Nutraceutical Potential of Molokhia (Corchorus Olitorius L.): a Versatile Green Leafy Vegetable Faiyaz Ahmed

Total Page:16

File Type:pdf, Size:1020Kb

Nutraceutical Potential of Molokhia (Corchorus Olitorius L.): a Versatile Green Leafy Vegetable Faiyaz Ahmed Pharmacogn. Res. REVIEW ARTICLE A multifaceted peer reviewed journal in the field of Pharmacognosy and Natural Products www.phcogres.com | www.phcog.net Nutraceutical Potential of Molokhia (Corchorus olitorius L.): A Versatile Green Leafy Vegetable Faiyaz Ahmed Department of Clinical Nutrition, College of Applied Health Sciences in Ar Rass, Qassim University, Al Qassim Region, Saudi Arabia ABSTRACT Molokhia is a nutritious green leafy vegetable consumed in African and Middle Eastern countries as a viscous soup. Although the leaves are used in the traditional medicine and also reported to exhibit a number of pharmacological effects, its utilization is limited to some cultures and does not find wider utilization in the mainstream dietary habits. This review is aimed to present the nutritional and nutraceutical potential of molokhia to promote consumption of this valuable leafy vegetable. An unbiased literature search was conducted using online resources such as Google Scholar and PubMed to collect published reports on various biological/pharmacological activities of molokhia. Chemical structures of bioactive compounds were downloaded from PubChem. The leaves of molokhia are rich sources of Vitamin A (β‑carotene), C, E, B1, B2, folic acid and minerals such as iron and calcium in addition to common macromolecules. Among carbohydrates, acidic polysaccharides are of particular interest because of their notable biological effects including antidiabetic and antioxidant. The vegetable is also a good source of a diverse category of phytochemicals Abbreviations Used: ASL: Aspartate aminotransferase; ALT: Alanine including alkaloids, saponins, tannins, terpenes, flavonoids, and phenolics. aminotransferase; ALP: Alkaline phosphatase; MDA: Malonaldehyde; Different extracts exhibit potent antidiabetic, antioxidant, antiinflammatory, CCl : Carbon tetrachloride; LD : Median lethal dose; IC : Median inhibi‑ anticancer, antimicrobial, hepatoprotective, cardioprotective, neuroprotective, 4 50 50 tory concentration; OECD: Organization for economic co‑operation and analgesic, and wound healing effects. The extracts have shown to safe even at development; SOD: Superoxide dismutase; HDL: High‑density lipoprotein; a dose of 3.2 g/kg body weight in experimental animals. Molokhia is a nutritious leafy vegetable loaded with essential micronutrients and phytochemical that LDL: Low‑density lipoprotein; FRAP: Ferric reducing antioxidant potential; could be handy in promoting general health. Further research is warranted to DPPH: 1,1‑diphenyl‑2‑picrylhydrazyl; ABTS: 2,2’‑azino‑bis (3‑ethylbenzothi‑ develop novel food product formulation using molokhia. azoline‑6‑sulfonic acid; BHT: Butylated hydroxy toluene; BHA: Butylated Key words: Corchorus olitorius, green leafy vegetable, molokhia, hydroxy anisole; TBARS: Thiobarbituric acid re‑ pharmacology, polysaccharides, toxicity active substances; GSH: Glutathione. Access this article online Website: www.phcogres.com Correspondence: SUMMARY Quick Response Code: • Molokhia is a leafy vegetable widely consumed in Middle‑Eastern countries Dr. Faiyaz Ahmed, and valued for its nutrient composition. The leaves find its use in folkloric Department of Clinical Nutrition, College of medicine for the treatment of a number ailments and have been ascribed Applied Health Sciences in Ar Rass, Qassim with a diverse pharmacological activities due to presence of polysaccharides and phenolic compounds. This review would be beneficial to popularize the University, Al Qassim Region 51921, Saudi Arabia. utilization of molokhia as functional food ingredient in food formulations. E‑mail: [email protected] DOI: 10.4103/pr.pr_100_20 INTRODUCTION effects antimicrobial, antidiabetic, antihistaminic, cardioprotective, hepatoprotective, nephroprotective, anticonvulsant, antiestrogenic, Corchorus olitorius L. commonly known as molokhia in Middle‑Eastern and antimalarial effects.[7‑16] countries is an annual herbaceous plant with slender stem belonging to The leaves are reported to contain triterpenes, sterols and fatty acid, Tillaceae family [Table 1]. Although molokhia is believed to be native phenolics, ionones, oxydase, chlorogenic acid, glycosides, saponins, to Africa and Asia, it is cultivated in a number of countries, including tannins, and flavones in addition to carbohydrates, protein, fat, fiber, Australia, South America, and some parts of Europe for food and industrial use.[1,2] Molokhia is used as green leafy vegetable in Egypt, Sudan, India, Bangladesh, Philippines and Malaysia, Africa, Japan, South This is an open access journal, and articles are distributed under the terms of the America, the Caribbean, and Cyprus.[3] Creative Commons Attribution-NonCommercial-ShareAlike 4.0 License, which allows others to remix, tweak, and build upon the work non-commercially, as long as Molokhia is valued as a nutritious leafy vegetable due to its high appropriate credit is given and the new creations are licensed under the identical terms. vitamin, mineral, and phenolic content.[4] The leaves also contain high amounts of mucilaginous polysaccharides with gives viscous For reprints contact: [email protected] consistency and widely consumed as soup in Middle Eastern countries. Dried leaves are used in herbal tea, while seeds are used as flavoring Cite this article as: Ahmed F. Nutraceutical potential of molokhia (Corchorus agent.[5] Apart from its food uses, it is valued as an herbal remedy olitorius l.): A versatile green leafy vegetable. Phcog Res 2021;13:1-12. in fevers, enteritis, dysentery, chronic cystitis, aches, and pains.[6] Submitted: 11-Dec-2020 Revised: 09-Mar-2021 Different parts ofC. olitorius are reported to exhibit a range of biological Accepted: 16-Mar-2021 Published: 27-Apr-2021 © 2021 Pharmacognosy Research | Published by Wolters Kluwer - Medknow 1 FAIYAZ AHMED: Nutraceutical Potential of Corchorus olitorius L. (Molokhia) Table 1: Taxonomy of Corchorus olitorius Linn. 7–10 cm long, ribbed, with a short beak, usually dehiscing by 5 valves, Kingdom Plantae many‑seeded. Seeds angular, 1–3 mm long, dark grey. Seedling with epigeal germination; hypocotyl 1–2 cm long; cotyledons foliaceous, Phyllum Angiosperms [36] Subphyllum Eudicots broadly elliptical to circular, 3–8 mm long. Class Rosids There is no consensus on the origins of C. olitorius because it has been Order Malvales cultivated and used in Africa and Asia for centuries and also occurs Family Malvaceae in the wild in both continents.[1,2] Currently, since it is used as a leafy Genus Corchorus vegetable, it occurs in all of tropical Africa including Benin, Nigeria, Species Olitorius Ivory Coast, Cameroon, Sudan, Kenya, Uganda, and Zimbabwe. It is a popular soup vegetable in Caribbean, Cyprus, Brazil, India, Bangladesh, Table 2: Nutrient composition of molokhia leaves Sri Lanka, China, Japan, Philippines, Malaysia, Egypt, and the Middle Nutrient Raw Eastern countries. Apart from food use, it is grown as a commercial crop [37] Moisture (%) 82‑87 for jute production in India, Bangladesh and China. Protein (%) 5‑6 Carbohydrate (%) 5‑7 FOOD USES Fat (%) 0.3‑1 Molokhia leaves contains high amounts of mucilaginous polysaccharides Ash (%) 2.4‑2.6 Fiber (%) 1‑5 which yield viscous soup when cooked and usually used as an [38] Vitamin A (IU) 3000 accompaniment for main dishes. In Middle Eastern countries, the Thiamine (mg/100 g) 0.1 leaves are cut into small pieces and boiled in water with salt and pepper Riboflavin (mg/100 g) 0.3 to make soup. Molokhia soup is very popular in the Middle east. In Niacin (mg/100 g) 1.5 Mediterranean regions, young green leaves and shoots are used to add Vitamin C (mg/100 g) 10‑100 flavor and viscous texture to soups and stews. Seeds are used for flavoring. Iron (mg/100 g) 4‑8 Tender leaves and shoots are also eaten raw as salad vegetable in Egypt and Calcium (mg/100 g) 250‑266 India.[39] Dried leaves are used in the preparation of herbal tea. The leaves are used to prepare a stew called “ewedu” in Nigeria, while in Philippines ash, acidic polysaccharides, lignin, and other[17‑20] mucilaginous the leaves along with bamboo shoots are consumed as a leafy vegetable. polysaccharides. Nutrient composition of molokhia leaves is presented In Nigeria, sticky sauce comparable to okra is prepared and eaten as an in Table 2.[4,20,21] The leaves are rich sources of Vitamin A (β‑carotene), C, accompaniment for starchy dumplings made from cassava, yam or millet. E, B1, B2, folic acid, and minerals such as iron and calcium.[22‑27] Among Since, Molokhia is an annual herb dried leaf powder is used to make this soluble polysaccharides abundantly present in molokhia leaves, an acidic sauce during off season. Sauce is also prepared from powdered and dried polysaccharide rich in uronic acid rhamnose, glucose, galcturonic acid, immature fruits (bush okra). In East Africa, it is cooked with cowpeas, [5] and glucuronic acid has been isolated. It is noteworthy that, molokhia pumpkin, cocoyam leaves, sweet potato, milk, butter, and meat flavored [28] leaves retain key nutrients even after cooking. The seeds contain with pepper and lemon.[40,41] Recently, molokhia leaves are also used for alkaloids, flavonoids, tannins, cardiac glycosides, steroids, saponins, and the development of Sushi wrap as a promising viable substitute for Nori.[42] anthraquinones.[29] The roots reportedly contain triterpenes including corosin and sterols including sitosterol and stigmasterol.[19,30,31] It is TRADITIONAL AND FOLKLORIC USES noteworthy that molokhia is also known
Recommended publications
  • The Geranium Family, Geraniaceae, and the Mallow Family, Malvaceae
    THE GERANIUM FAMILY, GERANIACEAE, AND THE MALLOW FAMILY, MALVACEAE TWO SOMETIMES CONFUSED FAMILIES PROMINENT IN SOME MEDITERRANEAN CLIMATE AREAS The Geraniaceae is a family of herbaceous plants or small shrubs, sometimes with succulent stems • The family is noted for its often palmately veined and lobed leaves, although some also have pinnately divided leaves • The leaves all have pairs of stipules at their base • The flowers may be regular and symmetrical or somewhat irregular • The floral plan is 5 separate sepals and petals, 5 or 10 stamens, and a superior ovary • The most distinctive feature is the beak of fused styles on top of the ovary Here you see a typical geranium flower This nonnative weedy geranium shows the styles forming a beak The geranium family is also noted for its seed dispersal • The styles either actively eject the seeds from each compartment of the ovary or… • They twist and embed themselves in clothing and fur to hitch a ride • The Geraniaceae is prominent in the Mediterranean Basin and the Cape Province of South Africa • It is also found in California but few species here are drought tolerant • California does have several introduced weedy members Here you see a geranium flinging the seeds from sections of the ovary when the styles curl up Three genera typify the Geraniaceae: Erodium, Geranium, and Pelargonium • Erodiums (common name filaree or clocks) typically have pinnately veined, sometimes dissected leaves; many species are weeds in California • Geraniums (that is, the true geraniums) typically have palmately veined leaves and perfectly symmetrical flowers. Most are herbaceous annuals or perennials • Pelargoniums (the so-called garden geraniums or storksbills) have asymmetrical flowers and range from perennials to succulents to shrubs The weedy filaree, Erodium cicutarium, produces small pink-purple flowers in California’s spring grasslands Here are the beaked unripe fruits of filaree Many of the perennial erodiums from the Mediterranean make well-behaved ground covers for California gardens Here are the flowers of the charming E.
    [Show full text]
  • Food-Based Dietary Guidelines Around the World: Eastern Mediterranean and Middle Eastern Countries
    nutrients Review Food-Based Dietary Guidelines around the World: Eastern Mediterranean and Middle Eastern Countries Concetta Montagnese 1,*, Lidia Santarpia 2,3, Fabio Iavarone 2, Francesca Strangio 2, Brigida Sangiovanni 2, Margherita Buonifacio 2, Anna Rita Caldara 2, Eufemia Silvestri 2, Franco Contaldo 2,3 and Fabrizio Pasanisi 2,3 1 Epidemiology Unit, IRCCS Istituto Nazionale Tumori “Fondazione G. Pascale”, 80131 Napoli, Italy 2 Internal Medicine and Clinical Nutrition, Department of Clinical Medicine and Surgery, Federico II University, 80131 Naples, Italy; [email protected] (L.S.); [email protected] (F.I.); [email protected] (F.S.); [email protected] (B.S.); [email protected] (M.B.); [email protected] (A.R.C.); [email protected] (E.S.); [email protected] (F.C.); [email protected] (F.P.) 3 Interuniversity Center for Obesity and Eating Disorders, Department of Clinical Nutrition and Internal Medicine, Federico II University, 80131 Naples, Italy * Correspondence: [email protected]; Tel.: +0039-081-746-2333 Received: 28 April 2019; Accepted: 10 June 2019; Published: 13 June 2019 Abstract: In Eastern Mediterranean countries, undernutrition and micronutrient deficiencies coexist with overnutrition-related diseases, such as obesity, heart disease, diabetes and cancer. Many Mediterranean countries have produced Food-Based Dietary Guidelines (FBDGs) to provide the general population with indications for healthy nutrition and lifestyles. This narrative review analyses Eastern Mediterranean countries’ FBDGs and discusses their pictorial representations, food groupings and associated messages on healthy eating and behaviours. In 2012, both the WHO and the Arab Center for Nutrition developed specific dietary guidelines for Arab countries. In addition, seven countries, representing 29% of the Eastern Mediterranean Region population, designated their national FBDGs.
    [Show full text]
  • Medicinal Plants Research
    V O L U M E -III Glimpses of CCRAS Contributions (50 Glorious Years) MEDICINAL PLANTS RESEARCH CENTRAL COUNCIL FOR RESEARCH IN AYURVEDIC SCIENCES Ministry of AYUSH, Government of India New Delhi Illllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll Glimpses of CCRAS contributions (50 Glorious years) VOLUME-III MEDICINAL PLANTS RESEARCH CENTRAL COUNCIL FOR RESEARCH IN AYURVEDIC SCIENCES Ministry of AYUSH, Government of India New Delhi MiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiM Illllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll © Central Council for Research in Ayurvedic Sciences Ministry of AYUSH, Government of India, New Delhi - 110058 First Edition - 2018 Publisher: Central Council for Research in Ayurvedic Sciences, Ministry of AYUSH, Government of India, New Delhi, J. L. N. B. C. A. H. Anusandhan Bhavan, 61-65, Institutional Area, Opp. D-Block, Janakpuri, New Delhi - 110 058, E-mail: [email protected], Website : www.ccras.nic.in ISBN : 978-93-83864-27-0 Disclaimer: All possible efforts have been made to ensure the correctness of the contents. However Central Council for Research in Ayurvedic Sciences, Ministry of AYUSH, shall not be accountable for any inadvertent error in the content. Corrective measures shall be taken up once such errors are brought
    [Show full text]
  • Nutritional Profile of Cultivated and Wild Jute (Corchorus) Species
    AJCS 7(13):1973-1982 (2013) ISSN:1835-2707 Nutritional profile of cultivated and wild jute (Corchorus) species Shashi Bhushan Choudhary1*, Hariom Kumar Sharma1, Pran Gobinda Karmakar1, A. Anil Kumar1 Amit Ranjan Saha2, Pranab Hazra3, Bikas Singha Mahapatra2 1Crop Improvement Division, Central Research Institute for jute and Allied Fibres (CRIJAF), Barrackpore, Kolkata-700120 West Bengal, India 2Crop Production Division, Central Research Institute for jute and Allied Fibres (CRIJAF), Barrackpore, Kolkata-700120 West Bengal, India 3Department of Vegetable Crop, Bidhan Chandra Krishi Vishwavidyalaya, Kalyani, Kolkata, West Bengal, India *Corresponding author: [email protected] Abstract Traditionally jute is cultivated for bast (phloem) fibre production. But in rural belts of Asian, African and European countries, tender leaves from young jute plants are consumed as green leafy vegetable. With a view to have knowledge of nutritional aspect of jute leaf, an experiment was conducted with 17 genotypes belonging to six jute species namely, Corchorus fascicularis, C. trilocularis, C. aestuans, C. tridens, C. capsularis and C. olitorius. These genotypes were assessed for growth (leaf area, foliage yield) and nutritional (crude protein, potassium, iron and β-carotene content) parameters. C. olitorius genotypes were found to be best performer for all the parameters except iron content, for which C. aestuans outperformed others. C. olitorius cv. JRO-204 had highest leaf area (23.9 x 10-4 m2) and foliage yield (276.67 kg/ha) vis a vis good amount of protein (3.79%), iron (67.93 mg/kg), β-carotene (51.0 mg/kg) and potassium (4400 mg/kg). High heritability coupled with high genetic advance was found for all the parameters which indicate that these traits are governed by additive type of gene action; hence selection may be effective for improvement of these traits.
    [Show full text]
  • (Amaranthaceae) in Italy. V. Atriplex Tornabenei
    Phytotaxa 145 (1): 54–60 (2013) ISSN 1179-3155 (print edition) www.mapress.com/phytotaxa/ Article PHYTOTAXA Copyright © 2013 Magnolia Press ISSN 1179-3163 (online edition) http://dx.doi.org/10.11646/phytotaxa.145.1.6 Studies on the genus Atriplex (Amaranthaceae) in Italy. V. Atriplex tornabenei DUILIO IAMONICO1 1 Laboratory of Phytogeography and Applied Geobotany, Department PDTA, Section Environment and Landscape, University of Rome Sapienza, 00196 Roma, Italy. Email: [email protected] Abstract The typification of the name Atriplex tornabenei (a nomen novum pro A. arenaria) is discussed. An illustration by Cupani is designated as the lectotype, while a specimen from FI is designated as the epitype. Chorological and morphological notes in comparison with the related species A. rosea and A. tatarica are also provided. A nomenclatural change (Atriplex tornabenei subsp. pedunculata stat. nov.) is proposed. Key words: Atriplex tornabenei var. pedunculata, epitype, infraspecific variability, lectotype, Mediterranean, nomenclatural change, nomen novum Introduction Atriplex Linnaeus (1753: 1054) is a genus of about 260 species distributed in arid and semiarid regions of Eurasia, America and Australia (Sukhorukov & Danin 2009). Several names (at species, subspecies, variety and form ranks) were described related to the high phenotipic variability of this critical genus (Al-Turki et al. 2000). As conseguence, misapplication of names and nomenclatural disorders exist and need clarification. In this paper, the identity of the A. tornabenei Tineo ex Gussone (1843: 589) is discussed as part of the treatment of the genus Atriplex for the new edition of the Italian Flora (editor, Prof. S. Pignatti) and within the initiative “Italian Loci Classici Census” (Domina et al.
    [Show full text]
  • The Mallows of Ohio
    Feb., 1912.] The Mallows of Ohio. 465 THE MALLOWS OF OHIO. MARY B. LINNELL. MALVACEAE Mallow Family. Mucilaginous, innocent herbs or shrubs with alternate, pal- mately-veined leaves and small deciduous stipules. Flowers hypogynous, regular, often large and showy, usually bisporangiate; calyx usually of 5 sepals more or less united, often with bracts at the base; corolla of 5 petals, convolute; andrecium of numerous stamens, the filaments united into a tube around the gynecium and also united with the base of the petals; ovulary with several cavities, styles united below, distinct above; stigmas usually as many as the cavities of the ovulary. Fruit a capsule with several cavities; the carpels falling away entire or else loculicidally dehiscent. Synopsis of Genera. I. Stamen-column anther-bearing at the tip; carpels 5-20 in a ring around a prominent central axis from which they separate when ripe. A. Carpels 1-seeded. 1. Flowers bisporangiate. (1) Stigmas linear, on the inner face of the styles. a. Involucre of 1-3 bracts. (a) Carpels beakless; petals obcordate. Malva. (b) Carpels beaked; petals truncate. Callirrhoe. b. Involucre of 6-9 bracts. Althaea. (2) Stigmas terminal, capitate. Sida. 2. Flowers monosporangiate, diecious. Napaea. B. Carpels 2—several seeded. Abutilon. II. Stamen-column naked at the 5-toothed tip; carpels forming a loculi- cidal capsule. A. Involucre of many bracts. Hibiscus. Key. 1. Flowers without an involucre. 2. 1. Flowers with involucre below the calyx. 4. 2. 'Leaves not lobed; flowers bisporangiate. 3. 2. Leaves deeply lobed; flowers diecious. Napaea. 3. Leaves broadly cordate, abruptly acuminate. Abutilon.
    [Show full text]
  • Corchorus L. and Hibiscus L.: Molecular Phylogeny Helps to Understand Their Relative Evolution and Dispersal Routes
    Corchorus L. and Hibiscus L.: Molecular Phylogeny Helps to Understand Their Relative Evolution and Dispersal Routes Arif Mohammad Tanmoy1, Md. Maksudul Alam1,2, Mahdi Muhammad Moosa1,3, Ajit Ghosh1,4, Waise Quarni1,5, Farzana Ahmed1, Nazia Rifat Zaman1, Sazia Sharmin1,6, Md. Tariqul Islam1, Md. Shahidul Islam1,7, Kawsar Hossain1, Rajib Ahmed1 and Haseena Khan1* 1Molecular Biology Lab, Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka 1000, Bangladesh. 2Department of Molecular and Cell Biology, Center for Systems Biology, University of Texas at Dallas, Richardson, TX 75080, USA. 3Graduate Studies in Biological Sciences, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA. 4Plant Molecular Biology, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, India. 5Department of Pathology and Cell Biology, University of South Florida, 12901 Bruce B. Downs Blvd., Tampa, FL 33612, USA. 6Department of Kidney Development, Institute of Molecular Embryology and Genetics, Kumamoto University, 2-2-1 Honjo, Kumamoto 860-0811, Japan. 7Breeding Division, Bangladesh Jute Research Institute (BJRI), Dhaka 1207, Bangladesh. ABSTRACT: Members of the genera Corchorus L. and Hibiscus L. are excellent sources of natural fibers and becoming much important in recent times due to an increasing concern to make the world greener. The aim of this study has been to describe the molecular phylogenetic relationships among the important members of these two genera as well as to know their relative dispersal throughout the world. Monophyly of Corchorus L. is evident from our study, whereas paraphyletic occurrences have been identified in case of Hibiscus L.
    [Show full text]
  • Malva Arborea
    Malva arborea COMMON NAME Tree mallow SYNONYMS Lavatera arborea; Malva dendromorpha M.F.Ray (1998) FAMILY Malvaceae AUTHORITY Malva arborea (L.) Webb & Berthel. FLORA CATEGORY Vascular – Exotic STRUCTURAL CLASS Herbs - Dicotyledons other than Composites NVS CODE MALARB Malva dendromorpha. Photographer: John Barkla HABITAT Terrestrial. Waste places, cultivated land, Coastal sites. FEATURES Stout biennial herb, usually with a single stem up to 2 m tall. Stems hairy when young, becoming hairless and woody at base when older. Leaves velvety to the touch, with 5-7 lobes, up to 20 cm across. Lilac to purple flowers arranged in clusters at end and along upper parts of the stem. 6-8 seeds per fruit. SIMILAR TAXA There are several other large Malva species that have naturalised in New Zealand. FLOWERING August, September, October, November, January, February, March, April, May. FLOWER COLOURS Violet/Purple LIFE CYCLE Spreads by seed, 6-8 seeds produced by each fruit. Dispersed by soil Pauatahanui Inlet. Jun 2006. Photographer: movement. Jeremy Rolfe YEAR NATURALISED 1870 ORIGIN W. and S. Europe, N. Africa REASON FOR INTRODUCTION Ornamental TOLERANCES Prefers high light, thrives in disturbed sites and can tolerate salt. ETYMOLOGY arborea: From the Latin arbor ‘tree’, meaning tree-like TAXONOMIC NOTES Long known as Lavatera arborea, in 1998 this species was transferred to Malva by Ray (1998). REFERENCES AND FURTHER READING Ray, M.F. 1998: New combinations in Malva (Malvaceae: Malveae). Novon 8: 288-295. Hill, S.R. 2009: Notes on California Malvaceae including nomenclatural changes and additions to the flora. Madroño 5. MORE INFORMATION https://www.nzpcn.org.nz/flora/species/malva-arborea/.
    [Show full text]
  • Response of Corchorus Olitorius Leafy Vegetable to Cadmium in the Soil
    plants Article Response of Corchorus olitorius Leafy Vegetable to Cadmium in the Soil Sibongokuhle Ndlovu 1, Rajasekhar V.S.R. Pullabhotla 2 and Nontuthuko R. Ntuli 1,* 1 Department of Botany, University of Zululand (Main Campus), Private Bag X1001, KwaDlangezwa 3886, South Africa; [email protected] 2 Department of Chemistry, University of Zululand (Main Campus), Private Bag X1001, KwaDlangezwa 3886, South Africa; [email protected] * Correspondence: [email protected]; Tel.: +27-35-902-6105 Received: 11 August 2020; Accepted: 3 September 2020; Published: 14 September 2020 Abstract: Corchorus olitorius, a leafy vegetable with high nutrient content, is normally collected from the wild, in areas that are prone to cadmium (Cd) toxicity. However, studies on how Cd accumulation affects vegetative and reproductive traits of leafy vegetables in South Africa are limited. Therefore, this study tested the effect of Cd accumulation on C. olitorius morphological traits. Plants were grown under various Cd concentrations and studied for variation in vegetative and reproductive traits as well as accumulation in roots and shoots. Plants exposed to 5 mg/kg Cd had longer roots with higher moisture content, heavier fresh and dried stems, as well as dried leaves, which indicated a hormetic effect in C. olitorius after exposure to low Cd concentration in the soil. Again, plants treated with 5–10 mg/kg Cd, accumulated toxic (>10 mg/kg dry weight) Cd within shoots and roots, with minor morphological alterations. Plants could survive, with some morphological defects, Cd toxicity up to 20 mg/kg in soil. Only plants exposed to 5 mg/kg could reproduce.
    [Show full text]
  • Hibiscus - Name of the Rose by Dennis Hinkamp
    Hibiscus - Name Of The Rose By Dennis Hinkamp If you don’t know what art is but you know what you like, you will love hibiscus. Sometimes it is confused with a Rose-of-Sharon, which is sometimes confused with a perennial hollyhock which is sometimes called a mallow. “Believe it or not, I have been asked to settle arguments between neighbors on the "correct" name of a plant,” says Jerry Goodspeed, Utah State University Extension horticulturist. "Is it a hibiscus or a Rose-of-Sharon?" To avoid trouble by taking sides, I look at the plant and say, in what I hope sounds like Latin, ‘Why that's a Hibisc-of-course who-careseae.’As long as it blooms and looks pretty, call it whatever you want. Just don't call me to referee a disagreement.” Hibiscus is a confusing plant because it is called many other names, Goodspeed explains. It is actually a genus of over 200 different species of plants. They range in size from small trees to annuals, and are grown in tropical to warm-temperate climates such as ours. Most hibiscus are noted for their large pink, purple, white, rose or yellow flowers, that can also come in about any imaginable combination of these colors, he says. Most of the flowers are quite large, measuring anywhere from 6 to 12 inches in diameter. Their size, color, and the fact that they bloom in the late summer, make them a favorite in many gardens. Generally, two different hibiscus varieties grow in northern Utah--a shrub hibiscus and a perennial hibiscus, Goodspeed says.
    [Show full text]
  • Impact of Cooking on the Phenolic, Flavonoids Content and the Antioxidant Activity of Corchorus Olitorius (Molokhia) and Malava Parviflora (Mallow) Leaves
    Journal of Academic Research (Applied Sciences), VOL.19, July 2021 22 Impact of cooking on the phenolic, flavonoids content and the antioxidant activity of Corchorus Olitorius (Molokhia) and Malava Parviflora (Mallow) leaves Article information Abstract Key words In this study the total phenolics content expressed as gallic acid equivalents (GAE) was Phenolic, flavonoids, higher in raw mallow leaves (459 mg GAE/100g DW) than in raw Jew's mallow leaves Jew’s mallow, mallow, (339 mg GAE/100g DW). Results showed that, the concentration of total flavonoids in antioxidant. Jew’s mallow was: 189, 163, 156 in raw, cooked and aqueous extract respectively. Whereas were in mallow as following: 188 in raw mallow, 174 in cooked mallow and Received 15 June 2021, 165 in aqueous extract. The antioxidant activity of raw and cooked Jew’s mallow and Accepted 1 July 2021, mallow leaves and their aqueous phenolic extracts were: 2.947±0.09, 3.315±0.05, Available online 3 July 2021 9.4±0.04, 2.076±0.09, 2.440±0.02, 5.9±0.03, respectively. Phenolic compounds in raw and cooked Jew's mallow and mallow leaves (mg/ 100g on dry weight basis) were: 2.2376 in raw Jew’s mallow, 1.9918 in cooked Jew’s mallow, 9.563 in raw mallow, 6.9432 in cooked mallow. (Yang et al. (2008)., Oboh et al. (2012)). Ozturk and I. INTRODUCTION Savaroglu (2012) reported that Jew's mallow leaves methanolic extract contains 42.1mg gallic acid equivalent (GAE) /g of total phenolics. Azuma et al. (1999) Phenolic compounds are one of the largest and diversified identified six phenolic compounds (chlorogenic acid, 3.5 groups of phytochemical compounds ubiquitous in the plants, with more than 8000 phenolic compounds dicaffeoylquinic acid, quercetin 3- (Trabelsi et al., 2013).
    [Show full text]
  • Blair's Rainforest Inventory
    Enoggera creek (Herston/Wilston) rainforest inventory Prepared by Blair Bartholomew 28-Jan-02 Botanical Name Common Name: tree, shrub, Derivation (Pronunciation) vine, timber 1. Acacia aulacocarpa Brown salwood, hickory/brush Acacia from Greek ”akakia (A), hê”, the shittah tree, Acacia arabica; (changed to Acacia ironbark/broad-leaved/black/grey which is derived from the Greek “akanth-a [a^k], ês, hê, (akê A)” a thorn disparrima ) wattle, gugarkill or prickle (alluding to the spines on the many African and Asian species first described); aulacocarpa from Greek “aulac” furrow and “karpos” a fruit, referring to the characteristic thickened transverse bands on the a-KAY-she-a pod. Disparrima from Latin “disparrima”, the most unlike, dissimilar, different or unequal referring to the species exhibiting the greatest difference from other renamed species previously described as A aulacocarpa. 2. Acacia melanoxylon Black wood/acacia/sally, light Melanoxylon from Greek “mela_s” black or dark: and “xulon” wood, cut wood, hickory, silver/sally/black- and ready for use, or tree, referring to the dark timber of this species. hearted wattle, mudgerabah, mootchong, Australian blackwood, native ash, bastard myall 3. Acmena hemilampra Broad-leaved lillypilly, blush satin Acmena from Greek “Acmenae” the nymphs of Venus who were very ash, water gum, cassowary gum beautiful, referring to the attractive flowers and fruits. A second source says that Acmena was a nymph dedicated to Venus. This derivation ac-ME-na seems the most likely. Finally another source says that the name is derived from the Latin “Acmena” one of the names of the goddess Venus. Hemilampra from Greek “hemi” half and “lampro”, bright, lustrous or shining, referring to the glossy upper leaf surface.
    [Show full text]