designed equipment using huge magnets. The Alpha Calutron magnets stand well over 20 feet tall and are still standing there today―the only ones in the world! For the first time ever, the public will have a chance to see these huge magnets and will also be able to tour inside historic Building 9731. This historic event is a part of the Secret City Festival this year. On Saturday, June 19, 2010, from 9:00 AM to 4:00 PM, a major part of the Y-12 public tour will include Building 9731. The public will be allowed to see inside the historic structure and view the magnets of both the two Alpha and two Beta calutrons. These calutron magnets have been designated as Manhattan Project Signature Artifacts by the Depart- ment of Energy’s Federal Preservation Officer in the DOE Office of History and Heritage Resources. The building is being submitted for Historical Landmark status on the National Register of Historic Places.
    [Show full text]
  • Secrets Jeremy Bernstein
    INFERENCE / Vol. 6, No. 1 Secrets Jeremy Bernstein Restricted Data: The History of Nuclear Secrecy in the decided to found a rival weapons laboratory. Even if Teller United States had offered me a job, I doubt that I would have accepted.3 by Alex Wellerstein After obtaining my degree, I was offered a job that University of Chicago Press, 528 pp., $35.00. would keep me in Cambridge for at least another year. One year became two and at the end of my second year I was uclear weapons have been shrouded in secrecy accepted at the Institute for Advanced Study in Princeton. from the very beginning. After plutonium was It was around this time that the chairman of the physics discovered at the University of California in department at Harvard, Kenneth Bainbridge, came to me NDecember 1940, researchers led by Glenn Seaborg submit- with an offer. Bainbridge had been an important figure at ted a pair of letters to the Physical Review. The details of Los Alamos during the war. Robert Oppenheimer had put their discovery were withheld from publication until after him in charge of the site in New Mexico where the Trinity the war.1 Once the project to make a nuclear weapon got test had taken place.4 Bainbridge told me that the labora- underway, secrecy became a very serious matter indeed. tory was offering summer jobs to young PhDs and asked The story of these efforts and how they evolved after the if I was interested. I was very interested. Los Alamos had war is the subject of Alex Wellerstein’s Restricted Data: an almost mystical significance for me due to its history The History of Nuclear Secrecy in the United States.
    [Show full text]
  • Fleming Vs. Florey: It All Comes Down to the Mold Kristin Hess La Salle University
    The Histories Volume 2 | Issue 1 Article 3 Fleming vs. Florey: It All Comes Down to the Mold Kristin Hess La Salle University Follow this and additional works at: https://digitalcommons.lasalle.edu/the_histories Part of the History Commons Recommended Citation Hess, Kristin () "Fleming vs. Florey: It All Comes Down to the Mold," The Histories: Vol. 2 : Iss. 1 , Article 3. Available at: https://digitalcommons.lasalle.edu/the_histories/vol2/iss1/3 This Paper is brought to you for free and open access by the Scholarship at La Salle University Digital Commons. It has been accepted for inclusion in The iH stories by an authorized editor of La Salle University Digital Commons. For more information, please contact [email protected]. The Histories, Vol 2, No. 1 Page 3 Fleming vs. Florey: It All Comes Down to the Mold Kristen Hess Without penicillin, the world as it is known today would not exist. Simple infections, earaches, menial operations, and diseases, like syphilis and pneumonia, would possibly all end fatally, shortening the life expectancy of the population, affecting everything from family-size and marriage to retirement plans and insurance policies. So how did this “wonder drug” come into existence and who is behind the development of penicillin? The majority of the population has heard the “Eureka!” story of Alexander Fleming and his famous petri dish with the unusual mold growth, Penicillium notatum. Very few realize that there are not only different variations of the Fleming discovery but that there are also other people who were vitally important to the development of penicillin as an effective drug.
    [Show full text]
  • Cave Archaeology and the NSS: 1941–2006
    George Crothers, P. Willey, and Patty Jo Watson – Cave archaeology and the NSS: 1941–2006. Journal of Cave and Karst Studies, v. 69, no. 1, p. 27–34. CAVE ARCHAEOLOGY AND THE NSS: 1941–2006 GEORGE CROTHERS1,P.WILLEY2, AND PATTY JO WATSON3 Abstract: Like most other branches of speleology, cave archaeology in the U.S. grew and developed significantly during the mid to late twentieth century. Originally viewed as marginal to mainstream Americanist archaeology, pursuit of prehistoric and historic archaeology underground is now widely accepted as making valuable contributions to knowledge of human past. The National Speleological Society played a central role in that development and continues to do so. We outline the establishment and growth of cave archaeology in North America, with special emphasis on relations between the NSS and archaeology performed in dark zone, deep cave interiors. INTRODUCTION 1920s and 1930s by ‘‘the Caveman,’’ as Neville was often called. The NSS has directly participated in cave archaeology Despite interest in cave archaeology within the NSS through cooperation, education, and conservation. Mem- governance and some portion of the membership during bers of the Society have made notable contributions to the the first few decades after the organization was formed, science by reporting the location of archaeological sites, systematic, long-term archaeological research by pro- participating in their investigation, and by equipping fessional archaeologists in the dark zones of big caves in scientists with the techniques and technology needed to the Americas did not get underway until the 1960s. There work safely in the cave environment (Damon, 1991, p.
    [Show full text]
  • Trinity Scientific Firsts
    TRINITY SCIENTIFIC FIRSTS THE TRINITY TEST was perhaps the greatest scientifi c experiment ever. Seventy-fi ve years ago, Los Alamos scientists and engineers from the U.S., Britain, and Canada changed the world. July 16, 1945 marks the entry into the Atomic Age. PLUTONIUM: THE BETHE-FEYNMAN FORMULA: Scientists confi rmed the newly discovered 239Pu has attractive nuclear Nobel Laureates Hans Bethe and Richard Feynman developed the physics fi ssion properties for an atomic weapon. They were able to discern which equation used to estimate the yield of a fi ssion weapon, building on earlier production path would be most effective based on nuclear chemistry, and work by Otto Frisch and Rudolf Peierls. The equation elegantly encapsulates separated plutonium from Hanford reactor fuel. essential physics involved in the nuclear explosion process. PRECISION HIGH-EXPLOSIVE IMPLOSION FOUNDATIONAL RADIOCHEMICAL TO CREATE A SUPER-CRITICAL ASSEMBLY: YIELD ANALYSIS: Project Y scientists developed simultaneously-exploding bridgewire detonators Wartime radiochemistry techniques developed and used at Trinity with a pioneering high-explosive lens system to create a symmetrically provide the foundation for subsequent analyses of nuclear detonations, convergent detonation wave to compress the core. both foreign and domestic. ADVANCED IMAGING TECHNIQUES: NEW FRONTIERS IN COMPUTING: Complementary diagnostics were developed to optimize the implosion Human computers and IBM punched-card machines together calculated design, including fl ash x-radiography, the RaLa method,
    [Show full text]
  • My Time with Sir Rudolf Peierls
    ARTICLE-IN-A-BOX My Time with Sir Rudolf Peierls Professor Peierls took up the Wykeham Professorship at Oxford in October 1963. I started as his research assistant in the Department of Theoretical Physics at the beginning of November the same year. I had just ¯nished my PhD with Mel Preston, a former student of Peierls at Birmingham. Theoretical Physics, which Peierls headed, was a large department housed at 12-14 Parks Road. It had many faculty members, graduate students, post-doctoral fellows, and visiting foreign professors. The faculty included R H Dalitz, the Royal Society professor lured from Chicago, Roger Elliott, D ter Haar, David Brink, L Castillejo, amongst others. In addition to his administrative duties, Peierls lectured on nuclear theory, supervised students, and actively participated in seminars and colloquia. The latter took place at the Clarendon laboratory nearby, where the experimentalists worked. In addition, nuclear physics was also housed at 9 Keble Road. We all took afternoon tea at the Clarendon, thereby bringing some cohesion amongst the diverse groups. At this time, Divakaran and Rajasekaran were both at Oxford ¯nishing their doctoral work with Dalitz. K Chandrakar (plasma physics) and E S Rajagopal (low-temperature physics) were at the Clarendon. As will be clear from Professor Baskaran's article, Peierls was a versatile physicist, having made fundamental contributions in condensed matter physics, statistical mechanics, quantum ¯eld theory and nuclear physics. I think it is fair to say that in the mid-sixties his focus was mostly in nuclear theory, in addition to his work in the Pugwash movement on nuclear disarmament.
    [Show full text]
  • Cold War Requisitions, Scientific Manpower, and the Production of American Physicists After World War II
    DAVID KAISER* Cold War requisitions, scientific manpower, and the production of American physicists after World War II 1. RAYMOND BIRGE’S “MAIN OBJECTIVE” “THE MAIN OBJECTIVE of this department of physics,” Raymond Birge wrote in late May 1955, “is to train Ph.D.’s in physics.” Birge— iconic, somber, a displaced Yankee who traced his New England ancestry nine generations back—had been chair of Berkeley’s physics department for twenty-two years; by the mid-1950s, it was the nation’s largest. At the time he explained his department’s “main objec- tive,” Birge was the retiring president of the American Physical Society (APS). Birge and his colleagues in Berkeley’s physics department had emphasized the importance of its graduate program many times before in annual budget requests to the university administration and in funding reports to private industries; it would be easy to read such remarks as thinly-veiled requests for more funding, since training physics Ph.D.s became expensive after World War II. This time, however, Birge articulated his department’s mission in a letter to a local citizen, far outside of the university bureaucracy, who had no funds to offer and who had requested no such pronouncement. 1 *Program in Science, Technology, and Society, and Department of Physics, Building E51- 185, MIT, Cambridge, MA 02139; [email protected]. My thanks to Shane Hamilton for his research assistance, and to Alexis De Greiff, Kenji Ito, John Krige, Elizabeth Paris, and John Rudolph for their helpful comments on an earlier draft. The following abbreviations are used: AIP-EMD, American Institute of Physics, Edu- cation and Manpower Division Records, Niels Bohr Library, American Institute of Physics, College Park, MD; BAS, Bulletin of the atomic scientists; BDP , University of California, Berkeley, Department of Physics Records, Bancroft Library, Berkeley, CA; HDP, Harvard University Department of Physics Records, Pusey Library, Cambridge, MA; PDP, Princeton University Department of Physics Records, Seeley G.
    [Show full text]
  • I. I. Rabi Papers [Finding Aid]. Library of Congress. [PDF Rendered Tue Apr
    I. I. Rabi Papers A Finding Aid to the Collection in the Library of Congress Manuscript Division, Library of Congress Washington, D.C. 1992 Revised 2010 March Contact information: http://hdl.loc.gov/loc.mss/mss.contact Additional search options available at: http://hdl.loc.gov/loc.mss/eadmss.ms998009 LC Online Catalog record: http://lccn.loc.gov/mm89076467 Prepared by Joseph Sullivan with the assistance of Kathleen A. Kelly and John R. Monagle Collection Summary Title: I. I. Rabi Papers Span Dates: 1899-1989 Bulk Dates: (bulk 1945-1968) ID No.: MSS76467 Creator: Rabi, I. I. (Isador Isaac), 1898- Extent: 41,500 items ; 105 cartons plus 1 oversize plus 4 classified ; 42 linear feet Language: Collection material in English Location: Manuscript Division, Library of Congress, Washington, D.C. Summary: Physicist and educator. The collection documents Rabi's research in physics, particularly in the fields of radar and nuclear energy, leading to the development of lasers, atomic clocks, and magnetic resonance imaging (MRI) and to his 1944 Nobel Prize in physics; his work as a consultant to the atomic bomb project at Los Alamos Scientific Laboratory and as an advisor on science policy to the United States government, the United Nations, and the North Atlantic Treaty Organization during and after World War II; and his studies, research, and professorships in physics chiefly at Columbia University and also at Massachusetts Institute of Technology. Selected Search Terms The following terms have been used to index the description of this collection in the Library's online catalog. They are grouped by name of person or organization, by subject or location, and by occupation and listed alphabetically therein.
    [Show full text]
  • THE MEETING Meridel Rubenstein 1995
    THE MEETING Meridel Rubenstein 1995 Palladium prints, steel, single-channel video Video assistance by Steina Video run time 4:00 minutes Tia Collection The Meeting consists of twenty portraits of people from San Ildefonso Pueblo and Manhattan Project physicists—who met at the home of Edith Warner during the making of the first atomic bomb—and twenty photographs of carefully selected objects of significance to each group. In this grouping are people from San Ildefonso Pueblo and the objects they selected from the collections of the Museum of Indian Arts and Culture to represent their culture. 1A ROSE HUGHES 2A TALL-NECKED JAR 3A BLUE CORN 4A SLEIGH BELLS 5A FLORENCE NARANJO Rose Hughes holding a photograph of WITH AVANYU One of the most accomplished and (Museum of Indian Arts and Culture) Married to Louis Naranjo; her father, Tony Peña, who organized (plumed serpent) made by Julian and recognized of the San Ildefonso Sleigh bells are commonly used in granddaughter of Ignacio and Susana the building of Edith Warner’s second Maria Martinez, ca. 1930 (Museum of potters. Like many women from the ceremonial dances to attract rain. Aguilar; daughter of Joe Aguilar, who house. Hughes worked at Edith Indian Arts and Culture) Edith Warner pueblos, she worked as a maid for the Tilano Montoya returned with bells like helped Edith Warner remodel the Warner’s with Florence Naranjo one was shown a pot like this one in 1922 Oppenheimers. these from Europe, where he went on tearoom. Edith called her Florencita. summer. She recalls that Edith once on her first visit to San Ildefonso, in the tour with a group of Pueblo dancers.
    [Show full text]
  • Nonlinear Luttinger Liquid: Exact Result for the Green Function in Terms of the Fourth Painlevé Transcendent
    SciPost Phys. 2, 005 (2017) Nonlinear Luttinger liquid: exact result for the Green function in terms of the fourth Painlevé transcendent Tom Price1,2*, Dmitry L. Kovrizhin1,3,4 and Austen Lamacraft1 1 TCM Group, Cavendish Laboratory, University of Cambridge, J.J. Thomson Ave., Cambridge CB3 0HE, UK 2 Institute for Theoretical Physics, Centre for Extreme Matter and Emergent Phenomena, Utrecht University, Princetonplein 5, 3584 CC Utrecht, The Netherlands 3 National Research Centre Kurchatov Institute, 1 Kurchatov Square, Moscow 123182, Russia 4 The Rudolf Peierls Centre for Theoretical Physics, Oxford University, Oxford, OX1 3NP,UK * [email protected] Abstract We show that exact time dependent single particle Green function in the Imambekov– Glazman theory of nonlinear Luttinger liquids can be written, for any value of the Lut- tinger parameter, in terms of a particular solution of the Painlevé IV equation. Our expression for the Green function has a form analogous to the celebrated Tracy–Widom result connecting the Airy kernel with Painlevé II. The asymptotic power law of the exact solution as a function of a single scaling variable x=pt agrees with the mobile impurity results. The full shape of the Green function in the thermodynamic limit is recovered with arbitrary precision via a simple numerical integration of a nonlinear ODE. Copyright T. Price et al. Received 03-01-2017 This work is licensed under the Creative Commons Accepted 13-02-2017 Check for Attribution 4.0 International License. Published 21-02-2017 updates Published by the SciPost Foundation. doi:10.21468/SciPostPhys.2.1.005 Contents 1 Introduction2 2 Fredholm determinant3 3 Riemann–Hilbert problem and differential equations4 3.1 Lax equation6 3.2 Painlevé IV6 3.3 Boundary conditions and final result7 3.4 Mobile Impurity Asymptotics8 4 Conclusion 8 A Lax pair 9 B Exact solution to RHP for the Luttinger liquid9 C Numerical solution of differential equations 10 1 SciPost Phys.
    [Show full text]
  • Leo Szilard in Physics and Information By
    Leo Szilard in Physics and Information by Richard L. Garwin IBM Fellow Emeritus IBM Thomas J. Watson Research Center P.O. Box 218, Yorktown Heights, NY 10598 www.fas.org/RLG/ Email: [email protected] Presented in the invited APS session R17 “The Many Worlds of Leo Szilard” Savannah, Georgia April 7, 2014 at 11:21 AM _04/07/2014 Leo Szilard in Physics and Information.doc 1 Abstract: The excellent biography1 by William Lanouette, ``Genius in the Shadows,'' tells it the way it was, incredible though it may seem. The 1972 ``Collected Works of Leo Szilard: Scientific Papers,'' Bernard T. Feld and Gertrud W. Szilard, Editors, gives the source material both published and unpublished. Szilard's path-breaking but initially little-noticed 1929 paper, ``On the Decrease of Entropy in a Thermodynamic System by the Intervention of Intelligent Beings'' spawned much subsequent research. It connected what we now call a bit of information with a quantity k ln 2 of entropy, and showed that the process of acquiring, exploiting, and resetting this information in a one-molecule engine must dissipate at least kT ln 2 of energy at temperature T. His 1925 paper, ``On the Extension of Phenomenological Thermodynamics to Fluctuation Phenomena,'' showed that fluctuations were consistent with and predicted from equilibrium thermodynamics and did not depend on atomistic theories. His work on physics and technology, demonstrated an astonishing range of interest, ingenuity, foresight, and practical sense. I illustrate this with several of his fundamental contributions to nuclear physics, to the neutron chain reaction and to nuclear reactors, and also to electromagnetic pumping of liquid metals.
    [Show full text]
  • 28. Metal - Insulator Transitions
    Institute of Solid State Physics Technische Universität Graz 28. Metal - Insulator Transitions Jan. 28, 2018 Metal-insulator transition Atoms far apart: insulator Atoms close together: metal Mott transition (low electron density) There are bound state solutions to the unscreened potential (hydrogen atom) The 1s state of a screened Coulomb potential becomes unbound at ks = 1.19/a0. Bohr radius 1/3 2 43n Mott argued that the transition should be sharp. ks a0 High-temperature oxide superconductors / antiferromagnets Nevill Francis Mott Nobel prize 1977 Mott transition The number of bound states in a finite potential well depends on the width of the well. There is a critical width below which the valence electrons are no longer bound. Semiconductor conductivity at low temperature P in Si degenerate semiconductor Kittel Vanadium sesquioxide V2O3 PM paramagnetic metal PI paramagnetic insulator AFI Antiferromagnetic insulator (2008) 77, 113107 B et al., Phys. Rev. L. Baldassarre, CR crossover regime (poor conductor) Metal-insulator transition Clusters far apart: insulator Clusters close together: metal Charging effects After screening, the next most simple approach to describing electron- electron interactions are charging effects. ee quantum dot The motion of electrons through a single quantum dot is correlated. Q = CV Single electron transistor 2 nA 1 0 mV 0.5 Coulomb blockade Vb Vg -3-2 -1 0 1 2 3 I [pA] 2 nm room temperature SET Pashkin/Tsai NEC Coulomb blockade suppressed by thermal and quantum fluctuations e2 Thermal fluctuations kTB Quantum fluctuations Et 2C 2C Duration of a quantum fluctuation: t ~ e2 RC charging time of the capacitance: RC 2C Charging faster than a quantum fluctuation RC e2 2 R 8 k e2 h 25.5 k Resistance quantum e2 Single electron effects Single-electron effects will be present in any molecular scale circuit Usually considered undesirable and are avoided by keeping the resistance below the resistance quantum.
    [Show full text]