Math 482 Final Paper: Cantor Spaces in R This Paper Describes Some Basic Properties of Cantor Subspaces of the Real Line

Total Page:16

File Type:pdf, Size:1020Kb

Math 482 Final Paper: Cantor Spaces in R This Paper Describes Some Basic Properties of Cantor Subspaces of the Real Line Paul Gustafson Texas A&M University - Math 482 Instructor: Dr. David Larson Math 482 Final Paper: Cantor Spaces in R This paper describes some basic properties of Cantor subspaces of the real line. It also includes an application of these Cantor subspaces to a characterization of the countability of closed subsets of R in terms of some simple exterior measures. Recall that a perfect set is a set for which every point is a limit point. A set S is called totally disconnected if for every x; y 2 S, there exist disjoint open sets U; V ⊂ S such that x 2 U, y 2 V , and U [ V = S. Definition 1. A Cantor space is a non-empty, totally disconnected, perfect, compact metric space. Example 1. Let C0 := [0; 1], C1 := [0; 1=3] [ [2=3; 1], and C2 = [0; 1=9] [ [2=9; 1=3] [ [2=3; 7=9] [ [8=9; 1]. Similarly, for i > 2, let Ci be the closed set given by removing the open middle third of each interval of Ci−1. The ternary Cantor set 1 \ ∆ := Ci i=0 is a Cantor space. Proof. Since 0 2 Ci for all i, ∆ is non-empty. Since each interval in Ci is of length 3−i, ∆ is totally disconnected. It is closed and bounded, so compact by the Heine-Borel theorem. To see that ∆ is perfect, first note that the endpoints of any interval in any Ci remain endpoints of intervals in Ci+1, and Ci+1 ⊂ Ci. Hence, every point that is an endpoint of an interval in some Ci is in ∆. Now, fix x 2 ∆. Given > 0, there exists a Ci whose intervals are of length less than . Hence, both endpoints of the interval in Ci containing x are within of x, and are members of ∆. Thus, x is a limit point, so ∆ is perfect. Theorem 1. Let K be a Cantor space. If A ⊂ K is nonempty and clopen, then A is Cantor. Proof. A is compact since it is closed in K, and totally disconnected since it is open. To see that A is perfect, let x 2 A. Since K is perfect, there exists a sequence (xn) ⊂ K such that xn ! x. Since A is open, all but a finite number of xn lie in A. Theorem 2. If A ⊂ R is a Cantor space, then there is a order-preserving homeomorphism f : A ! f0; 1gN, where f0; 1gN is ordered lexicographically and Pn −n equipped with the product metric d(x; y) = i=1 jx(i) − y(i)j2 . 1 Proof. Step 1. Let a := inf(A), and d := sup(A) − a = diam(A). Since A is d 3d totally disconnected, there exists c 2 [a + 4 ; a + 4 ] n A. Then M0 := (−∞; c) \ A and M1 := (c; 1) \ A are clopen relative to A, hence Cantor spaces by 3 Theorem 1. Moreover, diam(Mi) ≤ 4 diam(A) for i = 0; 1. n−1 Step 2. For n > 1, apply Step 1 to Mt for each t 2 f0; 1g to get clopen 3 Cantor spaces Mt;0;Mt;1 ⊂ Mt with Mt;0 < Mt;1 and diam(Mt;i) ≤ 4 diam(Mt) n for i = 0; 1. By recursion on n, for all r; s 2 f0; 1g we have diam(Ms) ≤ 3 n diam(A), and if r < s in the lexicographical ordering then Mr < Ms, i.e. 4 S x 2 Mr; y 2 Ms implies x < y. Moreover, for any fixed n, A = s2f0;1gn Ms. Step 3. Fix x 2 A. The construction in Step 2 generates a descending sequence of sets (M ) n , each containing x. Since for all n we have tn tn2f0;1g tn+1 = tn; i for some i 2 f0; 1g, this sequence of sets determines a unique N element f(x) 2 f0; 1g such that, for any n, the first n entries of f(x) are tn. N To see that f is bijective, note that if t 2 f0; 1g and tn = (t(1); t(2); :::t(n)), −1 T1 then f (t) = n=1 Mtn contains exactly one point, since Mtn is a descending chain of compact sets with diameters going to 0. To see that f is continuous, let x 2 A. If xm ! x then, for every Mtn containing x, all but finitely many xm lie in Mtn since Mtn is open relative to −n A. Thus, f(xm) ! f(x) since diam(f(Mtn )) = 2 ! 0 as n ! 1. Since A is compact, the continuity of f implies f −1 is also continuous. To see that f is order-preserving, if x < y there exists n so large that x 2 Ms; y 2 Mt for s; t of length n with s 6= t. By Step 2, this implies s < t. Hence, f(x) < f(t). Theorem 3. If S ⊂ R is a Cantor space, there exists a nondecreasing, onto, continuous function g : S ! [0; 1]. N P1 −i Proof. Let h : f0; 1g ! [0; 1] be defined by h(x) = i=0 x(i)2 . Defining f as in Theorem 2, let g = h ◦ f. Thus, it suffices to show that h is nondecreasing, onto, and continuous. N P1 −i P1 Let x; y 2 f0; 1g . Then jh(x)−h(y)j = j i=0(x(i)−y(i))2 j ≤ i=0 jx(i)− y(i)j2−i = d(x; y), so h is continuous. If x < y, then there exists a min- imal n such that x(n) 6= y(n). By the definition of lexicographical order- P1 −i ing, x(n) = 0 and y(n) = 1. Thus, h(y) − h(x) = i=n(y(i) − x(i))2 = −n P1 −i −n P1 −i 2 + i=n+1(y(i) − x(i))2 ≥ 2 + i=n+1(−1)2 = 0. Hence, h is nonde- N creasing. To see that h is onto, let En := fx 2 f0; 1g : x(i) = 0 for all i > ng. −n+1 Then each h(En) is a 2 -net for [0; 1], so the image of h is dense in [0; 1]. Since S is compact, h(S) is compact, so h is onto. Lemma 1. If f :[a; b] ! [0; 1] is nondecreasing and onto, then f is continuous. Proof. Let c 2 (a; b]. Since f is nondecreasing, supx<c f(x) ≤ f(c) = infx≥c f(x). Hence, since f is onto, supx<c f(x) = f(c). To see that f(c−) = f(c), set > 0. By the definition of supremum, there exists a < c such f(c) − f(a) < . Then if a < x < c, since f is nondecreasing, f(c) − f(x) < . Hence, f(c−) = f(c). The proof for right continuity is analogous. 2 Lemma 2. Every compact metric space K can be written as K = A [ B, where A is perfect (hence compact), B is countable, and A \ B = ;. Proof. Let U be a countable base for K. Let V := fS 2 U : S is countableg, S and W := U n V . Then B := S2V S is countable and open. Let A := K n B. Then A is closed, hence compact. I claim that Wf := fS \ A : S 2 W g is a base for the topology of A. Suppose C ⊂ A is open in A, and x 2 C. Then C [B is open in K, so there exists S 2 U with x 2 S ⊂ (C [ B). Since x2 = B, S cannot be countable, so S 2 W . Hence, x 2 S \ A ⊂ C, so Wf is a base for A. Note that every element of W is uncountable, so, since B is countable, every element of Wf is also uncountable. Thus, A has no isolated points, so A is perfect. Definition 2. Given an nondecreasing function α : R ! R, the α-exterior measure of a set E ⊂ R is defined to be 1 1 ∗ X [ mα(E) := inff α(bi) − α(ai): E ⊂ (ai; bi)g i=1 i=1 ∗ Theorem 4. Let E ⊂ R be a closed set. Then E is countable iff mα(E) = 0 for all nondecreasing, continous α : R ! R. Proof. The forward implication is obvious. For the converse, suppose E were uncountable. If E contains a nontrivial interval, then let α be the identity. Since E contains an interval, it contains a compact set of the form [a; b] for a < b. Hence, any cover of E by open intervals must contain a finite subcover of [a; b]. The sum of the lengths of intervals in this subcover must be at least b − a, so ∗ mα(E) ≥ b − a > 0, a contradiction. Suppose E does not contain any nontrivial intervals. Note that E \[n; n+1] must be uncountable for some n, so WLOG, E is compact. Then, by Lemma 2, E = A [ B where A is a Cantor space and B is countable. Since A ⊂ E, ∗ ∗ ∗ mα(A) ≤ mα(E), so it suffices to show that mα(A) > 0. Let f : A ! [0; 1] be the increasing, onto, continuous function defined in Theorem 3. Define 0 : x ≤ inf(A) α(x) = supff(y): y 2 A \ (−∞; x)g : x > inf(A) Since A is closed and f is onto [0; 1], α is onto [0; 1]. Also, α is clearly non- decreasing. Since α is constant outside (inf(A); sup(A)), Lemma 1 implies α is continuous. Let U be a cover of A by open intervals. Since A is compact, there exists a n finite subcover F ⊂ U.
Recommended publications
  • Martin-L¨Of Random Points Satisfy Birkhoff's Ergodic
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 00, Number 0, Pages 000{000 S 0002-9939(XX)0000-0 MARTIN-LOF¨ RANDOM POINTS SATISFY BIRKHOFF'S ERGODIC THEOREM FOR EFFECTIVELY CLOSED SETS JOHANNA N.Y. FRANKLIN, NOAM GREENBERG, JOSEPH S. MILLER, AND KENG MENG NG Abstract. We show that if a point in a computable probability space X sat- isfies the ergodic recurrence property for a computable measure-preserving T : X ! X with respect to effectively closed sets, then it also satisfies Birkhoff's ergodic theorem for T with respect to effectively closed sets. As a corollary, every Martin-L¨ofrandom sequence in the Cantor space satisfies 0 Birkhoff's ergodic theorem for the shift operator with respect to Π1 classes. This answers a question of Hoyrup and Rojas. Several theorems in ergodic theory state that almost all points in a probability space behave in a regular fashion with respect to an ergodic transformation of the space. For example, if T : X ! X is ergodic,1 then almost all points in X recur in a set of positive measure: Theorem 1 (See [5]). Let (X; µ) be a probability space, and let T : X ! X be ergodic. For all E ⊆ X of positive measure, for almost all x 2 X, T n(x) 2 E for infinitely many n. Recent investigations in the area of algorithmic randomness relate the hierarchy of notions of randomness to the satisfaction of computable instances of ergodic theorems. This has been inspired by Kuˇcera'sclassic result characterising Martin- L¨ofrandomness in the Cantor space. We reformulate Kuˇcera'sresult using the general terminology of [4].
    [Show full text]
  • Descriptive Set Theory
    Descriptive Set Theory David Marker Fall 2002 Contents I Classical Descriptive Set Theory 2 1 Polish Spaces 2 2 Borel Sets 14 3 E®ective Descriptive Set Theory: The Arithmetic Hierarchy 27 4 Analytic Sets 34 5 Coanalytic Sets 43 6 Determinacy 54 7 Hyperarithmetic Sets 62 II Borel Equivalence Relations 73 1 8 ¦1-Equivalence Relations 73 9 Tame Borel Equivalence Relations 82 10 Countable Borel Equivalence Relations 87 11 Hyper¯nite Equivalence Relations 92 1 These are informal notes for a course in Descriptive Set Theory given at the University of Illinois at Chicago in Fall 2002. While I hope to give a fairly broad survey of the subject we will be concentrating on problems about group actions, particularly those motivated by Vaught's conjecture. Kechris' Classical Descriptive Set Theory is the main reference for these notes. Notation: If A is a set, A<! is the set of all ¯nite sequences from A. Suppose <! σ = (a0; : : : ; am) 2 A and b 2 A. Then σ b is the sequence (a0; : : : ; am; b). We let ; denote the empty sequence. If σ 2 A<!, then jσj is the length of σ. If f : N ! A, then fjn is the sequence (f(0); : : :b; f(n ¡ 1)). If X is any set, P(X), the power set of X is the set of all subsets X. If X is a metric space, x 2 X and ² > 0, then B²(x) = fy 2 X : d(x; y) < ²g is the open ball of radius ² around x. Part I Classical Descriptive Set Theory 1 Polish Spaces De¯nition 1.1 Let X be a topological space.
    [Show full text]
  • Characterization of Cantor Spaces
    Characterization of Cantor Spaces Matthew Shaw (ref. Pugh Analysis Textbook) November 2019 1 Introduction The standard Cantor Middle Thirds Set is compact, perfect, nonempty, and to- tally disconnected (and since the construction takes place in R with its standard metric, the Cantor Set is also metrizable). Totally Disconnected: Every connected component is a singleton set, and equiv- alently, every point has arbitrarily small clopen neighborhoods. Perfect: A space is called perfect if it has no isolated points. There are two main theorems of this presentation: The Cantor Surjection The- orem, that every nonempty compact metric space is the image of a continuous function with the Cantor set as its domain, and a complete characterization of Cantor spaces, in particular that every compact, nonempty, perfect, and to- tally disconnected metric space is homeomorphic to the standard Cantor middle thirds set. Notation: The set of words of countably infinite length in a two character al- phabet is denoted by Ω, the standard Cantor Middle-Thirds set is denoted by C, and the set of words of length n (where n 2 N) in a two character alphabet is denoted !(n). Note that the size of !(n) is always 2n. ! with no associated number will represent a word of countably infinite length (i.e. an element of Ω) and the notation !jn for n 2 N means the word ! truncated to only its first n characters (this is an element of !(n)). t denotes disjoint union of sets. If α and β are words of finite length, then the notation αβ means the word made up of the characters of α followed by the characters of β, which is also termed concatenation.
    [Show full text]
  • Set Known As the Cantor Set. Consider the Clos
    COUNTABLE PRODUCTS ELENA GUREVICH Abstract. In this paper, we extend our study to countably infinite products of topological spaces. 1. The Cantor Set Let us constract a very curios (but usefull) set known as the Cantor Set. Consider the 1 2 closed unit interval [0; 1] and delete from it the open interval ( 3 ; 3 ) and denote the remaining closed set by 1 2 G = [0; ] [ [ ; 1] 1 3 3 1 2 7 8 Next, delete from G1 the open intervals ( 9 ; 9 ) and ( 9 ; 9 ), and denote the remaining closed set by 1 2 1 2 7 8 G = [0; ] [ [ ; ] [ [ ; ] [ [ ; 1] 2 9 9 3 3 9 9 If we continue in this way, at each stage deleting the open middle third of each closed interval remaining from the previous stage we obtain a descending sequence of closed sets G1 ⊃ G2 ⊃ G3 ⊃ · · · ⊃ Gn ⊃ ::: T1 The Cantor Set G is defined by G = n=1 Gn, and being the intersection of closed sets, is a closed subset of [0; 1]. As [0; 1] is compact, the Cantor Space (G; τ) ,(that is, G with the subspace topology), is compact. It is useful to represent the Cantor Set in terms of real numbers written to basis 3, that is, 5 ternaries. In the ternary system, 76 81 would be written as 2211:0012, since this represents 2 · 33 + 2 · 32 + 1 · 31 + 1 · 30 + 0 · 3−1 + 0 · 3−2 + 1 · 3−3 + 2 · 3−4 So a number x 2 [0; 1] is represented by the base 3 number a1a2a3 : : : an ::: where 1 X an x = a 2 f0; 1; 2g 8n 2 3n n N n=1 Turning again to the Cantor Set G, it should be clear that an element of [0; 1] is in G if 1 5 and only if it can be written in ternary form with an 6= 1 8n 2 N, so 2 2= G 81 2= G but 1 1 1 3 2 G and 1 2 G.
    [Show full text]
  • Set Ideal Topological Spaces
    Set Ideal Topological Spaces W. B. Vasantha Kandasamy Florentin Smarandache ZIP PUBLISHING Ohio 2012 This book can be ordered from: Zip Publishing 1313 Chesapeake Ave. Columbus, Ohio 43212, USA Toll Free: (614) 485-0721 E-mail: [email protected] Website: www.zippublishing.com Copyright 2012 by Zip Publishing and the Authors Peer reviewers: Prof. Catalin Barbu, V. Alecsandri National College, Mathematics Department, Bacau, Romania. Prof. Valeri Kroumov, Okayama Univ. of Science, Japan. Dr. Sebastian Nicolaescu, 2 Terrace Ave., West Orange, NJ 07052, USA. Many books can be downloaded from the following Digital Library of Science: http://www.gallup.unm.edu/~smarandache/eBooks-otherformats.htm ISBN-13: 978-1-59973-193-3 EAN: 9781599731933 Printed in the United States of America 2 CONTENTS Preface 5 Chapter One INTRODUCTION 7 Chapter Two SET IDEALS IN RINGS 9 Chapter Three SET IDEAL TOPOLOGICAL SPACES 35 Chapter Four NEW CLASSES OF SET IDEAL TOPOLOGICAL SPACES AND APPLICATIONS 93 3 FURTHER READING 109 INDEX 111 ABOUT THE AUTHORS 114 4 PREFACE In this book the authors for the first time introduce a new type of topological spaces called the set ideal topological spaces using rings or semigroups, or used in the mutually exclusive sense. This type of topological spaces use the class of set ideals of a ring (semigroups). The rings or semigroups can be finite or infinite order. By this method we get complex modulo finite integer set ideal topological spaces using finite complex modulo integer rings or finite complex modulo integer semigroups. Also authors construct neutrosophic set ideal toplogical spaces of both finite and infinite order as well as complex neutrosophic set ideal topological spaces.
    [Show full text]
  • ON BERNSTEIN SETS Let Us Recall That a Subset of a Topological Space
    ON BERNSTEIN SETS JACEK CICHON´ ABSTRACT. In this note I show a construction of Bernstein subsets of the real line which gives much more information about the structure of the real line than the classical one. 1. BASIC DEFINITIONS Let us recall that a subset of a topological space is a perfect set if is closed set and contains no isolated points. Perfect subsets of real line R have cardinality continuum. In fact every perfect set contains a copy of a Cantor set. This can be proved rather easilly by constructing a binary tree of decreasing small closed sets. There are continnum many perfect sets. This follows from a more general result: there are continuum many Borel subsets of real. We denote by R the real line. We will work in the theory ZFC. Definition 1. A subset B of the real line R is a Bernstein set if for every perfect subset P of R we have (P \ B 6= ;) ^ (P n B 6= ;) : Bernstein sets are interesting object of study because they are Lebesgue nonmeasurable and they do not have the property of Baire. The classical construction of a Berstein set goes as follows: we fix an enumeration (Pα)α<c of all perfect sets, we define a transfinite sequences (pα), (qα) of pairwise different points such that fpα; qαg ⊆ Pα, we put B = fpα : α < cg and we show that B is a Bernstein set. This construction can be found in many classical books. The of this note is to give slightly different construction, which will generate simultanously a big family of Bermstein sets.We start with one simple but beautifull result: Lemma 1.
    [Show full text]
  • Lecture 8: the Real Line, Part II February 11, 2009
    Lecture 8: The Real Line, Part II February 11, 2009 Definition 6.13. a ∈ X is isolated in X iff there is an open interval I for which X ∩ I = {a}. Otherwise, a is a limit point. Remark. Another way to state this is that a is isolated if it is not a limit point of X. Definition 6.14. X is a perfect set iff X is closed and has no isolated points. Remark. This definition sounds nice and tidy, but there are some very strange perfect sets. For example, the Cantor set is perfect, despite being nowhere dense! Our goal will be to prove the Cantor-Bendixson theorem, i.e. the perfect set theorem for closed sets, that every closed uncountable set has a perfect subset. Lemma 6.15. If P is a perfect set and I is an open interval on R such that I ∩ P 6= ∅, then there exist disjoint closed intervals J0,J1 ⊂ I such that int[J0] ∩ P 6= ∅ and int[J1] ∩ P 6= ∅. Moreover, we can pick J0 and J1 such that their lengths are both less than any ² > 0. Proof. Since P has no isolated points, there must be at least two points a0, a1 ∈ I ∩ P . Then just pick J0 3 a0 and J1 3 a1 to be small enough. SDG Lemma 6.16. If P is a nonempty perfect set, then P ∼ R. Proof. We exhibit a one-to-one mapping G : 2ω → P . Note that 2ω can be viewed as the set of all infinite paths in a full, infinite binary tree with each edge labeled by 0 or 1.
    [Show full text]
  • Generalizations and Properties of the Ternary Cantor Set and Explorations in Similar Sets
    Generalizations and Properties of the Ternary Cantor Set and Explorations in Similar Sets by Rebecca Stettin A capstone project submitted in partial fulfillment of graduating from the Academic Honors Program at Ashland University May 2017 Faculty Mentor: Dr. Darren D. Wick, Professor of Mathematics Additional Reader: Dr. Gordon Swain, Professor of Mathematics Abstract Georg Cantor was made famous by introducing the Cantor set in his works of mathemat- ics. This project focuses on different Cantor sets and their properties. The ternary Cantor set is the most well known of the Cantor sets, and can be best described by its construction. This set starts with the closed interval zero to one, and is constructed in iterations. The first iteration requires removing the middle third of this interval. The second iteration will remove the middle third of each of these two remaining intervals. These iterations continue in this fashion infinitely. Finally, the ternary Cantor set is described as the intersection of all of these intervals. This set is particularly interesting due to its unique properties being uncountable, closed, length of zero, and more. A more general Cantor set is created by tak- ing the intersection of iterations that remove any middle portion during each iteration. This project explores the ternary Cantor set, as well as variations in Cantor sets such as looking at different middle portions removed to create the sets. The project focuses on attempting to generalize the properties of these Cantor sets. i Contents Page 1 The Ternary Cantor Set 1 1 2 The n -ary Cantor Set 9 n−1 3 The n -ary Cantor Set 24 4 Conclusion 35 Bibliography 40 Biography 41 ii Chapter 1 The Ternary Cantor Set Georg Cantor, born in 1845, was best known for his discovery of the Cantor set.
    [Show full text]
  • Does Minimal Action by the Group of Measure Preserving Transformations Imply the Existence of a Uniquely Ergodic Transformation for a Measure on a Cantor Set?
    DOES MINIMAL ACTION BY THE GROUP OF MEASURE PRESERVING TRANSFORMATIONS IMPLY THE EXISTENCE OF A UNIQUELY ERGODIC TRANSFORMATION FOR A MEASURE ON A CANTOR SET? ETHAN AKIN Assume that a Borel probability measure µ on a Cantor set X satisfies µ(A) > 0 if A is opene (=open and nonempty) and µ(A) = 0 if A is countable, ie. µ is full and nonatomic. For such a measure the clopen values set S(µ) =def {µ(A): A a clopen subset of X} is a countable dense subset of the interval [0, 1] which includes the endpoints 0, 1. Such a subset is called grouplike if it is the intersection of [0, 1] with a dense additive subgroup of the reals. For such a measure µ we define for any clopene (= clopen and nonempty) subset A the relative measure µA by µA(B) = µ(B)/µ(A) for measurable B ⊂ A. Thus, µA is a full, nonatomic probability measure on the Cantor set A. Definition 1. A full, nonatomic probability measure µ on a Cantor set X is called good if for all clopen subsets A, B of X with µ(A) < µ(B) there exists a clopen subset A1 of B such that µ(A) = µ(A1). These measures satisfy the following properties, see Akin (2003) Good measures on Cantor space (to appear Trans. AMS). (1) Among good measures the clopen values set provides a complete topological invariant. (2) If µ is a good measure on X then S(µ) is grouplike and every grouplike subset is the clopen values set for some good measure.
    [Show full text]
  • Arxiv:1703.05470V1 [Math.LO] 16 Mar 2017 Coding Polish Spaces
    Coding Polish spaces Diego Alejandro Mej´ıa Faculty of Science Shizuoka University 836 Ohya, Suruga-ku, 422-8529 Shizuoka, Japan [email protected] Abstract We use countable metric spaces to code Polish metric spaces and evaluate the complexity of some statements about these codes and of some relations that can be determined by the codes. Also, we propose a coding for continuous functions between Polish metric spaces. 1 Introduction A Polish metric space is a separable complete metric space hX,di and a Polish space is a topological space X which is homeomorphic to some Polish metric space (in the first notion the complete metric is required). As any Polish metric space is the completion of a countable metric space and the latter can be coded by reals in Rω×ω, we can use such reals to code Polish metric spaces. This coding was used by Clemens [Cle12] to formalize the isometry relation and to study other equivalence relations that can be reduced to that one. In this paper, we take a closer look to this coding and study the complexity of some statements about codes, some of them characterizing relations between Polish metric spaces. In particular, we provide a different proof of [Cle12, Lemma 4] that states that the isometry relation is analytic (Theorem 3.5(f)). We also code continuous functions between Polish metric spaces by Cauchy-continuous functions between the corresponding separable metric spaces and, like in the case of Polish metric spaces, we study the complexity of arXiv:1703.05470v1 [math.LO] 16 Mar 2017 some statements about this coding.
    [Show full text]
  • An Introduction to Totally Disconnected Locally Compact Groups
    An introduction to totally disconnected locally compact groups Phillip R. Wesolek December 11, 2018 ii Contents 1 Topological Structure 7 1.1 van Dantzig's theorem . .7 1.2 Isomorphism theorems . 11 1.3 Graph automorphism groups . 14 1.4 Exercises . 20 2 Haar Measure 23 2.1 Functional analysis . 23 2.2 Existence . 25 2.3 Uniqueness . 33 2.4 The modular function . 37 2.5 Quotient integral formula . 40 2.6 Exercises . 44 3 Geometric Structure 49 3.1 The Cayley{Abels graph . 49 3.2 Cayley-Abels representations . 53 3.3 Uniqueness . 57 3.4 Compact presentation . 60 3.5 Exercises . 62 4 Essentially Chief Series 65 4.1 Graphs revisited . 66 4.2 Chain conditions . 72 4.3 Existence of essentially chief series . 75 4.4 Uniqueness of essentially chief series . 78 4.5 The refinement theorem . 80 4.6 Exercises . 87 1 2 CONTENTS Introduction Preface For G a locally compact group, the connected component which contains the identity, denoted by G◦, is a closed normal subgroup. This observation produces a short exact sequence of topological groups f1g ! G◦ ! G ! G=G◦ ! f1g where G=G◦ is the group of left cosets of G◦ endowed with the quotient topology. The group G◦ is a connected locally compact group, and the group of left cosets G=G◦ is a totally disconnected locally compact (t.d.l.c.) group. The study of locally compact groups therefore in principle, although not always in practice, reduces to studying connected locally compact groups and t.d.l.c. groups. The study of locally compact groups begins with the work [11] of S.
    [Show full text]
  • Arxiv:1603.05121V3 [Math.GM] 31 Oct 2016 Definition of Set Derived Efc (I.E
    SOME EXISTENCE RESULTS ON CANTOR SETS Borys Alvarez-Samaniego´ N´ucleo de Investigadores Cient´ıficos Facultad de Ingenier´ıa, Ciencias F´ısicas y Matem´atica Universidad Central del Ecuador (UCE) Quito, Ecuador Wilson P. Alvarez-Samaniego´ N´ucleo de Investigadores Cient´ıficos Facultad de Ingenier´ıa, Ciencias F´ısicas y Matem´atica Universidad Central del Ecuador (UCE) Quito, Ecuador Jonathan Ortiz-Castro Facultad de Ciencias Escuela Polit´ecnica Nacional (EPN) Quito, Ecuador Abstract. The existence of two different Cantor sets, one of them contained in the set of Liouville numbers and the other one inside the set of Diophan- tine numbers, is proved. Finally, a necessary and sufficient condition for the existence of a Cantor set contained in a subset of the real line is given. MSC: 54A05; 54B05 Keywords: Cantor set; Liouville numbers; Diophantine numbers. arXiv:1603.05121v3 [math.GM] 31 Oct 2016 1. Introduction First, we will introduce some basic topological concepts. Definition 1.1. A nowhere dense set X in a topological space is a set whose closure has empty interior, i.e. int(X)= ∅. Definition 1.2. A nonempty set C ⊂ R is a Cantor set if C is nowhere dense and perfect (i.e. C = C′, where C′ := {p ∈ R; p is an accumulation point of C} is the derived set of C). Definition 1.3. A condensation point t of a subset A of a topological space, is any point t, such that every open neighborhood of t contains uncountably many points of A. Date: October 31, 2016. 1 2 B. ALVAREZ-SAMANIEGO,´ W.
    [Show full text]